EP1155154B1 - Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces - Google Patents

Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces Download PDF

Info

Publication number
EP1155154B1
EP1155154B1 EP00910497A EP00910497A EP1155154B1 EP 1155154 B1 EP1155154 B1 EP 1155154B1 EP 00910497 A EP00910497 A EP 00910497A EP 00910497 A EP00910497 A EP 00910497A EP 1155154 B1 EP1155154 B1 EP 1155154B1
Authority
EP
European Patent Office
Prior art keywords
coolant
main chamber
channel
antechamber
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00910497A
Other languages
German (de)
French (fr)
Other versions
EP1155154A1 (en
Inventor
Kurt Peter Stricker
Jürgen WITTE
Rainer Altland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmannroehren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19963259A external-priority patent/DE19963259C2/en
Application filed by Mannesmannroehren Werke AG filed Critical Mannesmannroehren Werke AG
Publication of EP1155154A1 publication Critical patent/EP1155154A1/en
Application granted granted Critical
Publication of EP1155154B1 publication Critical patent/EP1155154B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres

Definitions

  • the invention relates to a blow mold for shaft furnaces, in particular blast furnaces or Hot-wind cupola furnaces according to the preamble of patent claim 1.
  • a blow mold for shaft furnaces is known from DE-OS 35 05 968. At this Construction is on a base part of an inner and an outer jacket and an existing double-walled front part connected to it Hollow body attached. The cavity formed between the inner and outer jacket becomes through an intermediate wall arranged in the front part area into a front wall and a front wall Subsequent main chamber divided. A feed line arranged in the base part for the coolant extends as a tube through the main chamber and the intermediate wall to the antechamber. The partition has several openings, so that the Coolant can flow back from the antechamber to the main chamber. From there flows it via openings arranged in the base part in an annular chamber, which with a Return connection is provided.
  • the disadvantage of this construction is that the Blow mold is cooled with only one cooling circuit system and in the event of cooling failure or when there are leaks in the blow mold and as a rule required throttling of the cooling water amount so heavily used is that it will be destroyed in a short time with all resulting from it Consequences and dangers.
  • Another disadvantage is that the cooling water is not led in several places, so that turbulence occurs, which promote vapor bubble formation and thus heat dissipation from them Places is greatly reduced. In extreme cases, this can lead to local melting and melting thus lead to the destruction of the blow mold.
  • blow mold A further development of the blow mold is known from US 2,735,409.
  • the coolant circuit of the main chamber consists of an outer jacket helically tightly wound tube while the coolant circuit of the Antechamber consists of two parallel straight tubes that are U-shaped trained ring channel of the front part open.
  • the inner jacket is designed as a smooth conical tube, the two straight Pipes of the prechamber between the inner and outer jacket are arranged.
  • the inner jacket is also made of a screw tightly wound tube formed.
  • the front part is manufactured as a separate part and either via anchors with the rear connection part or directly via one
  • the weld seam is connected on the face to the inner and outer jacket.
  • a disadvantage of This well-known construction is very small due to its design and less favorable Querform (rectangle) designed cooling channels in the main chamber area, as well as the very small cross-sections in the feed lines to the pre-chamber due to the design.
  • the in relation to a reduction in cross-section and in relation to an increasing one Deviation from the round cross-sectional shape disproportionate decrease in Coolant volume flow in both the front and the main chamber has one a correspondingly clear deterioration in the cooling effect.
  • the object of this invention is to provide a blow mold of the aforementioned type create that with reasonable effort for the production by a thermally highly stressed front part area extremely effective cooling a disproportionate long service life and thus low operating costs as well as an affordable one Operational behavior of the shaft furnace equipped with it ensures without the Available cooling water quantities and differential pressures are crucial change.
  • Another task is to blow the blow by one Favorable geometric design as far as possible before dripping To protect melting phases in the shaft furnace and, as a rule, not completely thermally so heavily used main (back) chamber also with an extremely effective To provide cooling without the available cooling water quantities and Differential pressures, as well as the directly related operating costs for the To change cooling water decisively.
  • the essence of the invention is the formation of the outer shell by a one-piece, in Cross section seen vertical axisymmetric body, the front passes seamlessly into the front part.
  • the inner jacket is formed by a conical trained welded part, which the inner cover of the helical formed cooling channel of the main chamber.
  • Another important feature is the arrangement of the channels supplying the front part with cooling medium in the 12 o'clock position the blow mold, based on the longitudinal axis of the blow mold, outside the cross section of the main chamber. With the proposed arrangement The cooling channels in the pre-chamber will show the different loads on the blow mold Considered circumferential direction considered. This is how the blow mold is proven more stressed in the 12 o'clock position than in the side areas.
  • the coolant circuit of the main chamber can be a two-course system helical cooling channel formed or with a helical Cooling duct and a straight cooling duct lying in the blow mold at 6 o'clock be provided.
  • the straight one, lying parallel to the blow axis and without ribs provided cooling channel is, based on the longitudinal axis of the blow mold outside the original cross section of the main chamber of the blow mold, the Connections for the flow and return adjacent to the connections of the antechamber are in the 12 o'clock position.
  • the straight cooling duct in the 6 o'clock position With the arrangement of the straight cooling duct in the 6 o'clock position the different load of the blow mold in the blow mold Circumferential direction taken into account.
  • the blow mold is also in the 6 o'clock position more stressed than in the side areas. Because of the intense Cooling this area also increases the service life of the blow mold.
  • the proposal provides for the inflow and outflow channels for the Antechamber and the return duct of the main chamber from the area of the Lay out cross section of the main chamber of the blow mold in each case in the radial direction outside the main chamber, based on the longitudinal axis the blow mold. This ensures that none in the cooling channel of the main chamber Cross-sectional narrowing caused by inlet and return channels. Because of that there are optimal fluidic conditions in the main chamber greatest possible coolant speeds. Furthermore, all channels mentioned seen over the length almost a constant cross-section and the required cross-sectional changes in the connection area and the small-wheeled Changes of direction are rounded and without jump points.
  • flow rates for the Coolants achieved that are at least twice as high as those known versions. This is achieved by avoiding dead zones, Swirling points, throttling points, storage areas as well as the optimal Possibility of designing the cooling channel cross-sectional shapes (round, trapezoidal) and the Cross-sectional size of the individual channel sections.
  • the optimal design option of the inlet and return channels for the prechamber leads with unchanged Differential pressure also in the antechamber at significantly higher flow rates. If you continue to ensure that a balanced ratio of Pump output and channel cross section the desired high flow rates can be achieved, then the vapor bubble formation largely suppressed.
  • the aim is also at low available Differential pressure of, for example, 2 bar for cooling the highly loaded Antechamber a flow rate of ⁇ 10m / sec and for the main chamber of ⁇ 6m / sec.
  • the proposed blow mold design is for both prechambers with only one ring channel as well as for longer antechambers with a helical one Channel suitable.
  • US-A-3 601 384 describes a blow mold having a one-piece, a helical shape Outer jacket containing cooling channel, which with a covering the cooling channel Inner jacket is welded.
  • coolants to the cooling channel are not arranged as in the invention and only one coolant circuit is provided.
  • the blow mold is not only thermal, but also also additionally chemically and mechanically loaded; especially if the Wear of the refractory lining of the shaft furnace a certain degree has reached.
  • the cross section of the blow mold in the 12 o'clock position area is proposed according to the invention to train as a roof. This has the advantage of falling on the blow mold or dripping substances can slide off or drain off more easily.
  • This training is supposed to in particular the undesired contacting of liquid zinc, pig iron or Reduce slag with the blow mold made of copper or copper alloy. As is known, zinc reacts with copper, making the copper wall chemically is reduced.
  • the blow mold designed according to the invention consists of an outer jacket 2 forming base body 1 and a weld-in part 4 forming the inner jacket 3.
  • the hollow body that forms between the outer jacket 2 and the inner jacket 3 becomes completed at the front by a thermally highly stressed front part 5.
  • the base body On the input side, the base body has a double-conical inlet section 6, in the nozzle tip of a nozzle block, not shown here, is inserted.
  • the upper part of the inner jacket 3 is arranged on the inner jacket 3 Refractory layer 7 shown hinted.
  • the frontal area of the Front part 5 is provided with armor 8 to the front part 5 before mechanical Protect damage and wear.
  • the one with coolant acted upon hollow body divided into a prechamber 9 and a main chamber 10. Both chambers 9, 10 are hydraulically completely separated from each other and on separate cooling circuits connected.
  • the upper part of FIG To recognize the blow shape of the inlet channel 11 for the prechamber 9. Is on the inlet side the inlet channel 11 with a connection 12 in the form of a threaded section provided, into which an inlet pipe, not shown, can be screwed. The Inlet channel 11 then merges into the prechamber 9, which is transverse to the Inlet channel 11 lying ring channel 22 is formed. Instead of a ring channel, too the arrangement of a helical design having a plurality of revolutions Channel possible.
  • this has a helical cooling channel 15.
  • the inside of this cooling duct 15 is covered by the inner jacket 4
  • the coolant is supplied or discharged into the main chamber 10 in the 11 o'clock or 1 o'clock position area, adjacent to the connections 12, 14 for the prechamber 9.
  • Im Seen clockwise behind the inlet connection 18 arranged in the 1 o'clock area is the coolant through a semicircular channel 20 (with dashed lines in Fig. 2 Lines shown) in the double-conical inlet section 6 to the 6 o'clock position guided below and enters the helical cooling channel 15 here.
  • the cooling medium comes directly in front Antechamber 9 into a return channel 16, which is also arranged at 6 o'clock, the is below the helical cooling channel 15 and the cooling medium returns into the double-conical inlet section 6.
  • the cooling medium is again in a semicircular channel 21 (in FIG dashed lines) in the 11 o'clock position up to the drain connection 17 out.
  • the two cooling channels 15, 16 for the main chamber 10 are at the end also provided with a threaded section 17, 18 into which the inlet or outlet pipe is screwed in.
  • the inlet and return connection 12,14,17,18 for both Antechamber as well as for the main chamber are interchangeable without affecting the desired effect of an intensive cooling effect changes somewhat.
  • the cross-sectional transitions and the small-scale changes in direction of the channels are very rounded, so that there are no turbulence points or dead zones can.
  • the additional chemical and mechanical stress that occurs the blow mold is strongly influenced by the geometric shape.
  • the hollow body is tapered towards the shaft furnace, with a half Cone angle in the range of 12 - 14 ° has been found to be favorable.
  • the roof-like configuration 19 of the 12 o'clock position area also has a directional effect to see the blow mold. Substances falling or dripping on the blow mold the shaft furnace or the loading can thus be moved sideways in a simple manner and slide or flow towards the center of the shaft furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Blast Furnaces (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

Die Erfindung betrifft eine Blasform für Schachtöfen, insbesondere Hochöfen oder Heißwindkupolöfen gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a blow mold for shaft furnaces, in particular blast furnaces or Hot-wind cupola furnaces according to the preamble of patent claim 1.

Derartige, größtenteils aus Kupfer bzw. einer Kupferlegierung gegossenen Teilen hergestellte, wassergekühlte Blasformen werden verbreitet zum Zuführen des Heißwindes eingesetzt, um damit einen wirkungsvollen Betrieb des Schachtofens zu sichern. Im Falle eines Hochofens liegt die Temperatur des Heißmischwindes im Bereich von ca. 700 bis über 1300 Grad Celsius bei Drücken zwischen 2,5 und 5,5 bar. Dabei wird nicht nur der Innenmantel der Blasform und hier insbesondere das Frontteil, stark beansprucht, sondern auch mit fortschreitendem Verschleiß der Feuerfestausmauerung des Schachtofens und damit Bloßlegen des Frontbereiches der Blasform zunehmend der Mantelbereich durch Schmelzphasen wie z. B. Roheisen, Schlacke, teilreduzierte Möllerstoffe und Zink, sowie durch Abrasion mit Koks und/oder Wind. Um unter diesen extremen Beanspruchungen eine ausreichende Standzeit zu erreichen, ist es erforderlich, die Blasform durch intensive Kühlung mittels eines durch sie hindurchgeführten Kühlmittels, meistens Kühlwasser, auf erträgliche Temperaturen zu halten. Es ist außerdem erforderlich, den Oberflächenverschleiß der Blasform infolge korrosiver Wirkung von Schmelzphasen und Abrasion durch geeignete Maßnahmen zu minimieren.Parts of this type, largely cast from copper or a copper alloy Manufactured, water-cooled blow molds are widely used to feed the Hot wind used to operate the shaft furnace effectively to back up. In the case of a blast furnace, the temperature of the hot mixing wind is in the Range from approx. 700 to over 1300 degrees Celsius at pressures between 2.5 and 5.5 bar. It is not only the inner shell of the blow mold, and here in particular that Front part, heavily used, but also with progressive wear of the Refractory lining of the shaft furnace and thus exposing the front area the blow mold increasingly the jacket area through melting phases such. B. pig iron, Slag, partially reduced waste and zinc, as well as through abrasion with coke and / or Wind. To ensure a sufficient service life under these extreme stresses reach, it is necessary to blow the mold by intensive cooling by means of a coolant passed through them, mostly cooling water, to tolerable temperatures to keep. It also requires the surface wear of the blow mold due to corrosive effects of melting phases and abrasion by suitable Minimize measures.

Aus der DE-OS 35 05 968 ist eine Blasform für Schachtöfen bekannt. Bei dieser Konstruktion ist an einem Basisteil ein aus einem Innen- und einem Außenmantel sowie einem mit diesen verbundenen Frontteil bestehender doppelwandiger Hohlkörper befestigt. Der zwischen Innen- und Außenmantel gebildete Hohlraum wird durch eine im Frontteilbereich angeordnete Zwischenwand in eine Vor- und eine daran anschließende Hauptkammer unterteilt. Eine im Basisteil angeordnete Zuführleitung für das Kühlmittel erstreckt sich als Rohr durch die Hauptkammer und die Zwischenwand bis in die Vorkammer. Die Zwischenwand weist mehrere Öffnungen auf, so dass das Kühlmittel von der Vorkammer in die Hauptkammer zurückfließen kann. Von dort fließt es über im Basisteil angeordnete Öffnungen in eine Ringkammer, die mit einem Rücklaufanschluss versehen ist. Nachteilig bei dieser Konstruktion ist, dass die Blasform mit nur einem Kühlkreislaufsystem gekühlt wird und bei Ausfall der Kühlung bzw. beim Auftreten von Undichtigkeiten in der Blasform und der damit in der Regel zwangsweise erforderlichen Drosselung der Kühlwassermenge so stark beansprucht wird, dass sie in kurzer Zeit zerstört ist mit allen sich daraus ergebenden Folgestörungen und Gefahren. Ein weiterer Nachteil ist darin zu sehen, dass an mehreren Stellen das Kühlwasser nicht geführt ist, so dass Verwirbelungen entstehen, die eine Dampfblasenbildung begünstigen und damit die Wärmeabfuhr an diesen Stellen stark vermindert ist. Im Extremfall kann dies zu lokalen Aufschmelzungen und damit zur Zerstörung der Blasform führen.A blow mold for shaft furnaces is known from DE-OS 35 05 968. At this Construction is on a base part of an inner and an outer jacket and an existing double-walled front part connected to it Hollow body attached. The cavity formed between the inner and outer jacket becomes through an intermediate wall arranged in the front part area into a front wall and a front wall Subsequent main chamber divided. A feed line arranged in the base part for the coolant extends as a tube through the main chamber and the intermediate wall to the antechamber. The partition has several openings, so that the Coolant can flow back from the antechamber to the main chamber. From there flows it via openings arranged in the base part in an annular chamber, which with a Return connection is provided. The disadvantage of this construction is that the Blow mold is cooled with only one cooling circuit system and in the event of cooling failure or when there are leaks in the blow mold and as a rule required throttling of the cooling water amount so heavily used is that it will be destroyed in a short time with all resulting from it Consequences and dangers. Another disadvantage is that the cooling water is not led in several places, so that turbulence occurs, which promote vapor bubble formation and thus heat dissipation from them Places is greatly reduced. In extreme cases, this can lead to local melting and melting thus lead to the destruction of the blow mold.

Eine Weiterentwicklung der Blasform ist aus der US 2,735,409 bekannt. Bei dieser bekannten Ausführungsform ist der Hohlkörper in eine im Frontteilbereich liegende Vorkammer und eine daran anschließende Hauptkammer unterteilt, wobei die Vor- und Hauptkammer vollständig hydraulisch voneinander getrennt sind und jeweils einen separaten Kühlmittelkreislauf mit eigenen Anschlüssen aufweisen. Der Kühlmittelkreislauf der Hauptkammer besteht aus einem den Außenmantel bildenden schraubenförmig eng gewickelten Rohr, während der Kühlmittelkreislauf der Vorkammer aus zwei parallel liegenden geraden Rohren besteht, die in den U-förmig ausgebildeten Ringkanal des Frontteiles münden. Bei einer ersten Ausführungsform ist der Innenmantel als glattes konisches Rohr ausgebildet, wobei die beiden geraden Rohre der Vorkammer zwischen Innen- und Außenmantel angeordnet sind. Bei einer zweiten Ausführungsform wird der Innenmantel ebenfalls aus einem schraubenförmig eng gewickelten Rohr gebildet. Das Frontteil wird als separates Teil hergestellt und entweder über Anker mit dem rückwärtigen Anschlussteil oder direkt über eine Schweißnaht stirnseitig mit dem Innen -und Außenmantel verbunden. Nachteilig bei dieser bekannten Konstruktion sind die bauartbedingt sehr kleinen und mit ungünstiger Querform (Rechteck) ausgeführten Kühlkanäle im Hauptkammerbereich, sowie die bauartbedingt sehr kleinen Querschnitte in den Zuleitungen zur Vorkammer. Die bezogen auf eine Querschnittsminderung und bezogen auf eine zunehmende Abweichung von der runden Querschnittsform überproportionale Abnahme des Kühlmediumvolumenstromes sowohl in der Vor- als auch in der Hauptkammer hat eine entsprechend deutlichere Verschlechterung der Kühlwirkung zur Folge. Von weiterem Nachteil ist, dass entsprechend der Beschreibung der genannten Schrift der Querschnitt des Vorkammerkühlkanales ähnlich klein sein soll, wie derjenige des Hauptkammerkühlkanales. Daraus ergibt sich von der Querschnittsform her ein rechteckiger Vorkammerkühlkanal mit sehr ungünstigen Seitenverhältnissen und einer daraus resultierenden schlechten Kühlwirkung. Auch die Mündung des Zulaufkanales in den Vorkammerkühlkanal ist von Nachteil, da dies einen hohen hydraulischen Widerstand in diesem Kühlkreislauf bedeutet mit daraus resultierendem geringeren Kühlmediumvolumenstrom bzw. geringerer Kühlmediumgeschwindigkeit in der Vorkammer und die sich daraus ergebende schlechtere Kühlwirkung. Die Gesamtkonstruktion ist herstellungsmäßig sehr aufwendig und weist eine Vielzahl von kritischen Abdichtstellen auf, die teilweise ungelöst sind. Ungelöst ist auch das Problem des äußeren Angriffes der Hauptkammer der bekannten Blasform durch abtropfende Schmelzphasen im Hochofen.A further development of the blow mold is known from US 2,735,409. At this known embodiment is the hollow body in a lying in the front portion Antechamber and an adjoining main chamber divided, the antechamber and Main chamber are completely hydraulically separated and one each have a separate coolant circuit with its own connections. The The coolant circuit of the main chamber consists of an outer jacket helically tightly wound tube while the coolant circuit of the Antechamber consists of two parallel straight tubes that are U-shaped trained ring channel of the front part open. In a first embodiment the inner jacket is designed as a smooth conical tube, the two straight Pipes of the prechamber between the inner and outer jacket are arranged. At a second embodiment, the inner jacket is also made of a screw tightly wound tube formed. The front part is manufactured as a separate part and either via anchors with the rear connection part or directly via one The weld seam is connected on the face to the inner and outer jacket. A disadvantage of This well-known construction is very small due to its design and less favorable Querform (rectangle) designed cooling channels in the main chamber area, as well as the very small cross-sections in the feed lines to the pre-chamber due to the design. The in relation to a reduction in cross-section and in relation to an increasing one Deviation from the round cross-sectional shape disproportionate decrease in Coolant volume flow in both the front and the main chamber has one a correspondingly clear deterioration in the cooling effect. From further The disadvantage is that according to the description of the above-mentioned font Cross section of the prechamber cooling duct should be as small as that of the Main chamber cooling channel. This results in a cross-sectional shape rectangular prechamber cooling duct with very unfavorable aspect ratios and one resulting poor cooling effect. Also the mouth of the inlet channel in the prechamber cooling duct is disadvantageous as this is high hydraulic Resistance in this cooling circuit means with the resulting lower Cooling medium volume flow or lower cooling medium speed in the Antechamber and the resulting poor cooling effect. The Overall construction is very expensive to manufacture and has a variety of critical sealing points that are partially undissolved. This is also unsolved Problem of external attack of the main chamber of the known blow mold dripping melting phases in the blast furnace.

Aufgabe dieser Erfindung ist es, eine Blasform der vorstehend genannten Gattung zu schaffen, die bei vertretbarem Aufwand für die Herstellung durch eine im thermisch hochbeanspruchten Frontteilbereich extrem wirksame Kühlung eine unverhältnismäßig lange Standzeit und damit geringe Betriebskosten sowie ein günstiges Betriebsverhalten des mit ihr ausgestatteten Schachtofens sichert, ohne die zur Verfügung stehenden Kühlwassermengen und Differenzdrücke entscheidend zu verändern. Eine weitergehende Aufgabe besteht darin, die Blasform durch eine günstige geometrische Gestaltung möglichst weitgehend vor abtropfenden Schmelzphasen im Schachtofen zu schützen und die im Regelfall thermisch nicht ganz so hoch beanspruchte Haupt-(Hinter-)kammer ebenfalls mit einer extrem wirksamen Kühlung zu versehen, ohne die zur Verfügung stehenden Kühlwassermengen und Differenzdrücke, sowie die hiermit direkt verbundenen Betriebskosten für das Kühlwasser entscheidend zu verändern.The object of this invention is to provide a blow mold of the aforementioned type create that with reasonable effort for the production by a thermally highly stressed front part area extremely effective cooling a disproportionate long service life and thus low operating costs as well as an affordable one Operational behavior of the shaft furnace equipped with it ensures without the Available cooling water quantities and differential pressures are crucial change. Another task is to blow the blow by one Favorable geometric design as far as possible before dripping To protect melting phases in the shaft furnace and, as a rule, not completely thermally so heavily used main (back) chamber also with an extremely effective To provide cooling without the available cooling water quantities and Differential pressures, as well as the directly related operating costs for the To change cooling water decisively.

Diese Aufgabe wird ausgehend vom Oberbegriff in Verbindung mit den kennzeichnenden Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind jeweils Gegenstand von Unteransprüchen. This task is based on the generic term in conjunction with the characterizing features of claim 1 solved. advantageous Further training is the subject of subclaims.

Kern der Erfindung ist die Bildung des Außenmantels durch einen einteiligen, im Querschnitt gesehen vertikalachssymmetrischen Grundkörper, der frontseitig absatzlos in das Frontteil übergeht. Der Innenmantel wird gebildet durch ein konisch ausgebildetes Einschweißteil, das die innere Abdeckung des wendelförmig ausgebildeten Kühlkanales der Hauptkammer bildet. Ein weiteres wichtiges Merkmal ist die Anordnung der das Frontteil mit Kühlmedium versorgenden Kanäle in 12-Uhr-Lage der Blasform, und zwar bezogen auf die Längsachse der Blasform, außerhalb des Querschnittes der Hauptkammer. Mit der vorgeschlagenen Anordnung der Kühlkanäle der Vorkammer wird die unterschiedliche Belastung der Blasform in Umfangsrichtung gesehen berücksichtigt. So ist nachgewiesenermaßen die Blasform in 12-Uhr-Lage stärker belastet als in den seitlichen Bereichen. Durch die intensive Kühlung dieses belasteten Bereiches wird signifikant die Standzeit der Blasform erhöht. Wahlweise kann der Kühlmittelkreislauf der Hauptkammer als zweigängiger wendelförmiger Kühlkanal ausgebildet oder mit einem wendelförmig ausgebildeten Kühlkanal und einem in 6-Uhr-Lage der Blasform liegenden geraden Kühlkanal versehen sein. Der gerade, parallel zur Blasformlängsachse liegende und ohne Rippen versehene Kühlkanal ist, bezogen auf die Längsachse der Blasform außerhalb des originären Querschnittes der Hauptkammer der Blasform angeordnet, wobei die Anschlüsse für den Vor- und Rücklauf benachbart zu den Anschlüssen der Vorkammer im 12-Uhr-Lagebereich liegen. Mit der Anordnung des geraden Kühlkanals in 6-Uhr-Lage der Blasform wird die unterschiedliche Belastung der Blasform in Umfangsrichtung berücksichtigt. Außer in der 12-Uhr-Lage ist die Blasform auch in der 6-Uhr Lage stärker belastet als in den seitlichen Bereichen. Durch die intensive Kühlung auch dieses Bereiches wird die Standzeit der Blasform weiter erhöht.The essence of the invention is the formation of the outer shell by a one-piece, in Cross section seen vertical axisymmetric body, the front passes seamlessly into the front part. The inner jacket is formed by a conical trained welded part, which the inner cover of the helical formed cooling channel of the main chamber. Another important feature is the arrangement of the channels supplying the front part with cooling medium in the 12 o'clock position the blow mold, based on the longitudinal axis of the blow mold, outside the cross section of the main chamber. With the proposed arrangement The cooling channels in the pre-chamber will show the different loads on the blow mold Considered circumferential direction considered. This is how the blow mold is proven more stressed in the 12 o'clock position than in the side areas. Because of the intense Cooling this stressed area becomes significant the life of the blow mold elevated. Optionally, the coolant circuit of the main chamber can be a two-course system helical cooling channel formed or with a helical Cooling duct and a straight cooling duct lying in the blow mold at 6 o'clock be provided. The straight one, lying parallel to the blow axis and without ribs provided cooling channel is, based on the longitudinal axis of the blow mold outside the original cross section of the main chamber of the blow mold, the Connections for the flow and return adjacent to the connections of the antechamber are in the 12 o'clock position. With the arrangement of the straight cooling duct in the 6 o'clock position the different load of the blow mold in the blow mold Circumferential direction taken into account. In addition to the 12 o'clock position, the blow mold is also in the 6 o'clock position more stressed than in the side areas. Because of the intense Cooling this area also increases the service life of the blow mold.

Wie schon erwähnt, sieht der Vorschlag vor, die Zu- und Rücklaufkanäle für die Vorkammer sowie den Rücklaufkanal der Hauptkammer aus dem Bereich des Querschnittes der Hauptkammer der Blasform herauszulegen und zwar jeweils in radialer Richtung außerhalb der Hauptkammer, bezogen auf die Längsachse der Blasform. Hierdurch wird erreicht, dass in dem Kühlkanal der Hauptkammer keine Querschnittseinengungen durch Zu- und Rücklaufkanäle entstehen. Bedingt dadurch ergeben sich in der Hauptkammer optimale strömungstechnische Bedingungen mit größtmöglichen Kühlmittelgeschwindigkeiten. Weiterhin weisen alle genannten Kanäle über die Länge gesehen nahezu einen konstanten Querschnitt auf und die erforderlichen Querschnittsveränderungen im Anschlußbereich sowie die kleinradigen Richtungsänderungen erfolgen abgerundet und ohne Sprungstellen.As already mentioned, the proposal provides for the inflow and outflow channels for the Antechamber and the return duct of the main chamber from the area of the Lay out cross section of the main chamber of the blow mold in each case in the radial direction outside the main chamber, based on the longitudinal axis the blow mold. This ensures that none in the cooling channel of the main chamber Cross-sectional narrowing caused by inlet and return channels. Because of that there are optimal fluidic conditions in the main chamber greatest possible coolant speeds. Furthermore, all channels mentioned seen over the length almost a constant cross-section and the required cross-sectional changes in the connection area and the small-wheeled Changes of direction are rounded and without jump points.

Mit diesen Maßnahmen werden in der Hauptkammer Fließgeschwindigkeiten für das Kühlmittel erreicht, die mindestens um das Zweifache höher sind gegenüber den bekannten Ausführungen. Erreicht wird dies durch die Vermeidung von Totzonen, Verwirbelungsstellen, Drosselstellen, Staubereichen sowie durch die optimale Gestaltungsmöglichkeit der Kühlkanalquerschnittsformen (rund, trapezförmig) und der Querschnittsgröße der einzelnen Kanalabschnitte. Die optimale Auslegungsmöglichkeit des Zu- und Rücklaufkanales für die Vorkammer führt bei unverändertem Differenzdruck auch in der Vorkammer zu erheblich höheren Fließgeschwindigkeiten. Sorgt man weiterhin dafür, dass durch ein ausgewogenes Verhältnis von Pumpenleistung und Kanalquerschnitt die angestrebten hohen Fließgeschwindigkeiten erreicht werden, dann wird auch dadurch die Dampfblasenbildung weitgehend unterdrückt. Angestrebt wird auch bei niedrigem zur Verfügung stehendem Differenzdruck von beispielsweise 2 bar für die Kühlung der hochbelasteten Vorkammer eine Fließgeschwindigkeit von ≥ 10m / sec und für die Hauptkammer von ≥ 6m / sec. Die vorgeschlagene Ausführung der Blasform ist sowohl für Vorkammern mit nur einem Ringkanal als auch für längere Vorkammern mit einem wendelförmigen Kanal geeignet.With these measures, flow rates for the Coolants achieved that are at least twice as high as those known versions. This is achieved by avoiding dead zones, Swirling points, throttling points, storage areas as well as the optimal Possibility of designing the cooling channel cross-sectional shapes (round, trapezoidal) and the Cross-sectional size of the individual channel sections. The optimal design option of the inlet and return channels for the prechamber leads with unchanged Differential pressure also in the antechamber at significantly higher flow rates. If you continue to ensure that a balanced ratio of Pump output and channel cross section the desired high flow rates can be achieved, then the vapor bubble formation largely suppressed. The aim is also at low available Differential pressure of, for example, 2 bar for cooling the highly loaded Antechamber a flow rate of ≥ 10m / sec and for the main chamber of ≥ 6m / sec. The proposed blow mold design is for both prechambers with only one ring channel as well as for longer antechambers with a helical one Channel suitable.

US-A-3 601 384 beschreibt eine Blasform mit einen einteiligen, einen wendelförmigen Kühlkanal enthaltenden Außenmantel, welcher mit einem der Kühlkanal abdeckende Innenmantel verschweißt ist. Die achsparallelen Kanäle zur Zu - bzw. Abfuhr des Kühlmittels zum Kühlkanal sind hierbei jedoch nicht wie erfindungsgemäß angeordnet und es ist nur ein Kühlmittelkreislauf vorgesehen.US-A-3 601 384 describes a blow mold having a one-piece, a helical shape Outer jacket containing cooling channel, which with a covering the cooling channel Inner jacket is welded. The axially parallel channels for the supply and discharge of the However, coolants to the cooling channel are not arranged as in the invention and only one coolant circuit is provided.

Die Blasform wird aber, wie schon eingangs erwähnt, nicht nur rein thermisch, sondern auch zusätzlich chemisch und mechanisch belastet; insbesondere wenn der Verschleiß der Feuerfestausmauerung des Schachtofens einen bestimmten Grad erreicht hat. Dazu wird erfindungsgemäß vorgeschlagen, den Querschnitt der Blasform im 12-Uhr-Lagebereich als Dach auszubilden. Dies hat den Vorteil, dass auf die Blasform fallende oder tropfende Stoffe leichter abrutschen bzw. abfließen können. Diese Ausbildung soll insbesondere die nicht gewünschte Kontaktierung von flüssigem Zink, Roheisen oder Schlacke mit der aus Kupfer bzw. Kupferlegierung hergestellten Blasform verringern. Bekanntermaßen reagiert Zink mit Kupfer, so dass die Kupferwandung chemisch abtragend reduziert wird.However, as already mentioned at the beginning, the blow mold is not only thermal, but also also additionally chemically and mechanically loaded; especially if the Wear of the refractory lining of the shaft furnace a certain degree has reached. For this purpose, the cross section of the blow mold in the 12 o'clock position area is proposed according to the invention to train as a roof. This has the advantage of falling on the blow mold or dripping substances can slide off or drain off more easily. This training is supposed to in particular the undesired contacting of liquid zinc, pig iron or Reduce slag with the blow mold made of copper or copper alloy. As is known, zinc reacts with copper, making the copper wall chemically is reduced.

In der Zeichnung wird anhand eines Ausführungsbeispieles die erfindungsgemäß ausgebildete Blasform näher erläutert. Es zeigen:

Figur 1
einen Längsschnitt in Richtung A-A in Figur 2 durch eine erfindungsgemäß ausgebildete Blasform
Figur 2
eine Seitenansicht in Richtung X von Figur 1
Figur 3
einen Schnitt in Richtung B-B in Figur 1
In the drawing, the blow mold designed according to the invention is explained in more detail using an exemplary embodiment. Show it:
Figure 1
a longitudinal section in the direction AA in Figure 2 through a blow mold designed according to the invention
Figure 2
a side view in the direction X of Figure 1
Figure 3
a section in the direction BB in Figure 1

Die erfindungsgemäß ausgebildete Blasform besteht aus einem den Außenmantel 2 bildenden Grundkörper 1 und einem den Innenmantel 3 bildenden Einschweißteil 4. Der zwischen Außenmantel 2 und Innenmantel 3 sich bildende Hohlkörper wird vorderseitig durch ein thermisch hochbelastetes Frontteil 5 abgeschlossen. Eingangsseitig weist der Grundkörper einen doppelkonischen Einlaufabschnitt 6 auf, in den die Düsenspitze eines hier nicht dargestellten Düsenstockes eingesteckt wird. Im oberen Teil des Innenmantels 3 ist die auf dem Innenmantel 3 angeordnete Feuerfestschicht 7 andeutungsweise dargestellt. Der Stirnflächenbereich des Frontteiles 5 ist mit einer Panzerung 8 versehen, um das Frontteil 5 vor mechanischer Beschädigung und Verschleiß zu schützen. Bekannterweise ist der mit Kühlmittel beaufschlagte Hohlkörper in eine Vorkammer 9 und in eine Hauptkammer 10 unterteilt. Beide Kammern 9, 10 sind hydraulisch vollständig voneinander getrennt und an separate Kühlkreisläufe angeschlossen.The blow mold designed according to the invention consists of an outer jacket 2 forming base body 1 and a weld-in part 4 forming the inner jacket 3. The hollow body that forms between the outer jacket 2 and the inner jacket 3 becomes completed at the front by a thermally highly stressed front part 5. On the input side, the base body has a double-conical inlet section 6, in the nozzle tip of a nozzle block, not shown here, is inserted. in the The upper part of the inner jacket 3 is arranged on the inner jacket 3 Refractory layer 7 shown hinted. The frontal area of the Front part 5 is provided with armor 8 to the front part 5 before mechanical Protect damage and wear. As is known, the one with coolant acted upon hollow body divided into a prechamber 9 and a main chamber 10. Both chambers 9, 10 are hydraulically completely separated from each other and on separate cooling circuits connected.

Gemäß der Lage des Schnittes in A-A in Figur 2 ist in Figur 1 im oberen Teil der Blasform der Zulaufkanal 11 für die Vorkammer 9 zu erkennen. Auf der Einlaufseite ist der Zulaufkanal 11 mit einem Anschluß 12 in Form eines Gewindeabschnittes versehen, in den ein hier nicht dargestelltes Zulaufrohr einschraubbar ist. Der Zulaufkanal 11 geht dann über in die Vorkammer 9, die durch einen quer zum Zulaufkanal 11 liegenden Ringkanal 22 gebildet wird. Statt eines Ringkanales ist auch die Anordnung eines mehrere Umläufe aufweisenden wendelförmig ausgebildeten Kanals möglich.According to the position of the section in A-A in FIG. 2, the upper part of FIG To recognize the blow shape of the inlet channel 11 for the prechamber 9. Is on the inlet side the inlet channel 11 with a connection 12 in the form of a threaded section provided, into which an inlet pipe, not shown, can be screwed. The Inlet channel 11 then merges into the prechamber 9, which is transverse to the Inlet channel 11 lying ring channel 22 is formed. Instead of a ring channel, too the arrangement of a helical design having a plurality of revolutions Channel possible.

In Figur 2 ist zu erkennen, dass im Bereich der 12-Uhr-Lage der Blasform parallel zum Zulaufkanal 11 der Rücklaufkanal 13 für die Vorkammer 9 angeordnet ist. Er ist ebenfalls mit einem stirnseitig angeordneten Anschluß 14 in Form eines Gewindeabschnittes versehen, in den ein hier nicht dargestelltes Ablaufrohr einschraubbar ist. Die Lage der beiden Kanäle 11, 13 ist besonders gut gemäß der Darstellung in Figur 3 zu erkennen. In Figure 2 it can be seen that in the 12 o'clock position of the blow mold parallel to Inlet channel 11, the return channel 13 for the prechamber 9 is arranged. He is likewise with a connection 14 arranged on the end face in the form of a Provide threaded portion in the drain pipe, not shown here can be screwed in. The location of the two channels 11, 13 is particularly good according to the Recognition in Figure 3.

Damit das Kühlmittel auch in der Hauptkammer 10 strömungstechnisch effizient geführt ist, weist diese einen wendelförmig ausgebildeten Kühlkanal 15 auf. Die innenseitige Abdeckung dieses Kühlkanals 15 erfolgt durch den Innenmantel 4. Die Zu- bzw. Abführung des Kühlmittels in die Hauptkammer 10 erfolgt im 11-Uhr- bzw. 1-Uhr-Lagebereich, benachbart zu den Anschlüssen 12,14 für die Vorkammer 9. Im Uhrzeigersinn gesehen hinter dem im 1-Uhr-Bereich angeordneten Zulaufanschluß 18 wird das Kühlmittel durch einen halbkreisförmigen Kanal 20 (in Fig. 2 mit gestrichelten Linien dargestellt) in dem doppelkonischen Einlaufabschnitt 6 in die 6-Uhr-Lage nach unten geführt und tritt hier in den wendelförmigen Kühlkanal 15 ein. Nach dem Durchlaufen des wendelförmigen Kühlkanales 15 tritt das Kühlmedium direkt vorder Vorkammer 9 in einen ebenfalls in 6-Uhr-Lage angeordneten Rücklaufkanal 16 ein, der unterhalb des wendelförmigen Kühlkanales 15 liegt und das Kühlmedium zurückleitet in den doppelkonischen Einlaufabschnitt 6. In dem doppelkonischen Einlaufabschnitt 6 wird das Kühlmedium wieder in einem halbkreisförmigen Kanal 21 (in Fig. 2 mit gestrichelten Linien dargestellt) in die 11-Uhr-Lage nach oben bis zum Ablaufanschluß 17 geführt. Stimseitig sind die beiden Kühlkanäle 15,16 für die Hauptkammer 10 ebenfalls mit einem Gewindeabschnitt 17,18 versehen, in den das Zu- bzw. Ablaufrohr eingeschraubt wird. Der Zu- und Rücklaufanschluss 12,14,17,18 sowohl für die Vorkammer als auch für die Hauptkammer sind vertauschbar, ohne dass sich an dem gewünschten Effekt einer intensiven Kühlwirkung etwas ändert.So that the coolant is also fluidically efficient in the main chamber 10 is guided, this has a helical cooling channel 15. The The inside of this cooling duct 15 is covered by the inner jacket 4 The coolant is supplied or discharged into the main chamber 10 in the 11 o'clock or 1 o'clock position area, adjacent to the connections 12, 14 for the prechamber 9. Im Seen clockwise behind the inlet connection 18 arranged in the 1 o'clock area is the coolant through a semicircular channel 20 (with dashed lines in Fig. 2 Lines shown) in the double-conical inlet section 6 to the 6 o'clock position guided below and enters the helical cooling channel 15 here. After this Passing through the helical cooling channel 15, the cooling medium comes directly in front Antechamber 9 into a return channel 16, which is also arranged at 6 o'clock, the is below the helical cooling channel 15 and the cooling medium returns into the double-conical inlet section 6. In the double-conical inlet section 6 the cooling medium is again in a semicircular channel 21 (in FIG dashed lines) in the 11 o'clock position up to the drain connection 17 out. The two cooling channels 15, 16 for the main chamber 10 are at the end also provided with a threaded section 17, 18 into which the inlet or outlet pipe is screwed in. The inlet and return connection 12,14,17,18 for both Antechamber as well as for the main chamber are interchangeable without affecting the desired effect of an intensive cooling effect changes somewhat.

Erfindungsgemäß sind die Kühlkanäle 11,13 für die Vorkammer 9 bzw. der Ringkanal 22 im Querschnitt etwa gleich groß, aber kleiner als die Querschnitte F1, F2 der Kühlkanäle 15,16 der Hauptkammer 10. Das heißt es gilt F4 = F5 < F1 = F2. According to the invention, the cooling channels 11, 13 for the prechamber 9 or the ring channel 22 are approximately the same in cross section, but smaller than the cross sections F1, F2 of the cooling channels 15, 16 of the main chamber 10 F4 = F5 <F1 = F2.

Die Querschnittsübergänge sowie die kleinradigen Richtungsänderungen der Kanäle sind stark abgerundet, so dass keine Verwirbelungsstellen oder Totzonen entstehen können.The cross-sectional transitions and the small-scale changes in direction of the channels are very rounded, so that there are no turbulence points or dead zones can.

Die darüber hinaus auftretende zusätzliche chemische und mechanische Belastung der Blasform wird durch die geometrische Gestalt stark beeinflußt. Der Hohlkörper ist in Richtung Schachtofen konisch verjüngt ausgebildet, wobei sich ein halber Konuswinkel im Bereich von 12 - 14° als günstig herausgestellt hat. In gleicher Richtung wirkend ist erfindungsgemäß auch die dachartige Ausbildung 19 des 12-Uhr-Lagebereiches der Blasform zu sehen. Auf die Blasform fallende bzw. tropfende Stoffe des Schachtofens bzw. der Beschickung können somit in einfacher Weise seitwärts und in Richtung Schachtofenmitte abrutschen bzw. abfließen.The additional chemical and mechanical stress that occurs the blow mold is strongly influenced by the geometric shape. The hollow body is tapered towards the shaft furnace, with a half Cone angle in the range of 12 - 14 ° has been found to be favorable. In the same According to the invention, the roof-like configuration 19 of the 12 o'clock position area also has a directional effect to see the blow mold. Substances falling or dripping on the blow mold the shaft furnace or the loading can thus be moved sideways in a simple manner and slide or flow towards the center of the shaft furnace.

Claims (12)

  1. Blow form for shaft furnaces, in particular blast furnaces or hot-blast cupola furnaces, consisting of a conical hollow body with an inner (4) and an outer casing (2) and a front end part (5) joining the same without a shoulder, through the inner casing of which the hot blast to be fed to the shaft furnace is conducted and through whose cavity formed between the inner and outer casing a coolant flows during operation, the cavity being divided respectively into an antechamber (9) lying in the front end region and an adjoining main chamber (10), which are hydraulically fully separate from one another and each have a separate coolant cycle with their own terminals, wherein the coolant cycle for the antechamber (9) consists of two channels (11; 13) of almost constant cross-section, which are disposed parallel to the blow form longitudinal axis, which form the supply and return, and which open in the front end part (5) into an annular channel disposed transverse to the channels (11; 13), and the coolant cycle of the main chamber (10) is provided with a helical coolant channel (15) of almost constant cross-section viewed over the length, characterised in that the outer casing (2) is formed by a one-piece base body (1), which has a vertical axis of symmetry viewed in cross-section, and the inner casing (3) is formed by a conical welded-in part (4), which covers the coolant channel (15) of the outer casing (2) on the inside, and the channels (11, 13) supplying and discharging the coolant to the front end part (5) are disposed in the 12 o'clock position region of the blow form and outside the part of the cross-section of the outer casing (2) provided with the coolant channel (15) relative to the longitudinal axis of the blow form.
  2. Blow form according to claim 1, characterised in that the helical coolant channel of the main chamber (10) is double, in which case one helical coolant channel forms the supply and the other helical coolant channel the return, and both helical coolant channels are joined together by a 180-degree deflection.
  3. Blow form according to claim 1, characterised in that the coolant cycle of the main chamber (10) has a straight coolant channel (16) in the 6 o'clock position of the blow form and the straight coolant channel (16), lying parallel to the blow form longitudinal axis and provided without fins is disposed outside the original cross-section of the main chamber (10) of the blow form relative to the longitudinal axis of the blow form, in which case the terminals (17, 18) for the supply and return are disposed adjacent to the terminals (12, 14) of the antechamber (9) in the 12 o'clock position region.
  4. Blow form according to one of claims 1-3, characterised in that the cross-sectional shape of the channel of the antechamber (9) lying in the longitudinal axis is round, and that of the helical channel (15) of the main chamber (10) is approximately trapezoid with rounded corners.
  5. Blow form according to one of claims 1-4, characterised in that the cross-sectional changes necessary for all channels (11, 13, 15, 16) of the antechamber (9) and the main chamber (10) are rounded and without irregularities in the connecting region and the small-radius changes of direction.
  6. Blow form according to claim 3, characterised in that two channels (20, 21) extending in a semi-circular manner and connected to the terminals (17, 18) are disposed in the double-conical inlet section (6) and are guided downward into the 6 o'clock position region and are hydraulically fully separated from one another in the 12-hour and in the 6 o'clock position region and form the connection with the helical coolant channel (15) of the main chamber (10), in which case at the front end of the helical coolant channel (15), the straight coolant channel (16) directly abuts the partition wall with the antechamber (9) and lies under the helical coolant channel (15) in the 6 o'clock position region and opens at the end face back into the double-conical inlet section (6).
  7. Blow form according to one of claims 1-6, characterised in that the cross-sections (F4) of the supply and return channel (11, 13) for the antechamber (9) and the cross-section (F5) of the annular channel (22) in the antechamber (9) are almost the same size, but smaller than the cross-sections (F1, F2) of the coolant channels (15, 16) of the main chamber (10).
  8. Blow form according to one of claims 1 and 3-7, characterised in that the straight coolant channel (16) of the main chamber (10) has a cross-section (F1) which is almost the same size as that of the helical coolant channel (15) of the main chamber (10).
  9. Blow form according to claims 7 and 8, characterised in that the cross-sections (F4, F5) of the coolant channels (11, 13, 22) of the antechamber (9) are smaller by up to 35% than the cross-sections (F1, F2) of the coolant channels (15, 16) of the main chamber (10).
  10. Blow form according to claims 7-9, characterised in that at roughly the same pumping power for the coolant supply of the antechamber (9) and main chamber (10), the flow rate in the coolant channels (15, 16) of the main chamber (10) is at least 60% of the flow rate in the coolant channels (11, 13, 22) of the antechamber (9).
  11. Blow form according to claim 10, characterised in that with a coolant differential pressure at the blow form of 2 bar, the speed of the coolant in the coolant channels (11, 13, 22) of the antechamber (9) is at least 10m/sec and in the coolant channels (15, 16) of the main chamber (10) at least 6 m/sec.
  12. Blow form according to one of claims 1-11, characterised in that viewed in cross-section the blow form is formed in the 12 o'clock position region as a roof and in the 6 o'clock position as a convexity, and the coolant channels (11, 13) of the antechamber (9) are disposed in the roof-like region, and the straight coolant channel (16) of the main chamber is disposed in the convex region.
EP00910497A 1999-02-05 2000-01-20 Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces Expired - Lifetime EP1155154B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19906173 1999-02-05
DE19906173 1999-02-05
DE19963259A DE19963259C2 (en) 1999-02-05 1999-12-17 Blow mold for shaft furnaces, especially blast furnaces or hot-wind cupola furnaces
DE19963259 1999-12-17
PCT/DE2000/000216 WO2000046410A1 (en) 1999-02-05 2000-01-20 Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces

Publications (2)

Publication Number Publication Date
EP1155154A1 EP1155154A1 (en) 2001-11-21
EP1155154B1 true EP1155154B1 (en) 2003-08-06

Family

ID=26051853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910497A Expired - Lifetime EP1155154B1 (en) 1999-02-05 2000-01-20 Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces

Country Status (7)

Country Link
US (1) US6446565B2 (en)
EP (1) EP1155154B1 (en)
JP (1) JP2002544374A (en)
AU (1) AU3270900A (en)
BR (1) BR0008037A (en)
RU (1) RU2221975C2 (en)
WO (1) WO2000046410A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE452213T1 (en) * 2004-05-31 2010-01-15 Outotec Oyj FLUIDIZED BED PROCESS FOR DIRECT REDUCTION IN A SINGLE FLUIDIZED BED
EP1652941B1 (en) * 2004-10-15 2009-05-27 Technological Resources Pty. Ltd. Apparatus for injecting gas into a vessel
KR100783078B1 (en) * 2006-04-11 2007-12-07 주식회사 서울엔지니어링 Double chamber spiral tuyere for blast furnaces
KR101069565B1 (en) * 2011-01-24 2011-10-05 주식회사 서울엔지니어링 Tuyere for iron making furnace
RU2460806C1 (en) * 2011-05-03 2012-09-10 Открытое акционерное общество "Научно-исследовательский институт металлургической теплотехники" (ОАО "ВНИИМТ") Tuyere of blast furnace
WO2014172087A1 (en) 2013-04-16 2014-10-23 Illinois Tool Works Inc. Improper fuel nozzle insertion-inhibiting system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735409A (en) * 1956-02-21 Blast nozzles for melting furnaces
US459470A (en) * 1891-09-15 Tuyere
FR579150A (en) * 1923-03-29 1924-10-10 Carl Berg Wind nozzle
US2891783A (en) * 1957-04-11 1959-06-23 Bethlehem Steel Corp Blast furnace tuyere
US3069760A (en) * 1958-06-11 1962-12-25 United States Steel Corp Ceramic coated tuyeres or the like
US3061300A (en) * 1959-09-22 1962-10-30 United States Steel Corp Tuyere with preformed refractory nose and sleeve
US3572675A (en) * 1969-05-07 1971-03-30 Inland Steel Co High velocity multipiece tuyere and method of constructing same
US3601384A (en) * 1969-05-09 1971-08-24 Lewis H Durdin Tuyeres
GB1407078A (en) * 1972-08-23 1975-09-24 British Steel Corp Tuyeres
US3826479A (en) * 1973-02-16 1974-07-30 Kurimoto Ltd Tuyere for a melting furnace
US3881710A (en) * 1974-03-14 1975-05-06 Lev Dmitrievich Jupko Blast-furnace tuyere
GB1564738A (en) * 1976-11-25 1980-04-10 British Steel Corp Tuyeres
JPS6055562B2 (en) * 1982-01-11 1985-12-05 株式会社神戸製鋼所 Blast furnace air tuyere
GB9011685D0 (en) * 1990-05-24 1990-07-11 Copper Peel Jones Prod Consumable furnace components
JPH11217611A (en) * 1998-01-30 1999-08-10 Kobe Steel Ltd Tuyere for blast furnace

Also Published As

Publication number Publication date
JP2002544374A (en) 2002-12-24
BR0008037A (en) 2001-10-30
EP1155154A1 (en) 2001-11-21
RU2221975C2 (en) 2004-01-20
US20010052311A1 (en) 2001-12-20
US6446565B2 (en) 2002-09-10
AU3270900A (en) 2000-08-25
WO2000046410A1 (en) 2000-08-10

Similar Documents

Publication Publication Date Title
EP1793189B1 (en) Waste heat boiler
EP2678627B1 (en) Exhaust gas cooler
DE102011082904B4 (en) Nozzle for an ironmaking furnace
DE102006056013A1 (en) Piston for internal-combustion engine, has radially rotating cooling ducts spaced apart from each other and integrated to piston head and ring zone, and forming vertically aligned cross sectional profile
DE2012949A1 (en) Wall construction and air supply holes for a gas turbine engine
EP1155154B1 (en) Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces
DE19541049A1 (en) Casting roller
WO2007019917A1 (en) Tapping channel for a metallurgical furnace
EP3177743B1 (en) Burner-lance unit
DE602004004094T2 (en) OVEN WALL WITH COOLING PLATES FOR A METALLURGICAL OVEN
DE19963259A1 (en) Blow mold for shaft furnaces, especially blast furnaces or hot-wind cupola furnaces
EP1589298B1 (en) Heater, especially for a vehicle
EP1322790B1 (en) Cooling element for shaft furnaces
DE10123219A1 (en) Heat exchanger for heating a product, in particular a mass for the production of confectionery
CH685332A5 (en) Continuous casting.
DE102012202101B4 (en) High thermal load nozzle
WO2013000497A1 (en) Lance head for an oxygen lance
EP1047796B1 (en) Tapping launder for an iron smelt
DE19501422C2 (en) Cooled transition piece between a heat exchanger and a reactor
DE19847770A1 (en) Heat exchanger with a connector
EP1673481B1 (en) Industrial furnace and associated jet element
EP1322791B1 (en) Method for cooling a blast furnace with cooling plates
DE2162397A1 (en) CYLINDER HEAD OF A PISTON ENGINE
DE112010002664B4 (en) Feed system for continuous casting and process for continuous casting
DE3505968C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALTLAND, RAINER

Owner name: WITTE, JUERGEN

Owner name: MANNESMANN AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANNESMANNROEHREN-WERKE AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FI FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030806

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003178

Country of ref document: DE

Date of ref document: 20030911

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030806

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050106

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050110

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050111

Year of fee payment: 6

Ref country code: FI

Payment date: 20050111

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060120

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060929