EP1322791B1 - Method for cooling a blast furnace with cooling plates - Google Patents

Method for cooling a blast furnace with cooling plates Download PDF

Info

Publication number
EP1322791B1
EP1322791B1 EP01972081A EP01972081A EP1322791B1 EP 1322791 B1 EP1322791 B1 EP 1322791B1 EP 01972081 A EP01972081 A EP 01972081A EP 01972081 A EP01972081 A EP 01972081A EP 1322791 B1 EP1322791 B1 EP 1322791B1
Authority
EP
European Patent Office
Prior art keywords
cooling
plate body
passage
vortex device
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01972081A
Other languages
German (de)
French (fr)
Other versions
EP1322791A1 (en
Inventor
Hartmut Hille
Robert Schmeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU90644A external-priority patent/LU90644B1/en
Application filed by Paul Wurth SA filed Critical Paul Wurth SA
Publication of EP1322791A1 publication Critical patent/EP1322791A1/en
Application granted granted Critical
Publication of EP1322791B1 publication Critical patent/EP1322791B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor

Definitions

  • the present invention relates to a method for cooling a blast furnace with cooling plates, also called Staves.
  • the furnace wall cooling consists of so-called Staves that line the furnace shell towards the inside of the furnace.
  • a stave is a cooling plate which comprises a rectangular, solid plate body, in which several vertical cooling channels are integrated.
  • the massive plate body can be made of cast iron (in particular GGG, i.e. spheroidal graphite cast iron) or made of copper or a copper alloy.
  • the cooling channels are usually cast iron through cast-in, U-shaped bent steel tubes formed, the ends of the tube as a connecting piece of the cooling channel out of the back of the plate body are.
  • the cooling channels are e.g. in the plate body drilled.
  • connection holes per cooling channel the central open into the upper or lower end of the cooling channel.
  • pipe sockets are then soldered in as connection sockets or welded in.
  • the cooling plates are in one via their connecting pieces Water cooling circuit of the blast furnace integrated.
  • WO 00/36154 which has solved the task of Flow losses in copper cooling plates with cast or drilled To reduce cooling channels. This is achieved by a Molding is inserted into a recess in the cooling plate body and one forms flow-optimized deflection channel for the cooling medium.
  • DE 29721941 U1 describes e.g. one in the wall of an electric oven Integrated coolant line, which creates baffles in the interior of the line of local turbulence and / or increase in flow rate contains. This should create a possibly forming vapor layer constantly dismantle.
  • DE 29721941 U1 one Flow velocity of 4 m / s without fittings and less than 3 m / s, or 2.5 m / s with built-ins, which of course is still essential are higher flow rates than in the cooling channels of the Staves are there.
  • US 4,210,101 deals with the cooling of a blast furnace so-called cool boxes. Unlike Staves, these are cool boxes Hollow body with a real cooling chamber. US 4,210,101 suggests a spiral movement of the To generate cooling water. This is intended to improve the cooling of the cooling box become. For the cooling of modern blast furnaces, however, today no coolers, but mainly copper and cast iron staves used.
  • the SU 386 993 from 1970 relates to a blast furnace cooler with a cast one Housing that contains a cooling coil.
  • the cooling coil has one Cooling water inlet and a cooling water return.
  • a spiral membrane is built in, which creates a vortex and a turbulent one Flow in the cooling coil causes better cooling performance is achieved. Blast furnace coolers of this type could not prevail.
  • the SU 439 678 from 1971 relates to a tubular cooler for metallurgical Ovens. Baffles in the interior of the cooler are said to be caused by swirling generate turbulent flow, which increases the heat transfer coefficient increases between the cooling element and the cooling medium.
  • the LU 88010 relates to a wall cooler made of pipes for an electric arc furnace.
  • Parallel pipe segments are connected using short pipe sections, which derive the coolant tangentially from a pipe segment and also in turn feed tangentially into the next pipe segment. This will a spiral cooling flow in the parallel pipe segments creates what the Cooling performance of the wall cooler should increase.
  • An object of the present invention is to provide a cooling method propose a blast furnace with Staves that enables both the Investment costs as well as the operating costs for the water cooling circuit significantly reduce without losing security. This The object is achieved by a method according to claim 1.
  • the cooling water throughput in particular in thermal heavily used areas of the blast furnace, cooling plates arranged in this way reduced that the average flow rate of the cooling water in The direction of the longitudinal axis of the cooling channel is less than 1.0 m / s, even smaller than 0.5 m / s.
  • the cooling water throughput in the cooling channels of the staves is set such that an average flow rate cooling water of at least 1.5 m / s guaranteed becomes.
  • the cooling channels with the reduced flow rate become one Vortex device upstream such that it has a helical flow of the cooling liquid around the longitudinal axis of the cooling channel.
  • the Flow rate of the cooling liquid accordingly has a in the cooling channel Axial and a circumferential component.
  • the axial component determines the Flow in the cooling channel.
  • the circumferential component has none Influence on the flow in the cooling channel. It thus enables the flow velocity the coolant close to the wall of the cooling duct increase without reducing the flow of coolant in the cooling channel is increased. This makes it possible to provide the required security against vapor film formation to ensure and still the flow of the coolant in the Keep the cooling channel small. Smaller amounts of cooling water make the cooling circuit cheaper due to smaller pipe cross sections, smaller circulation pumps and smaller ones Chillers. The additional vortex devices cause one slight increase in the price of the cooling plates, however this increase in price is essential lower than the aforementioned savings.
  • the method according to the invention continues to cause lower operating costs, particularly through Saving energy costs for the circulation.
  • the additional vortex devices cause an additional pressure loss in the cooling plates, the latter, however, is compensated for by the fact that in the blast furnace cooling circuit circulated amounts of water greatly reduced according to the invention become. It should also be emphasized that due to the lower cooling water throughput, a larger temperature difference between the return and inlet of the cooling water is achieved. This will improve the efficiency of the Recooling reached.
  • Cooling plates In areas of the blast furnace that are less thermally stressed Cooling plates are used without a vortex device, the cooling water throughput is then designed such that the average flow rate of the cooling water in the direction of the longitudinal axis of the cooling channel at least Is 1.5 m / s. These cooling plates without vortex device are then The cooling water advantageously acts on the cooling plates has warmed with swirling device.
  • a cooling channel with a vortex device a first cooling plate with a cooling channel without a vortex device second cooling plate connected in series.
  • the cross section of the cooling channel without Vortex device can here by a central displacement body be reduced in a ring, so that, with the same cooling water throughput, the average flow velocity of the cooling water in the direction of the longitudinal axis of the cooling duct is less than 1.0 m / s in the cooling duct with swirl device and is at least 1.5 m / s in the cooling duct with displacement body.
  • the swirl device comprises an inlet connection of the cooling liquid inside the plate body tangentially in the Cooling channel initiates.
  • the helical flow of the coolant around the The longitudinal axis of the cooling channel is thus immediately at the beginning of the cooling channel generated.
  • the vortex device can also cool the liquid outside of the Introduce the plate body tangentially into a connecting piece from the Plate body is led out.
  • the cooling channel normally has a smooth surface to the coolant on.
  • the helical flow of the coolant around the longitudinal axis can also support the cooling channel, however, like a Cannon barrel, have a surface with helical trains. Out for the same reason you can also have at least one axial in the cooling channel Integrate swirl bodies.
  • the cooling channel can also have a central displacement body, so that an annular channel for the cooling liquid is formed in the cooling channel is.
  • the central one With the same heat exchange surface to the cooling water (i.e. the same Diameter of the cooling duct) and the same flow, the central one increases Displacer the axial flow rate of the coolant in the cooling channel and thus also increases the security against vapor film formation. In other words, through the central displacer you can with work with a lower cooling water flow without this greater risk is accepted that the cooling plate by local Vapor film formation overheated.
  • FIGS 1, 5, 7, 10 and 11 show cooling plates 10, 110, 210, 310, 410, also called Staves, as they are used in blast furnaces.
  • This Cooling plates 10, 110, 210, 310, 410 are here on the inside of the Blast furnace armor attached and can with a refractory material to be lined.
  • the cooling plate 10 shown in FIG. 1 comprises an essentially rectangular one Plate body 12 made of low-alloy copper, the front 14th with ribs 16 to achieve a better connection with the refractory material is provided.
  • a smooth back 18 of the plate body 12 is the Oven shell turned towards. This back 18, or the entire plate body 12, can have a curvature that matches the curvature of the furnace shell is.
  • a cooling channel 20 is shown in longitudinal section.
  • the plate body 12 is traversed by several such cooling channels, which are essentially run parallel to each other. Note that the cooling channel 20 at its both ends are closed in the axial direction.
  • Such a plate body 12 can e.g. advantageously according to that described in WO 98/30345 Processes are made by using a preform of the plate body Through channels is continuously cast. However, it can also after the in the processes described in US 4382585, the Cooling channels drilled in a forged or rolled copper block become.
  • the reference number 22 in FIGS. 1 and 2 is a global vortex device referred to, which is upstream of the cooling channel 20.
  • This swirler 22 comprises a funnel-shaped inlet connector 26 which is in one milled slot welded into the back 18 of the plate body 12, or is soldered in.
  • This funnel-shaped inlet connector 26 forms a tapered one Inlet duct 30 with a rectangular cross section made in the plate body opens tangentially into the cooling channel 20. Note that the height "h" of the inlet channel 30 at the confluence with the cooling channel 20 is less than is half the diameter of the cooling channel 20.
  • the width "b" of the inlet duct 30 is approximately twice the diameter of the cooling channel 20 (see Fig. 1).
  • the angle " ⁇ " between the two planes 32, 34, the tapered Form inlet channel 30 is, in the embodiment shown about 18 °. Due to the tangential entry of the coolant into the cooling channel 20, the coolant experiences an initial acceleration, so that in the Cooling channel 20 a helical flow around the longitudinal axis X of the Cooling channel 20 results.
  • the reference numeral 40 in FIG. 1 denotes an outlet connection which derives the cooling liquid from the cooling channel 20.
  • this outlet connector 40 is similar to the inlet connector already described 26, which means that the cooling liquid is again tangential is derived from the cooling channel 20.
  • the tangential exit of the cooling liquid from the cooling channel 20 is essential less contribution to the development of a helical flow of the coolant about the longitudinal axis X of the cooling channel 20 as the tangential Entry into the cooling duct 20. In most cases, therefore, one tangential exit of the cooling liquid from the cooling channel 20 is dispensed with become.
  • a cylindrical outlet connection can then be made in a known manner open into the center of the cooling duct 20.
  • the cooling plate 10 can be essential have lower cooling water flow than known cooling plates without that there is a greater risk that the cooling plate 10 overheated due to local vapor film formation.
  • a central displacement body 42 can be located in the cooling channel 20 are arranged so that only one ring channel in the cooling channel 20 44 remains for the coolant. Enlarged at the same flow the central displacement body 42 the axial flow velocity the coolant in the cooling channel 20 and thus also increases safety against steam film formation. In other words, you can use a smaller one Cooling water flow work without being at greater risk It is bought that the cooling plate through local vapor film formation overheated.
  • 4 is a cooling duct 20 'as a further possible embodiment. shown with an oval cross section and a central displacement body 42 ', which also has an oval cross section.
  • Such displacement body 42, 42 ' which is essentially the have the same length as the cooling channel 20, 20 ', e.g. axially in the Cooling channel 20, 20 'inserted before the latter is axially closed.
  • Spacers 46, 46 ' which are spaced at certain intervals along the displacer 42, 42 'are arranged, center the displacement body 42, 42 'on the longitudinal axis X of the cooling channel 20, 20'.
  • the cooling channel 20 can be at least one in the cooling channel 20 axial swirl body (not shown) can be integrated, the helical Flow of the cooling liquid around the longitudinal axis X of the cooling channel 20 is supported.
  • the cooling channel 20 can also have a surface have helical cables (not shown), which are also helical Flow of the cooling liquid around the longitudinal axis X of the cooling channel 20 supports.
  • Such helical trains can also appear in the surface the displacement body 42, 42 'may be incorporated.
  • the cooling plate 110 shown in FIG. 5 comprises a substantially rectangular one GGG (i.e., spheroidal graphite cast iron) plate body 112 made by several parallel cooling channels.
  • a cooling channel 120 is formed by a U-shaped tube 121 which is in the plate body 112 is poured.
  • the two ends of the tube 121 are as connecting pieces 123, 125 of the cooling channel 120 from the plate body 112 led out.
  • the reference number 122 in FIGS. 5 and 6 is globally one Vortex device 122 denotes which the cooling liquid outside the Plate body 112 leads tangentially into the connecting piece 123.
  • the Vortex device 22 also comprises a funnel-shaped one Inlet spigot 126.
  • connection spigot 123 is on the side of the connection spigot 123 welded on so that it tangentially flows the coolant into the connector 123 initiates. Consequently, a screw-shaped is built in the connecting piece 123 Flow that then propagates into the actual cooling channel 120.
  • the funnel-shaped inlet connector 126 can be used directly weld to the lower end of the straight portion of tube 121. However, you have to accept that a weld seam in the Plate body 112 is poured.
  • Fig. 7 also shows a cooling plate 210, which is also made of cast iron is made.
  • This cooling plate 210 differs from the cooling plate 110 mainly in that the vortex device 122, by a central Displacement body 242 is replaced (see also Fig. 8).
  • This central displacement body 242 leaves only one ring channel 244 in the cooling channel 220 left for the coolant.
  • the central displacer 242 increases the axial flow rate the coolant in the cooling channel 220 and thus also increases security against vapor film formation. In other words, through the central Displacer 242 can be used with a lower cooling water flow work without accepting a greater risk that cooling plate 210 overheats due to local vapor film formation.
  • the displacer 242 is e.g. inserted into the tube 221 before the latter is bent.
  • Spacers 246 that are spaced at certain intervals are arranged along the displacement body 242, center the Displacement body 242 on the longitudinal axis of the cooling channel 220
  • the annular channel 244 can be filled with sand which will be removed after bending.
  • Fig. 9 shows that a tube 221 'with a flattened cross section can be poured into the plate body.
  • a flattened cross-section has the advantage that the heat exchange surface to the coolant can be enlarged without reducing the thickness the plate body must be enlarged.
  • Fig. 9 also shows that in the Tube 221 'with an oval cross-section a displacement body 242' with an oval Cross section can be integrated.
  • FIG. 10 shows a further embodiment of a copper cooling plate 310 in Cooling water inlet area.
  • this cooling plate 310 is the vortex device formed by a prefabricated, solid molding 322.
  • the latter is a solid casting that has an arcuate transition channel 330 with molded, helical cables 331. Generate the latter a helical flow of the coolant around the longitudinal axis of the Cooling channel 320.
  • a connecting piece 333 can be soldered into the shaped piece 322, welded or even cast when molding 322 become.
  • a solid base extension 335 on the shaped piece 322 makes it easier secure attachment of the connecting piece 333 and also serves as Spacer for the cooling plate 310 when mounting on the furnace wall.
  • the Recess for the molding 322 is advantageous from the back in the copper cooling plate body 312 milled, the recess in a Front side 337 of the cooling plate body 312 opens and the depth of the recess is smaller than the thickness of the cooling plate body 312.
  • the interface between the cooling plate body 312 and the molding 322 is all around welded or soldered to the surface. Due to the relatively simple shape This interface can be used for this welding or soldering work quickly and safely be carried out. It should be noted that in the embodiment according to FIG. 10 the connecting piece 333 and the cooling channel 320 in the cooling plate body 312 each have the same cross section.
  • the cooling channel 420 in the copper cooling plate body 412 has an oval cross section, whereas the Connection piece 433 has a circular cross section.
  • a progressive one The transition from circular to oval cross-section is made by the Transition channel 430 of the fitting 422 guaranteed.
  • cooling plates presented are self-evident not only in blast furnaces and other shaft furnaces, but also in Crucible furnaces can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

The invention relates to a method for cooling a blast furnace provided with staves. Said staves are cooling plates comprising a massive plate body wherein cooling channels are integrated. The inventive method is characterised in that, the cooling water through flow, particularly in thermically high loaded areas of the furnace, is reduced in such a way that the average flow speed of the cooling water in the direction of the longitudinal axis of the cooling channel is less than 1.0 m/s and can even be lower than 0.6 m/s. A whirl device is mounted upstream from the cooling channels in such a way that it generates a spiral flow of cooling liquid around the longitudinal axis of the cooling channel.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Kühlen eines Hochofens mit Kühlplatten, auch noch Staves genannt.The present invention relates to a method for cooling a blast furnace with cooling plates, also called Staves.

Bei modernen Hochöfen besteht die Ofenwandkühlung aus sogenannten Staves, die den Ofenpanzer zum Ofeninnern hin auskleiden. Ein solcher Stave ist eine Kühlplatte die einen rechteckigen, massiven Plattenkörper umfasst, in den mehrere senkrechte Kühlkanäle integriert sind. Der massive Plattenkörper kann aus Gusseisen (insbesondere GGG, d.h. Gusseisen mit Kugelgraphit) oder aus Kupfer, bzw. einer Kupferlegierung, gefertigt sein. Bei Kühlplatten aus Gusseisen werden die Kühlkanäle meistens durch eingegossene, U-förmig gebogene Stahlrohre ausgebildet, wobei die Enden des Rohrs als Anschlussstutzen des Kühlkanals aus der Rückseite des Plattenkörpers herausgeführt sind. Bei Staves aus Kupfer werden die Kühlkanäle z.B. in den Plattenkörper gebohrt. Es ist jedoch ebenfalls bekannt, kupferne Staves durch Stranggießen herzustellen, wobei die Kühlkanäle dann beim Stranggießen eingegossen werden. In beiden Fällen werden dann von der Rückseite des kupfernen Plattenkörpers je zwei Anschlussbohrungen pro Kühlkanal gebohrt, die zentral in das obere, bzw. untere Ende des Kühlkanal einmünden. In diesen Anschlussbohrungen werden dann Rohrstutzen als Anschlussstutzen eingelötet oder eingeschweißt. Über ihre Anschlussstutzen sind die Kühlplatten in einen Wasserkühlkreislauf des Hochofens eingebunden. Mehre Kühlplatten sind hierbei kühlwasserseitig in Reihe geschaltet. In diesem Zusammenhang wird ebenfalls auf die WO 00/36154 verwiesen, welche die Aufgabe gelöst hat, die Strömungsverluste bei kupfernen Kühlplatten mit eingegossenen, bzw. gebohrten Kühlkanälen zu reduzieren. Dies wird dadurch erreicht, dass ein Formstück in eine Aussparung im Kühlplattenkörper eingesetzt ist und einen strömungsoptimierten Umlenkkanal für das Kühlmedium ausbildet.In modern blast furnaces, the furnace wall cooling consists of so-called Staves that line the furnace shell towards the inside of the furnace. Such a stave is a cooling plate which comprises a rectangular, solid plate body, in which several vertical cooling channels are integrated. The massive plate body can be made of cast iron (in particular GGG, i.e. spheroidal graphite cast iron) or made of copper or a copper alloy. With cooling plates off The cooling channels are usually cast iron through cast-in, U-shaped bent steel tubes formed, the ends of the tube as a connecting piece of the cooling channel out of the back of the plate body are. With copper staves, the cooling channels are e.g. in the plate body drilled. However, it is also known to copper staves by continuous casting produce, the cooling channels then cast in the continuous casting become. In both cases, the back of the copper is then Plate body drilled two connection holes per cooling channel, the central open into the upper or lower end of the cooling channel. In these connection holes pipe sockets are then soldered in as connection sockets or welded in. The cooling plates are in one via their connecting pieces Water cooling circuit of the blast furnace integrated. There are several cooling plates connected in series on the cooling water side. In this context also referred to WO 00/36154, which has solved the task of Flow losses in copper cooling plates with cast or drilled To reduce cooling channels. This is achieved by a Molding is inserted into a recess in the cooling plate body and one forms flow-optimized deflection channel for the cooling medium.

Bei der Auslegung des Wasserkühlkreislaufes des Hochofens ist zu beachten, dass die Bildung eines Dampffilms entlang der Wand eines Kühlkanals unbedingt vermieden werden muss. Ein solcher Dampffilm weist in der Tat einen sehr großen Wärmeübergangswiderstand auf, so dass die Kühlung des Plattenkörpers im Bereich des Dampffilms stark beeinträchtigt wird und es zu einer lokalen Überhitzung des Plattenkörpers kommen kann. Um eine solche Dampffilmbildung sicher zu vermeiden wird, besonders in thermisch stark belasteten Bereichen, mit relativ hohen Strömungsgeschwindigkeiten (d.h. 1,5 bis 2,0 m/s) in den Kühlkanälen der Kühlplatten und kleinen Temperaturdifferenzen des Kühlwassers zwischen Ein- und Austritt gearbeitet (in der Regel 3°C bis 5°C). Es müssen folglich große Kühlwassermengen im Wasserkühlkreislauf des Hochofens umgewälzt werden (bei einem Hochofen mit einem Gestelldurchmesser von 10 m können dies 2500 bis 3000 m3/h sein). Diese großen Kühlwassermengen verteuern den Wasserkühlkreislauf durch große Rohrquerschnitte und Pumpen. Durch die relativ niedrige Rücklauftemperaturen werden relativ aufwendige Rückkühlanlagen erforderlich. Die Betriebskosten, wie z.B. die Energiekosten für den Betrieb der Umwälzpumpen und die Kosten für die Wasseraufbereitung, sind durch die großen Kühlwassermengen ebenfalls sehr hoch.When designing the blast furnace's water cooling circuit, it should be noted that the formation of a vapor film along the wall of a cooling channel must be avoided. Such a steam film indeed has a very high heat transfer resistance, so that the cooling of the plate body in the area of the steam film is severely impaired and local overheating of the plate body can occur. In order to reliably avoid such vapor film formation, especially in areas subject to high thermal loads, relatively high flow velocities (ie 1.5 to 2.0 m / s) are used in the cooling channels of the cooling plates and small temperature differences in the cooling water between the inlet and outlet ( usually 3 ° C to 5 ° C). As a result, large amounts of cooling water have to be circulated in the blast furnace's water cooling circuit (for a blast furnace with a frame diameter of 10 m, this can be 2500 to 3000 m 3 / h). These large amounts of cooling water make the water cooling circuit more expensive due to large pipe cross sections and pumps. Due to the relatively low return temperatures, relatively complex recooling systems are required. The operating costs, such as the energy costs for operating the circulation pumps and the costs for water treatment, are also very high due to the large amounts of cooling water.

Aus der Patentliteratur sind viele Vorschläge bekannt die Kühlung von metallurgischen Öfen durch das Erzeugen von turbulenten Strömungen in Kühlelementen zu verbessern.Many proposals are known from the patent literature for the cooling of metallurgical furnaces by generating turbulent flows in To improve cooling elements.

Die DE 29721941 U1 beschreibt z.B. eine in die Wand eines Elektroofens integrierte Kühlmittelleitung, die im Leitungsinnenraum Schikanen zur Erzeugung von lokalen Turbulenzen und/oder Steigerung der Durchflussgeschwindigkeit enthält. Hierdurch soll eine sich eine eventuell bildende Dampfschicht ständig wieder abbauen. Allerdings wird in der DE 29721941 U1 von einer Strömungsgeschwindigkeit von 4 m/s ohne Einbauten und weniger als 3 m/s, bzw. 2,5 m/s mit Einbauten ausgegangen, was natürlich immer noch wesentlich höhere Strömungsgeschwindigkeiten sind, als sie in den Kühlkanälen der Staves vorliegen.DE 29721941 U1 describes e.g. one in the wall of an electric oven Integrated coolant line, which creates baffles in the interior of the line of local turbulence and / or increase in flow rate contains. This should create a possibly forming vapor layer constantly dismantle. However, in DE 29721941 U1 one Flow velocity of 4 m / s without fittings and less than 3 m / s, or 2.5 m / s with built-ins, which of course is still essential are higher flow rates than in the cooling channels of the Staves are there.

Die US 4,210,101 befasst sich mit der Kühlung von einem Hochofen mittels sogenannten Kühlkästen. Im Gegensatz zu Staves, sind solche Kühlkästen Hohlkörper mit einer regelrechten Kühlkammer. Die US 4,210,101 schlägt vor, durch Einbauten in dieser Kühlkammer eine spiralförmige Bewegung des Kühlwassers zu erzeugen. Hierdurch soll die Kühlung des Kühlkastens verbessert werden. Für die Kühlung von modernen Hochöfen werden heute jedoch keine Kühlkästen, sondern vorwiegend kupferne und gusseiserne Staves eingesetzt.US 4,210,101 deals with the cooling of a blast furnace so-called cool boxes. Unlike Staves, these are cool boxes Hollow body with a real cooling chamber. US 4,210,101 suggests a spiral movement of the To generate cooling water. This is intended to improve the cooling of the cooling box become. For the cooling of modern blast furnaces, however, today no coolers, but mainly copper and cast iron staves used.

Die SU 386 993 von 1970 betrifft einen Hochofenkühler mit einem gegossenen Gehäuse das eine Kühlschlange enthält. Die Kühlschlange weist einen Kühlwasserzulauf und einem Kühlwasserrücklauf auf. In den Kühlwasserzulauf ist eine Spiralmembrane eingebaut, die einen Wirbel erzeugt und eine turbulente Strömung in der Kühlschlange bewirkt, so dass eine bessere Kühlleistung erreicht wird. Hochofenkühler dieser Bauart konnten sich nicht durchsetzen.The SU 386 993 from 1970 relates to a blast furnace cooler with a cast one Housing that contains a cooling coil. The cooling coil has one Cooling water inlet and a cooling water return. In the cooling water inlet a spiral membrane is built in, which creates a vortex and a turbulent one Flow in the cooling coil causes better cooling performance is achieved. Blast furnace coolers of this type could not prevail.

Die SU 439 678 von 1971 betrifft einen rohrförmigen Kühler für metallurgische Öfen. Schikanen in dem Kühlerinnenraum sollen durch Verwirbelung eine turbulente Strömung erzeugen, wodurch der Wärmeübergangskoeffizient zwischen dem Kühlelement und dem Kühlmedium zunimmt.The SU 439 678 from 1971 relates to a tubular cooler for metallurgical Ovens. Baffles in the interior of the cooler are said to be caused by swirling generate turbulent flow, which increases the heat transfer coefficient increases between the cooling element and the cooling medium.

Die LU 88010 betrifft einen Wandkühler aus Rohren für einen Lichtbogenofen. Parallele Rohrsegmente sind mittels kurzen Rohrstücken verbunden, welche die Kühlflüssigkeit tangential aus einem Rohrsegment ableiten und auch wiederum tangential in das nächste Rohrsegment einspeisen. Hierdurch wird ein spiralförmiger Kühlstrom in den parallelen Rohrsegmenten erzeugt, was die Kühlleistung des Wandkühlers steigern soll.The LU 88010 relates to a wall cooler made of pipes for an electric arc furnace. Parallel pipe segments are connected using short pipe sections, which derive the coolant tangentially from a pipe segment and also in turn feed tangentially into the next pipe segment. This will a spiral cooling flow in the parallel pipe segments creates what the Cooling performance of the wall cooler should increase.

Betreffend Staves verbleibt anzumerken, dass ihre Kühlleistung nur unwesentlich durch den wasserseitigen Wärmeübergangskoeffizient beeinflusst wird, so dass eine turbulente Strömung in den Kühlkanälen des Staves nicht unbedingt eine wesentlich bessere Kühlleistung gewährleistet. Andrerseits verursachen turbulente Strömungen natürlich wesentlich mehr Druckverluste, so dass eine turbulente Strömung in den Kühlkanälen der Staves nicht von vornherein von Vorteil ist.Regarding Staves, it should be noted that their cooling performance is only insignificant is influenced by the water-side heat transfer coefficient, so that a turbulent flow in the cooling channels of the stave is not necessarily guarantees a significantly better cooling performance. Otherwise cause turbulent flows, of course, significantly more pressure losses, so that a turbulent flow in the cooling ducts of the Staves is not a priori is an advantage.

Eine Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Kühlen eines Hochofens mit Staves vorzuschlagen, das es ermöglicht sowohl die Investitionskosten als auch die Betriebskosten für den Wasserkühlkreislauf wesentlich zu reduzieren, ohne hierbei an Sicherheit zu verlieren. Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst.An object of the present invention is to provide a cooling method propose a blast furnace with Staves that enables both the Investment costs as well as the operating costs for the water cooling circuit significantly reduce without losing security. This The object is achieved by a method according to claim 1.

Nach dem erfindungsgemäßen Verfahren wird, der Kühlwasserdurchsatz durch die, insbesondere in thermisch stark belasteten Bereichen des Hochofens, angeordneten Kühlplatten derart herabgesetzt, dass die mittlere Strömungsgeschwindigkeit des Kühlwassers in Richtung der Längsachse des Kühlkanals kleiner als 1,0 m/s ist, ja sogar kleiner als 0,5 m/s sein kann. Hierzu ist festzustellen, dass bis zur vorliegenden Erfindung für den Fachmann die Regel galt, dass der Kühlwasserdurchsatz in den Kühlkanälen der Staves derart festgelegt wird, dass eine mittlere Strömungsgeschwindigkeit des Kühlwassers von mindestens 1,5 m/s gewährleistet wird. Den Kühlkanälen mit dem reduziertem Durchfluss wird hierbei eine Wirbelvorrichtung derart vorgeschaltet, dass sie eine schraubenförmige Strömung der Kühlflüssigkeit um die Längsachse des Kühlkanals erzeugt. Die Strömungsgeschwindigkeit der Kühlflüssigkeit weist demnach im Kühlkanal eine Axial- und eine Umfangskomponente auf. Die Axialkomponente bestimmt den Durchfluss im Kühlkanal. Die Umfangskomponente hat hingegen keinen Einfluss auf den Durchfluss im Kühlkanal. Sie ermöglicht somit die Strömungsgeschwindigkeit der Kühlflüssigkeit in der Nähe zur Wand des Kühlkanals zu erhöhen, ohne dass hierbei der Durchfluss der Kühlflüssigkeit im Kühlkanal erhöht wird. Hierdurch wird es möglich die benötigte Sicherheit gegen Dampffilmbildung zu gewährleisten und trotzdem den Durchfluss der Kühlflüssigkeit im Kühlkanal klein zu halten. Kleinere Kühlwassermengen verbilligen den Kühlkreislauf durch kleinere Rohrquerschnitte, kleiner Umwälzpumpen und kleinere Rückkühlanlagen. Die zusätzlichen Wirbelvorrichtungen verursachen zwar eine leichte Verteuerung der Kühlplatten, jedoch ist diese Verteuerung wesentlich niedriger als die vorerwähnten Einsparungen. Das erfindungsgemäße Verfahren verursacht weiterhin niedrigere Betriebskosten, insbesondere durch Einsparung an Energiekosten für die Umwälzung. Die zusätzlichen Wirbelvorrichtungen verursachen zwar einen zusätzlichen Druckverlust in den Kühlplatten, letzterer wird jedoch bei weitem dadurch kompensiert, dass die im Hochofenkühlkreis umgewälzten Wassermengen erfindungsgemäß stark reduziert werden. Es ist weiterhin hervorzuheben, dass durch den geringeren Kühlwasserdurchsatz, eine größere Temperaturdifferenz zwischen Rücklauft und Zulauf des Kühlwassers erzielt wird. Hierdurch wird ein besserer Wirkungsgrad der Rückkühlung erreicht.According to the inventive method, the cooling water throughput, in particular in thermal heavily used areas of the blast furnace, cooling plates arranged in this way reduced that the average flow rate of the cooling water in The direction of the longitudinal axis of the cooling channel is less than 1.0 m / s, even smaller than 0.5 m / s. It should be noted that up to the present Invention for the skilled person the rule was that the cooling water throughput in the cooling channels of the staves is set such that an average flow rate cooling water of at least 1.5 m / s guaranteed becomes. The cooling channels with the reduced flow rate become one Vortex device upstream such that it has a helical flow of the cooling liquid around the longitudinal axis of the cooling channel. The Flow rate of the cooling liquid accordingly has a in the cooling channel Axial and a circumferential component. The axial component determines the Flow in the cooling channel. The circumferential component, however, has none Influence on the flow in the cooling channel. It thus enables the flow velocity the coolant close to the wall of the cooling duct increase without reducing the flow of coolant in the cooling channel is increased. This makes it possible to provide the required security against vapor film formation to ensure and still the flow of the coolant in the Keep the cooling channel small. Smaller amounts of cooling water make the cooling circuit cheaper due to smaller pipe cross sections, smaller circulation pumps and smaller ones Chillers. The additional vortex devices cause one slight increase in the price of the cooling plates, however this increase in price is essential lower than the aforementioned savings. The method according to the invention continues to cause lower operating costs, particularly through Saving energy costs for the circulation. The additional vortex devices cause an additional pressure loss in the cooling plates, the latter, however, is compensated for by the fact that in the blast furnace cooling circuit circulated amounts of water greatly reduced according to the invention become. It should also be emphasized that due to the lower cooling water throughput, a larger temperature difference between the return and inlet of the cooling water is achieved. This will improve the efficiency of the Recooling reached.

In thermisch schwächer belasteten Bereichen des Hochofens können Kühlplatten ohne Wirbelvorrichtung eingesetzt werden, wobei der Kühlwasserdurchsatz dann derart ausgelegt ist, dass die mittlere Strömungsgeschwindigkeit des Kühlwassers in Richtung der Längsachse des Kühlkanals mindestens 1,5 m/s beträgt. Diese Kühlplatten ohne Wirbelvorrichtung werden dann vorteilhaft mit dem Kühlwasser beaufschlagt das sich bereits in den Kühlplatten mit Wirbelvorrichtung erwärmt hat. Hierzu wird ein Kühlkanal mit Wirbelvorrichtung einer ersten Kühlplatte mit einem Kühlkanal ohne Wirbelvorrichtung einer zweiten Kühlpatte in Reihe geschaltet. Der Querschnitt des Kühlkanals ohne Wirbelvorrichtung kann hierbei durch einen zentralen Verdrängungskörper ringförmig reduziert sein, so dass, bei gleichem Kühlwasserdurchsatz, die mittlere Strömungsgeschwindigkeit des Kühlwassers in Richtung der Längsachse des Kühlkanals kleiner als 1,0 m/s im Kühlkanal mit Wirbelvorrichtung ist und mindestens 1,5 m/s im Kühlkanal mit Verdrängungskörper beträgt.In areas of the blast furnace that are less thermally stressed Cooling plates are used without a vortex device, the cooling water throughput is then designed such that the average flow rate of the cooling water in the direction of the longitudinal axis of the cooling channel at least Is 1.5 m / s. These cooling plates without vortex device are then The cooling water advantageously acts on the cooling plates has warmed with swirling device. For this purpose, a cooling channel with a vortex device a first cooling plate with a cooling channel without a vortex device second cooling plate connected in series. The cross section of the cooling channel without Vortex device can here by a central displacement body be reduced in a ring, so that, with the same cooling water throughput, the average flow velocity of the cooling water in the direction of the longitudinal axis of the cooling duct is less than 1.0 m / s in the cooling duct with swirl device and is at least 1.5 m / s in the cooling duct with displacement body.

In einer ersten Ausführung umfasst die Wirbelvorrichtung einen Einlassstutzen der die Kühlflüssigkeit innerhalb des Plattenkörpers tangential in den Kühlkanal einleitet. Die schraubenförmige Strömung der Kühlflüssigkeit um die Längsachse des Kühlkanals wird somit unmittelbar am Anfang des Kühlkanals erzeugt.In a first embodiment, the swirl device comprises an inlet connection of the cooling liquid inside the plate body tangentially in the Cooling channel initiates. The helical flow of the coolant around the The longitudinal axis of the cooling channel is thus immediately at the beginning of the cooling channel generated.

Die Wirbelvorrichtung kann die Kühlflüssigkeit jedoch auch außerhalb des Plattenkörpers tangential in einen Anschlussstutzen einleiten der aus dem Plattenkörper herausgeführt ist.However, the vortex device can also cool the liquid outside of the Introduce the plate body tangentially into a connecting piece from the Plate body is led out.

Der Kühlkanal weist normalerweise eine glatte Oberfläche zur Kühlflüssigkeit auf. Um die schraubenförmige Strömung der Kühlflüssigkeit um die Längsachse des Kühlkanals zu unterstützen kann der Kühlkanal jedoch auch, wie ein Kanonenlauf, eine Oberfläche mit schraubenförmigen Zügen aufweisen. Aus dem gleichen Grund kann man in den Kühlkanal auch mindestens einen axialen Drallkörper integrieren.The cooling channel normally has a smooth surface to the coolant on. The helical flow of the coolant around the longitudinal axis The cooling channel can also support the cooling channel, however, like a Cannon barrel, have a surface with helical trains. Out for the same reason you can also have at least one axial in the cooling channel Integrate swirl bodies.

Der Kühlkanal kann ebenfalls einen zentralen Verdrängungskörper aufweisen, so dass in dem Kühlkanal ein Ringkanal für die Kühlflüssigkeit ausgebildet ist. Bei gleicher Wärmeaustauschfläche zum Kühlwasser (d.h. gleichem Durchmesser des Kühlkanals) und gleichem Durchfluss, vergrößert der zentrale Verdrängungskörper die axiale Strömungsgeschwindigkeit der Kühlflüssigkeit im Kühlkanal und erhöht somit ebenfalls die Sicherheit gegen Dampffilmbildung. In anderen Worten, durch den zentralen Verdrängungskörper man kann mit einem geringeren Kühlwasserdurchfluss arbeiten, ohne dass hierbei ein größeres Risiko in Kauf genommen wird, dass die Kühlplatte durch lokale Dampffilmbildung überhitzt.The cooling channel can also have a central displacement body, so that an annular channel for the cooling liquid is formed in the cooling channel is. With the same heat exchange surface to the cooling water (i.e. the same Diameter of the cooling duct) and the same flow, the central one increases Displacer the axial flow rate of the coolant in the cooling channel and thus also increases the security against vapor film formation. In other words, through the central displacer you can with work with a lower cooling water flow without this greater risk is accepted that the cooling plate by local Vapor film formation overheated.

Im Hochofen werden kupferne Kühlplatten mit Wirbelvorrichtung vorteilhaft im Bereich des Kohlensacks und des unteren Schachts eingesetzt. In diesen Bereichen ist die thermische Belastung in der Tat am größten. Im Bereich des oberen Schachts des Hochofens können dann z.B. Kühlplatten aus Gusseisen eingesetzt werden, welche schlechtere thermische Eigenschaften aufweisen, jedoch verschließfester als kupferne Kühlplatten sind. Die Kühlkanäle der Kühlplatten aus Gusseisen weisen vorteilhaft einen zentralen Verdrängungskörper auf.In the blast furnace, copper cooling plates with vortex devices are advantageous used in the area of the coal sack and the lower shaft. In these Areas, the thermal load is indeed greatest. In the area of upper shaft of the blast furnace can then e.g. Cast iron cooling plates are used which have poorer thermal properties, however, are more resistant to wear than copper cooling plates. The cooling channels of the Cast iron cooling plates advantageously have a central displacement body on.

Im folgenden wird die Erfindung anhand der beiliegenden Figuren illustriert. Es zeigen:

Fig.1:
einen Längsschnitt durch eine erste Kühlplatte mit einer Wirbelvorrichtung;
Fig.2:
einen Schnitt entlang der Schnittlinie 2'-2" der Fig. 1 durch die Wirbelvorrichtung der Fig. 1;
Fig.3:
einen Querschnitt durch eine erste Ausgestaltung eines Kühlkanals mit zentralem Verdrängungskörper;
Fig.4:
einen Querschnitt durch eine zweite Ausgestaltung eines Kühlkanals mit zentralem Verdrängungskörper;
Fig.5:
einen Längsschnitt durch eine zweite Kühlplatte mit einer Wirbelvorrichtung;
Fig.6:
eine Draufsicht auf die Wirbelvorrichtung der Fig. 5;
Fig.7:
einen Längsschnitt durch eine Kühlplatte mit Verdrängungskörper;
Fig.8:
einen Querschnitt durch eine erste Ausgestaltung eines Kühlkanals mit zentralem Verdrängungskörper;
Fig.9:
einen Querschnitt durch eine zweite Ausgestaltung eines Kühlkanals mit zentralem Verdrängungskörper;
Fig.10:
einen dreidimensionalen Ausschnitt einer dritten Ausgestaltung einer Kühlplatte mit Wirbelvorrichtungen; und
Fig.11:
einen dreidimensionalen Ausschnitt einer weiteren Ausgestaltung einer Kühlplatte mit Wirbelvorrichtungen.
The invention is illustrated below with reference to the accompanying figures. Show it:
Fig.1:
a longitudinal section through a first cooling plate with a vortex device;
Figure 2:
a section along the section line 2'-2 "of Figure 1 by the vortex device of Fig. 1.
Figure 3:
a cross section through a first embodiment of a cooling channel with a central displacement body;
Figure 4:
a cross section through a second embodiment of a cooling channel with a central displacement body;
Figure 5:
a longitudinal section through a second cooling plate with a vortex device;
Figure 6:
a plan view of the vortex device of FIG. 5;
Figure 7:
a longitudinal section through a cooling plate with displacement body;
Figure 8:
a cross section through a first embodiment of a cooling channel with a central displacement body;
Figure 9:
a cross section through a second embodiment of a cooling channel with a central displacement body;
Figure 10:
a three-dimensional section of a third embodiment of a cooling plate with vortex devices; and
Figure 11:
a three-dimensional section of a further embodiment of a cooling plate with vortex devices.

Die Figuren 1, 5, 7, 10 und 11 zeigen Kühlplatten 10, 110, 210, 310, 410, auch noch Staves genannt, wie sie in Hochöfen eingesetzt werden. Diese Kühlplatten 10, 110, 210, 310, 410 werden hierbei an der Innenseite des Hochofenpanzers angebracht und können zum Ofeninnern hin mit einem feuerfesten Material ausgekleidet werden.Figures 1, 5, 7, 10 and 11 show cooling plates 10, 110, 210, 310, 410, also called Staves, as they are used in blast furnaces. This Cooling plates 10, 110, 210, 310, 410 are here on the inside of the Blast furnace armor attached and can with a refractory material to be lined.

Die in Fig. 1 gezeigte Kühlplatte 10 umfasst einen im wesentlichen rechteckigen Plattenkörper 12 aus niedrig legiertem Kupfer, dessen Vorderseite 14 mit Rippen 16 zum Erzielen einer besseren Verbindung mit dem Feuerfestmaterial versehen ist. Eine glatte Rückseite 18 des Plattenkörper 12 wird dem Ofenpanzer zugekehrt. Diese Rückseite 18, bzw. der ganze Plattenkörper 12, kann eine Krümmung aufweisen, die der Krümmung des Ofenpanzers angepasst ist.The cooling plate 10 shown in FIG. 1 comprises an essentially rectangular one Plate body 12 made of low-alloy copper, the front 14th with ribs 16 to achieve a better connection with the refractory material is provided. A smooth back 18 of the plate body 12 is the Oven shell turned towards. This back 18, or the entire plate body 12, can have a curvature that matches the curvature of the furnace shell is.

In Fig. 1 ist ein Kühlkanal 20 im Längsschnitt gezeigt. Der Plattenkörper 12 wird von mehreren solchen Kühlkanälen durchzogen, die im wesentlichen parallel zueinander verlaufen. Man beachte dass der Kühlkanal 20 an seinen beiden Enden jeweils in axialer Richtung verschlossen ist. Ein solcher Plattenkörper 12 kann z.B. vorteilhaft nach dem in der WO 98/30345 beschriebenen Verfahren hergestellt werden, indem eine Vorform des Plattenkörpers mit Durchgangskanälen stranggegossen wird. Er kann jedoch auch nach dem in der US 4382585 beschriebenen Verfahren hergestellt werden, wobei die Kühlkanäle in einen geschmiedeten oder gewalzten Kupferblock gebohrt werden.In Fig. 1, a cooling channel 20 is shown in longitudinal section. The plate body 12 is traversed by several such cooling channels, which are essentially run parallel to each other. Note that the cooling channel 20 at its both ends are closed in the axial direction. Such a plate body 12 can e.g. advantageously according to that described in WO 98/30345 Processes are made by using a preform of the plate body Through channels is continuously cast. However, it can also after the in the processes described in US 4382585, the Cooling channels drilled in a forged or rolled copper block become.

Mit dem Bezugszeichen 22 ist in Fig. 1 und Fig. 2 global eine Wirbelvorrichtung bezeichnet, die dem Kühlkanal 20 vorgeschaltet ist. Diese Wirbeivorrichtung 22 umfasst einen trichterförmigen Einlassstutzen 26 der in einen gefrästen Schlitz in der Rückseite 18 des Plattenkörper 12 eingeschweißt, bzw. eingelötet ist. Dieser trichterförmige Einlassstutzen 26 bildet einen sich verjüngenden Einlasskanal 30 mit rechteckigem Querschnitt aus, der in dem Plattenkörper tangential in den Kühlkanal 20 einmündet. Man beachte, dass die Höhe "h" des Einlasskanals 30 an der Einmündung in den Kühlkanal 20 kleiner als der halbe Durchmesser des Kühlkanals 20 ist. Die Breite "b" des Einlasskanals 30 beträgt ungefähr den zweifachen Durchmesser des Kühlkanals 20 (siehe Fig. 1). Der Winkel "α" zwischen den zwei Ebenen 32, 34, die den sich verjüngenden Einlasskanal 30 ausbilden, beträgt in der gezeigten Ausführung ungefähr 18°. Durch den tangential Eintritt der Kühlflüssigkeit in den Kühlkanal 20 erfährt die Kühlflüssigkeit eine Unfangsbeschleunigung, so dass sich im Kühlkanal 20 eine schraubenförmige Strömung um die Längsachse X des Kühlkanals 20 ergibt.The reference number 22 in FIGS. 1 and 2 is a global vortex device referred to, which is upstream of the cooling channel 20. This swirler 22 comprises a funnel-shaped inlet connector 26 which is in one milled slot welded into the back 18 of the plate body 12, or is soldered in. This funnel-shaped inlet connector 26 forms a tapered one Inlet duct 30 with a rectangular cross section made in the plate body opens tangentially into the cooling channel 20. Note that the height "h" of the inlet channel 30 at the confluence with the cooling channel 20 is less than is half the diameter of the cooling channel 20. The width "b" of the inlet duct 30 is approximately twice the diameter of the cooling channel 20 (see Fig. 1). The angle "α" between the two planes 32, 34, the tapered Form inlet channel 30 is, in the embodiment shown about 18 °. Due to the tangential entry of the coolant into the cooling channel 20, the coolant experiences an initial acceleration, so that in the Cooling channel 20 a helical flow around the longitudinal axis X of the Cooling channel 20 results.

Mit dem Bezugszeichen 40 ist in Fig. 1 ein Auslassstutzen bezeichnet, der die Kühlflüssigkeit aus dem Kühlkanal 20 ableitet. In der gezeigten Ausführung ist dieser Auslassstutzen 40 ähnlich wie der bereits beschriebene Einlassstutzen 26 ausgebildet, das heißt dass die Kühlflüssigkeit auch wiederum tangential aus dem Kühlkanal 20 abgeleitet wird. Es bleibt jedoch anzumerken, dass der tangentiale Austritt der Kühlflüssigkeit aus dem Kühlkanal 20 einen wesentlich geringeren Beitrag zum Aufbau einer schraubenförmigen Strömung der Kühlflüssigkeit um die Längsachse X des Kühlkanals 20 liefert als der tangentiale Eintritt in den Kühlkanal 20. In den meisten Fällen kann deshalb auf einen tangentialen Austritt der Kühlflüssigkeit aus dem Kühlkanal 20 verzichtet werden. Ein zylindrischer Auslassstutzen kann dann in bekannter Art und Weise mittig in den Kühlkanal 20 einmünden.The reference numeral 40 in FIG. 1 denotes an outlet connection which derives the cooling liquid from the cooling channel 20. In the version shown this outlet connector 40 is similar to the inlet connector already described 26, which means that the cooling liquid is again tangential is derived from the cooling channel 20. However, it should be noted that the tangential exit of the cooling liquid from the cooling channel 20 is essential less contribution to the development of a helical flow of the coolant about the longitudinal axis X of the cooling channel 20 as the tangential Entry into the cooling duct 20. In most cases, therefore, one tangential exit of the cooling liquid from the cooling channel 20 is dispensed with become. A cylindrical outlet connection can then be made in a known manner open into the center of the cooling duct 20.

Wie bereits eingehend erläutert, ermöglicht es die Rotation der Kühlflüssigkeit um die Längsachse X des Kühlkanals 20, den Durchfluss der Kühlflüssigkeit im Kühlkanal zu reduzieren, ohne die Sicherheit gegen Dampffilmbildung zu reduzieren. In anderen Worten, die Kühlplatte 10 kann einen wesentlich geringeren Kühlwasserdurchfluss als bekannte Kühlplatten aufweisen, ohne dass hierbei ein größeres Risiko in Kauf genommen wird, dass die Kühlplatte 10 durch lokale Dampffilmbildung überhitzt.As already explained in detail, it enables the coolant to rotate about the longitudinal axis X of the cooling channel 20, the flow of the cooling liquid in the cooling channel without reducing the security against vapor film formation to reduce. In other words, the cooling plate 10 can be essential have lower cooling water flow than known cooling plates without that there is a greater risk that the cooling plate 10 overheated due to local vapor film formation.

Erste Berechnungen haben ergeben, dass man bei einer Rotation des Kühlwassers, den Kühlwasserdurchfluss auf 20 % und weniger des üblichen Kühlwasserdurchflusses reduzieren kann (d.h. dass die mittlere axiale Geschwindigkeit im Kühlkanal 20 z.B. 0,3 m/s anstatt der üblichen 1,5 - 2 m/s beträgt). Diese Berechnungen haben ebenfalls erwiesen, dass die durch eine wesentliche Reduzierung des Kühlwasserdurchflusses bedingte Reduzierung der Druckverluste im Gesamtkühlkreislauf des Hochofens, die durch die Rotation des Kühlwassers bedingten zusätzlichen Druckverluste in den Kühlplatten mit Wirbelvorrichtung bei weitem übertrifft. Es erfolgt somit eine wesentliche Einsparung an Energie für die Umwälzung des Kühlwassers. Durch eine Reduzierung des Kühlwasserdurchflusses erhöht sich natürlich auch die Differenz zwischen Eintritts- und Austrittstemperatur des Kühlwassers, so dass eine wirtschaftliche Wärmerückgewinnung möglich wird.Initial calculations have shown that if the Cooling water, the cooling water flow rate to 20% and less of the usual Cooling water flow (i.e. the mean axial velocity in the cooling channel 20 e.g. 0.3 m / s instead of the usual 1.5 - 2 m / s is). These calculations have also shown that the substantial reduction in cooling water flow-related reduction the pressure losses in the overall cooling circuit of the blast furnace caused by the Rotation of the cooling water caused additional pressure losses in the cooling plates with vortex device by far. So there is an essential one Saving energy for the circulation of the cooling water. By a Reduction of the cooling water flow naturally also increases Difference between the inlet and outlet temperature of the cooling water, so that economic heat recovery becomes possible.

Wie in Fig. 3 gezeigt, kann ein zentraler Verdrängungskörper 42 im Kühlkanal 20 angeordnet werden, so dass in dem Kühlkanal 20 lediglich ein Ringkanal 44 für die Kühlflüssigkeit übrigbleibt. Bei gleichem Durchfluss vergrößert der zentrale Verdrängungskörper 42 hierbei die axiale Strömungsgeschwindigkeit der Kühlflüssigkeit im Kühlkanal 20 und erhöht somit ebenfalls die Sicherheit gegen Dampffilmbildung. In anderen Worten, man kann mit einem geringeren Kühlwasserdurchfluss arbeiten, ohne dass hierbei ein größeres Risiko in Kauf genommen wird, dass die Kühlplatte durch lokale Dampffilmbildung überhitzt. In Fig. 4 ist als weitere Ausgestaltungsmöglichkeit ein Kühlkanal 20' mit ovalem Querschnitt und einem zentralen Verdrängungskörper 42' gezeigt, der ebenfalls einen ovalen Querschnitt aufweist. Man beachte, dass der ovale Querschnitt zwar größere Strömungsverluste verursacht, jedoch den eindeutigen Vorteil aufweist, dass die Wärmeaustauschfläche zur Kühlflüssigkeit vergrößert werden kann, ohne dass die Dicke des Plattenkörpers 12 vergrößert werden muss. Solche Verdrängungskörper 42, 42', die im wesentlichen die gleiche Länge wie der Kühlkanal 20, 20' aufweisen, werden z.B. axial in den Kühlkanal 20, 20' eingeschoben, bevor letzterer axial verschlossen wird. Abstandshalter 46, 46', die in gewissen Abständen entlang des Verdrängungskörpers 42, 42' angeordnet sind, zentrieren hierbei den Verdrängungskörper 42, 42' auf der Längsachse X des Kühlkanals 20, 20'.As shown in FIG. 3, a central displacement body 42 can be located in the cooling channel 20 are arranged so that only one ring channel in the cooling channel 20 44 remains for the coolant. Enlarged at the same flow the central displacement body 42 the axial flow velocity the coolant in the cooling channel 20 and thus also increases safety against steam film formation. In other words, you can use a smaller one Cooling water flow work without being at greater risk It is bought that the cooling plate through local vapor film formation overheated. 4 is a cooling duct 20 'as a further possible embodiment. shown with an oval cross section and a central displacement body 42 ', which also has an oval cross section. Note that the oval Cross-section causes larger flow losses, but the clear one Advantage has that the heat exchange surface to the cooling liquid can be increased without increasing the thickness of the plate body 12 must become. Such displacement body 42, 42 ', which is essentially the have the same length as the cooling channel 20, 20 ', e.g. axially in the Cooling channel 20, 20 'inserted before the latter is axially closed. Spacers 46, 46 'which are spaced at certain intervals along the displacer 42, 42 'are arranged, center the displacement body 42, 42 'on the longitudinal axis X of the cooling channel 20, 20'.

Um bei einer dem Kühlkanal 20 vorgeschalteten Wirbelvorrichtung 22 zu gewährleisten, dass eine ausreichende Rotation des Kühlwassers bis zum Ausgang des Kühlkanals 20 vorliegt, kann in den Kühlkanal 20 mindestens ein axialer Drallkörper (nicht gezeigt) integriert werden, der die schraubenförmige Strömung der Kühlflüssigkeit um die Längsachse X des Kühlkanals 20 unterstützt. Zum gleichen Zweck kann der Kühlkanal 20 auch eine Oberfläche mit schraubenförmigen Zügen aufweisen (nicht gezeigt), die ebenfalls eine schraubenförmige Strömung der Kühlflüssigkeit um die Längsachse X des Kühlkanals 20 unterstützt. Solche schraubenförmige Züge können auch in der Oberfläche der Verdrängungskörper 42, 42' eingearbeitet sein.To close in a vortex device 22 upstream of the cooling channel 20 ensure that there is sufficient rotation of the cooling water until Output of the cooling channel 20 is present, can be at least one in the cooling channel 20 axial swirl body (not shown) can be integrated, the helical Flow of the cooling liquid around the longitudinal axis X of the cooling channel 20 is supported. For the same purpose, the cooling channel 20 can also have a surface have helical cables (not shown), which are also helical Flow of the cooling liquid around the longitudinal axis X of the cooling channel 20 supports. Such helical trains can also appear in the surface the displacement body 42, 42 'may be incorporated.

Die in Fig. 5 gezeigte Kühlplatte 110 umfasst einen im wesentlichen rechteckigen Plattenkörper 112 aus GGG (d.h. Gusseisen mit Kugelgraphit), der von mehreren parallelen Kühlkanälen durchzogen ist. Ein solcher Kühlkanal 120 wird durch ein U-förmig gebogenes Rohr 121 ausgebildet, das in den Plattenkörper 112 eingegossen ist. Die beiden Enden des Rohrs 121 sind als Anschlussstutzen 123, 125 des Kühlkanals 120 aus dem Plattenkörper 112 herausgeführt. Mit dem Bezugszeichen 122 ist in Fig. 5 und Fig. 6 global eine Wirbelvorrichtung 122 bezeichnet, welche die Kühlflüssigkeit außerhalb des Plattenkörpers 112 tangential in den Anschlussstutzen 123 einleitet. Wie die Wirbelvorrichtung 22, umfasst auch die Wirbelvorrichtung 122 einen trichterförmigen Einlassstutzen 126. Letzterer ist seitlich an den Anschlussstutzen 123 angeschweißt, so dass er die Kühlflüssigkeit tangential in den Anschlussstutzen 123 einleitet. Im Anschlussstutzen 123 baut sich folglich eine schraubenförmige Strömung auf, die sich anschließend in den eigentlichen Kühlkanal 120 fortpflanzt. Um zu vermeiden, dass die Rotation der Kühlflüssigkeit im Rohrbogen 127 abgebremst wird, kann man den trichterförmigen Einlassstutzen 126 direkt an das untere Ende des geraden Abschnitts des Rohrs 121 anschweißen. Hierbei muss man jedoch in Kauf nehmen, dass eine Schweißnaht in den Plattenkörper 112 eingegossen wird.The cooling plate 110 shown in FIG. 5 comprises a substantially rectangular one GGG (i.e., spheroidal graphite cast iron) plate body 112 made by several parallel cooling channels. Such a cooling channel 120 is formed by a U-shaped tube 121 which is in the plate body 112 is poured. The two ends of the tube 121 are as connecting pieces 123, 125 of the cooling channel 120 from the plate body 112 led out. The reference number 122 in FIGS. 5 and 6 is globally one Vortex device 122 denotes which the cooling liquid outside the Plate body 112 leads tangentially into the connecting piece 123. As the Vortex device 22, the vortex device 122 also comprises a funnel-shaped one Inlet spigot 126. The latter is on the side of the connection spigot 123 welded on so that it tangentially flows the coolant into the connector 123 initiates. Consequently, a screw-shaped is built in the connecting piece 123 Flow that then propagates into the actual cooling channel 120. To avoid the rotation of the coolant in the elbow 127 is braked, the funnel-shaped inlet connector 126 can be used directly weld to the lower end of the straight portion of tube 121. However, you have to accept that a weld seam in the Plate body 112 is poured.

Fig. 7 zeigt ebenfalls eine Kühlplatte 210, die ebenfalls aus Gusseisen gefertigt ist. Diese Kühlplatte 210 unterscheidet sich von der Kühlplatte 110 hauptsächlich dadurch, dass die Wirbelvorrichtung 122, durch einen zentralen Verdrängungskörper 242 ersetzt ist (siehe auch Fig. 8). Dieser zentrale Verdrängungskörper 242 lässt in dem Kühlkanal 220 lediglich einen Ringkanal 244 für die Kühlflüssigkeit übrig. Bei gleicher Wärmeaustauschfläche zum Kühlwasser (d.h. gleichem Durchmesser des Kühlkanals 220) und gleichem Durchfluss, vergrößert der zentrale Verdrängungskörper 242 die axiale Strömungsgeschwindigkeit der Kühlflüssigkeit im Kühlkanal 220 und erhöht somit ebenfalls die Sicherheit gegen Dampffilmbildung. In anderen Worten, durch den zentralen Verdrängungskörper 242 kann man mit einem geringeren Kühlwasserdurchfluss arbeiten, ohne dass hierbei ein größeres Risiko in Kauf genommen wird, dass die Kühlplatte 210 durch lokale Dampffilmbildung überhitzt.Fig. 7 also shows a cooling plate 210, which is also made of cast iron is made. This cooling plate 210 differs from the cooling plate 110 mainly in that the vortex device 122, by a central Displacement body 242 is replaced (see also Fig. 8). This central displacement body 242 leaves only one ring channel 244 in the cooling channel 220 left for the coolant. With the same heat exchange surface to the cooling water (i.e. the same diameter of the cooling channel 220) and the same flow rate, The central displacer 242 increases the axial flow rate the coolant in the cooling channel 220 and thus also increases security against vapor film formation. In other words, through the central Displacer 242 can be used with a lower cooling water flow work without accepting a greater risk that cooling plate 210 overheats due to local vapor film formation.

Der Verdrängungskörper 242 wird z.B. in das Rohr 221 eingeschoben bevor letzteres gebogen wird. Abstandshalter 246, die in gewissen Abständen entlang des Verdrängungskörpers 242 angeordnet sind, zentrieren hierbei den Verdrängungskörper 242 auf der Längsachse des Kühlkanals 220. Um das Biegen des Rohrs 221 zu erleichtern kann der Ringkanal 244 mit Sand aufgefüllt werden, der nach dem Biegen wieder entfernt wird.The displacer 242 is e.g. inserted into the tube 221 before the latter is bent. Spacers 246 that are spaced at certain intervals are arranged along the displacement body 242, center the Displacement body 242 on the longitudinal axis of the cooling channel 220 To facilitate bending of the tube 221, the annular channel 244 can be filled with sand which will be removed after bending.

Fig. 9 zeigt, dass auch ein Rohr 221' mit einem abgeflachten Querschnitt in den Plattenköper eingegossen werden kann. Wie bereits weiter oben erwähnt, weist ein abgeflachter Querschnitt den Vorteil auf, dass die Wärmeaustauschfläche zur Kühlflüssigkeit vergrößert werden kann, ohne dass die Dicke des Plattenkörpers vergrößert werden muss. Fig. 9 zeigt ebenfalls, dass in das Rohr 221' mit ovalem Querschnitt ein Verdrängungskörper 242' mit ovalem Querschnitt integriert werden kann.Fig. 9 shows that a tube 221 'with a flattened cross section can be poured into the plate body. As mentioned earlier, a flattened cross-section has the advantage that the heat exchange surface to the coolant can be enlarged without reducing the thickness the plate body must be enlarged. Fig. 9 also shows that in the Tube 221 'with an oval cross-section a displacement body 242' with an oval Cross section can be integrated.

Fig. 10 zeigt eine weitere Ausgestaltung einer kupfernen Kühlplatte 310 im Bereich des Kühlwassereintritts. Bei dieser Kühlplatte 310 ist die Wirbelvorrichtung durch ein vorgefertigtes, massives Formstück 322 ausgebildet. Letzteres ist ein massives Gießstück das einen bogenförmigen Übergangskanal 330 mit eingeformten, schraubenförmigen Zügen 331 ausbildet. Letztere erzeugen eine schraubenförmige Strömung der Kühlflüssigkeit um die Längsachse des Kühlkanals 320. Ein Anschlussstutzen 333 kann in das Formstück 322 eingelötet, eingeschweißt oder sogar beim Gießen des Formstück 322 eingegossen werden. Ein massiver Sockelansatz 335 am Formstück 322 erleichtert ein sicheres Befestigen des Anschlussstutzens 333 und dient zusätzlich als Distanzhalter für die Kühlplatte 310 bei der Montage an der Ofenwand. Die Aussparung für das Formstück 322 ist vorteilhaft von der Rückseite her in den kupfernen Kühlplattenkörper 312 eingefräst, wobei die Aussparung in eine Stirnseite 337 des Kühlplattenkörpers 312 einmündet und die Tiefe der Aussparung kleiner als die Dicke des Kühlplattenkörpers 312 ist. Die Nahtstelle zwischen dem Kühlplattenkörper 312 und dem Formstück 322 wird rundum an der Oberfläche zugeschweißt oder zugelötet. Durch die relativ einfache Form dieser Nahtstelle können diese Schweiß-, bzw. Lötarbeiten schnell und sicher ausgeführt werden. Es bleibt anzumerken, dass in der Ausführung nach Fig. 10 der Anschlussstutzen 333 und der Kühlkanal 320 im Kühlplattenkörper 312 jeweils den gleichen Querschnitt aufweisen.10 shows a further embodiment of a copper cooling plate 310 in Cooling water inlet area. In this cooling plate 310 is the vortex device formed by a prefabricated, solid molding 322. The latter is a solid casting that has an arcuate transition channel 330 with molded, helical cables 331. Generate the latter a helical flow of the coolant around the longitudinal axis of the Cooling channel 320. A connecting piece 333 can be soldered into the shaped piece 322, welded or even cast when molding 322 become. A solid base extension 335 on the shaped piece 322 makes it easier secure attachment of the connecting piece 333 and also serves as Spacer for the cooling plate 310 when mounting on the furnace wall. The Recess for the molding 322 is advantageous from the back in the copper cooling plate body 312 milled, the recess in a Front side 337 of the cooling plate body 312 opens and the depth of the recess is smaller than the thickness of the cooling plate body 312. The interface between the cooling plate body 312 and the molding 322 is all around welded or soldered to the surface. Due to the relatively simple shape This interface can be used for this welding or soldering work quickly and safely be carried out. It should be noted that in the embodiment according to FIG. 10 the connecting piece 333 and the cooling channel 320 in the cooling plate body 312 each have the same cross section.

Bei der in Fig. 11 gezeigten Kühlplatte 410, weist der Kühlkanal 420 im kupfernen Kühlplattenkörper 412 einen ovalen Querschnitt auf, wohingegen der Anschlussstutzen 433 einen kreisrunden Querschnitt aufweist. Ein progressiver Übergang vom kreisrunden auf den ovalen Querschnitt wird hierbei durch den Übergangskanal 430 des Formstücks 422 gewährleistet.In the cooling plate 410 shown in FIG. 11, the cooling channel 420 in the copper cooling plate body 412 has an oval cross section, whereas the Connection piece 433 has a circular cross section. A progressive one The transition from circular to oval cross-section is made by the Transition channel 430 of the fitting 422 guaranteed.

Es bleibt anzumerken, dass die Ausführungen der Figuren 10 und 11, im Vergleich zu den Ausführungen der Figuren 1 bis 4, den Vorteil aufweisen, dass das Einleiten des Kühlwassers in den Kühlkanal, durch den strömungstechnisch optimierten, bogenförmigen Übergangskanal 330, 430 mit eingeformten, schraubenförmigen Zügen 331, 431 mit einem wesentlich geringeren Druckverlust erfolgt.It should be noted that the explanations of Figures 10 and 11, in Compared to the embodiments of Figures 1 to 4, have the advantage that the introduction of the cooling water into the cooling channel through the flow optimized, arched transition channel 330, 430 with molded, helical Trains 331, 431 with a significantly lower pressure drop.

Im Hochofen werden kupferne Kühlplatten 10, 310, 410 mit Wirbelvorrichtung besonders vorteilhaft im thermisch stark belasteten Bereich des Kohlensacks und des unteren Schachts eingesetzt. Gusseiserne Kühlplatten 110, 210 mit Wirbelvorrichtung und/oder Verdrängungskörper werden besonders vorteilhaft im Bereich des oberen Schachts eingesetzt. Der Durchfluss des Kühlwassers in den Kühlkanälen der Kühlplatten wird hierbei derart festgelegt, dass:

  • Figure 00130001
    in den Kühlkanälen mit Wirbelvorrichtung die mittlere Strömungsgeschwindigkeit des Kühlwassers in Richtung der Längsachse des Kühlkanals kleiner als 1,0 m/s, bzw. sogar kleiner als 0,5 m/s ist; und
  • in den Kühlkanälen ohne Wirbelvorrichtung die mittlere Strömungsgeschwindigkeit des Kühlwassers in Richtung der Längsachse des Kühlkanals vorteilhaft größer als 1,5 m/s, bzw. sogar größer als 2,0 m/s ist; wobei diese Geschwindigkeit durch einen eingesetzten Verdrängungskörper erzielt werden kann.
  • In the blast furnace, copper cooling plates 10, 310, 410 with a swirling device are used particularly advantageously in the region of the coal sack and the lower shaft that is subjected to high thermal loads. Cast-iron cooling plates 110, 210 with swirl devices and / or displacement bodies are used particularly advantageously in the area of the upper shaft. The flow of the cooling water in the cooling channels of the cooling plates is determined in such a way that:
  • Figure 00130001
    in the cooling channels with vortex device, the average flow velocity of the cooling water in the direction of the longitudinal axis of the cooling channel is less than 1.0 m / s, or even less than 0.5 m / s; and
  • in the cooling channels without vortex device, the average flow velocity of the cooling water in the direction of the longitudinal axis of the cooling channel is advantageously greater than 1.5 m / s or even greater than 2.0 m / s; this speed can be achieved by an inserted displacement body.
  • Abschließend ist anzumerken, dass die vorgestellten Kühlplatten selbstverständlich nicht nur in Hochofen und anderen Schachtöfen, sondern auch in Tiegelöfen einsetzbar sind.In conclusion, it should be noted that the cooling plates presented are self-evident not only in blast furnaces and other shaft furnaces, but also in Crucible furnaces can be used.

    Claims (26)

    1. Method for cooling a blast furnace with cooling plates which comprise a massive plate body (12, 112, 312, 412), into which straight cooling passages (20, 120, 320, 420), through which cooling water flows, are integrated, characterized in that the cooling water throughput through the cooling plates arranged in particular in areas of the blast furnace which are subject to high thermal loads is reduced in such a manner that the mean flow velocity of the cooling water in the direction of the longitudinal axis of the cooling passage is less than 1.0 m/s, a vortex device (22, 122, 322, 422) being connected upstream of said cooling passages (20, 120, 320, 420) with a reduced flow rate in such a manner that it generates a helical flow of the cooling liquid about the longitudinal axis (X) of said cooling passage (20, 120, 320, 420).
    2. Method according to Claim 1, characterized in that the mean flow velocity of the cooling water in the direction of the longitudinal axis of the cooling passage is less than 0.5 m/s.
    3. Method according to Claim 1 or 2, characterized in that cooling plates without vortex device (22, 122, 322, 422) are used in areas of the blast furnace which are subject to less high thermal loads, the cooling water throughput being designed in such a manner that the mean flow velocity of the cooling water in the direction of the longitudinal axis of the cooling passage is at least 1.5 m/s.
    4. Method according to Claim 3, characterized in that a cooling passage with vortex device belonging to a first cooling plate is connected in series with a cooling passage without a vortex device belonging to a second cooling plate, the cross section of the cooling passage without a vortex device being reduced in annular form by a central displacement body (242, 242'), in such a manner that, with the same cooling water throughput, the mean flow velocity of the cooling water in the direction of the longitudinal axis of the cooling passage is less than 1.0 m/s in the cooling passage with vortex device and is at least 1.5 m/s in the cooling passage with the displacement body.
    5. Method according to Claim 1, characterized in that the vortex device (22) comprises an inlet connection piece (26) which introduces the cooling liquid tangentially into the cooling passage (22) inside the plate body (12).
    6. Method according to Claim 5, characterized in that the vortex device (22) comprises an outlet connection piece (40), which discharges the cooling liquid tangentially from the cooling passage (20).
    7. Method according to Claim 5 or 6, characterized in that the massive plate body (12) is made from copper or a copper alloy, and the inlet or outlet connection piece (22, 40) is welded or soldered into the plate body (12).
    8. Method according to Claim 1, characterized in that the cooling plate comprises a first connection piece (123), which extends the cooling passage (120) to the outside, the vortex device (122) introducing the cooling liquid tangentially into the connection piece (123) outside the plate body (112).
    9. Method according to Claim 8, characterized in that the plate body (112) is made from cast iron, the cooling passage (120) being formed by a cast-in tube (121) which is bent in a U shape, and each of the two ends of the tube (121) projecting out of the plate body as connection pieces (123, 125) of the cooling passage (120), and the vortex device (122) introducing the cooling liquid tangentially into one of the two connection pieces (123) outside the plate body (112).
    10. Method according to one of Claims 1 to 9, characterized in that the cooling passage (20, 120) with vortex device has a smooth surface facing the cooling liquid.
    11. Method according to one of Claims 1 to 9, characterized in that the cooling passage with vortex device has a surface with helical grooves.
    12. Method according to one of Claims 1 to 11, characterized in that the cooling passage (20, 20') with vortex device has a central displacement body (42, 42'), so that an annular passage for the cooling liquid is formed in the cooling passage (20, 20').
    13. Method according to one of Claims 1 to 11, characterized in that at least one axial swirl-imparting body, which supports the helical flow of the cooling liquid about the longitudinal axis of the cooling passage, is integrated into the cooling passage with vortex device.
    14. Method according to Claim 1, characterized in that the vortex device is formed by a prefabricated, massive shaped piece (322, 422) which is soldered or welded into an externally accessible cutout in the cooling plate body (312, 412) and has a curved transition passage (330, 430) with integrated helical grooves (331, 431).
    15. Method according to Claim 14, characterized in that the shaped piece (322, 422) is a casting.
    16. Method according to Claim 14 or 15, characterized in that the cooling plate (310, 410) has at least one connection piece (333) which is welded, soldered or cast into the shaped piece (322, 422).
    17. Method according to one of Claims 14 to 16, characterized in that:
      the cooling plate (310, 410) has a copper cooling plate body (312, 412); and
      the cutout for the shaped piece (322, 422) is milled into the copper cooling plate body from the rear side, with the depth of the cutout being less than the thickness of the cooling plate body (312, 412).
    18. Method according to one of Claims 14 to 17, characterized in that:
      the cutout for the shaped piece (322) opens out into an end side (337) of the cooling plate body (312), and the depth of the cutout is less than the thickness of the cooling plate body (312); and
      the location of the seam between the cooling plate body (312) and the shaped piece (322) is closed by welding or soldering at the surface all the way around.
    19. Method according to one of Claims 14 to 18, characterized in that:
      the cooling plate (410) has a connection piece (433) which opens out into the transition passage (430) of the shaped piece (422); and
      the cooling passage (420) in the cooling plate body (412) has a first cross section and the connection piece (433) has a second, different cross section, with the transition from the first cross section to the second cross section taking place gradually in the transition passage (430).
    20. Method according to one of Claims 14 to 19, characterized in that the first cross section is oval and the second cross section is circular.
    21. Method according to one of Claims 1 to 20, in which the blast furnace comprises a belly, a lower shaft and an upper shaft, which are cooled by means of cooling plates, characterized in that essentially the cooling plates of the belly and of the lower shaft have vortex devices (22, 122, 322, 422).
    22. Method according to Claim 21, characterized in that the plate body (12, 112) of the cooling plates of the belly and of the lower shaft is made from copper or a copper alloy.
    23. Method according to Claim 21 or 22, characterized in that the upper shaft is cooled by cooling plates made from cast iron (210).
    24. Method according to Claim 23, characterized in that the cooling plates made from cast iron (210) have a central displacement body (242, 242') in their cooling passages.
    25. Method according to Claim 23 or 24, characterized in that the cooling plates made from cast iron have cooling passages with an oval cross section.
    26. Method according to one of Claims 23 to 25, characterized in that the cooling water flow rate through the cooling passages of the cooling plates is set in such a manner that:
      in the cooling passages with vortex device, the mean flow velocity of the cooling water in the direction of the longitudinal axis of the cooling passage is less than 1.0 m/s; and
      in the cooling passages made from cast iron without a vortex device, the mean flow velocity of the cooling water in the direction of the longitudinal axis of the cooling passage is greater than 1.5 m/s.
    EP01972081A 2000-09-26 2001-09-26 Method for cooling a blast furnace with cooling plates Expired - Lifetime EP1322791B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    LU90644 2000-09-26
    LU90644A LU90644B1 (en) 2000-09-26 2000-09-26 Process for cooling a blast furnace comprises using cooling plates having a sturdy plate body with integrated cooling channels through which water can flow
    LU90743 2001-03-19
    LU90743 2001-03-19
    PCT/EP2001/011117 WO2002027042A1 (en) 2000-09-26 2001-09-26 Method for cooling a blast furnace with cooling plates

    Publications (2)

    Publication Number Publication Date
    EP1322791A1 EP1322791A1 (en) 2003-07-02
    EP1322791B1 true EP1322791B1 (en) 2004-04-14

    Family

    ID=26640376

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01972081A Expired - Lifetime EP1322791B1 (en) 2000-09-26 2001-09-26 Method for cooling a blast furnace with cooling plates

    Country Status (5)

    Country Link
    EP (1) EP1322791B1 (en)
    AT (1) ATE264403T1 (en)
    AU (1) AU2001291880A1 (en)
    DE (1) DE50102007D1 (en)
    WO (1) WO2002027042A1 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AUPR256301A0 (en) 2001-01-17 2001-02-08 Silverbrook Research Pty. Ltd. An apparatus (AP15)
    DE10323944A1 (en) * 2003-05-27 2004-12-16 Maerz Ofenbau Ag Process container with cooling elements
    CN111424125B (en) * 2020-05-15 2021-08-24 马鞍山市润通重工科技有限公司 Cast steel cooling wall with uniformly arranged cooling water pipe grooves and machining process thereof

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1122222B (en) * 1953-05-23 1962-01-18 Ernst R Becker Dipl Ing Application of the evaporation cooling known for metallurgical ovens with high pressure steam generation
    SU386993A1 (en) * 1970-12-14 1973-06-21 REFRIGERATOR DOMAIN FURNACE
    SU439678A1 (en) * 1971-09-22 1974-08-15 Tubular cooler for metallurgical furnaces
    FR2392341A1 (en) * 1977-05-25 1978-12-22 Touze Francois IMPROVEMENTS TO LIQUID CIRCULATION COOLING DEVICES
    DE3027464C2 (en) * 1980-07-19 1982-07-22 Korf & Fuchs Systemtechnik GmbH, 7601 Willstätt Method and device for cooling a wall area of a metallurgical furnace, in particular an electric arc furnace
    DE19755225A1 (en) * 1997-12-12 1999-06-24 Vom Bovert & Co Schweistechnik Coolant duct for wall or ceiling cooling elements in electric arc furnaces
    JPH11293312A (en) * 1998-02-13 1999-10-26 Nkk Corp Stave for metallurgical furnace
    LU90328B1 (en) * 1998-12-16 2003-06-26 Paul Wutrh S A Cooling plate for a furnace for iron or steel production

    Also Published As

    Publication number Publication date
    AU2001291880A1 (en) 2002-04-08
    DE50102007D1 (en) 2004-05-19
    EP1322791A1 (en) 2003-07-02
    ATE264403T1 (en) 2004-04-15
    WO2002027042A1 (en) 2002-04-04

    Similar Documents

    Publication Publication Date Title
    EP1153142B1 (en) Process for producing a cooling panel for a furnace for producing iron or steel
    EP0065330B1 (en) Cooling element for industrial furnaces
    DE2022867C3 (en) Device for length compensation in pipelines or the like.
    WO2006063840A1 (en) Heat exchanger
    EP1322791B1 (en) Method for cooling a blast furnace with cooling plates
    DE2313320A1 (en) BY CASTING ONE OR MORE PIPES, IN PARTICULAR COOLING PIPES, SHAPED CASTING
    EP1218549B1 (en) Metallurfical furnace having copper cooling plates
    DE19509780C1 (en) Heating unit for vehicle
    DE2144348A1 (en) Flow device for liquids
    DE4138091A1 (en) TUBULAR WATER-COOLED COAT FOR OEFEN
    DE2612659B2 (en) Cooling box for a furnace
    EP1322790A1 (en) Cooling element for shaft furnaces
    DE19847770A1 (en) Heat exchanger with a connector
    DE2032829A1 (en) Blast furnace - coil type cooling element
    WO2000046410A1 (en) Blow form for shaft furnaces, especially blast furnaces or hot-blast cupola furnaces
    AT410717B (en) COOLING PLATE WITH REINFORCEMENT PART
    DE2120444A1 (en) Heat sink
    DE3505968C2 (en)
    DE3313998A1 (en) Cooling plate for metallurgical furnaces and method for the manufacture thereof
    WO1999036580A1 (en) Tapping launder for an iron smelt
    DE10341644B4 (en) Helical heat exchanger
    EP1348914B1 (en) Heat exchanger, combustion apparatus having a heat exchanger, closure member for use in such a heat exchanger, and method for making a heat exchanger
    DE10060217B4 (en) lance
    DE2204212C2 (en) Blast furnace blow mold
    DE3422806A1 (en) Immersion-type condenser

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030107

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT DE GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50102007

    Country of ref document: DE

    Date of ref document: 20040519

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040604

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040414

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100927

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20110812

    Year of fee payment: 11

    Ref country code: AT

    Payment date: 20110816

    Year of fee payment: 11

    Ref country code: DE

    Payment date: 20110812

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20110819

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20130401

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 264403

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20120926

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20120926

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120926

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120926

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130403

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120926

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130401

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50102007

    Country of ref document: DE

    Effective date: 20130403