EP1152988A1 - Method for producing a quartz glass body and holding element made of quartz glass - Google Patents

Method for producing a quartz glass body and holding element made of quartz glass

Info

Publication number
EP1152988A1
EP1152988A1 EP00974527A EP00974527A EP1152988A1 EP 1152988 A1 EP1152988 A1 EP 1152988A1 EP 00974527 A EP00974527 A EP 00974527A EP 00974527 A EP00974527 A EP 00974527A EP 1152988 A1 EP1152988 A1 EP 1152988A1
Authority
EP
European Patent Office
Prior art keywords
holding element
quartz glass
blank
content
metastable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00974527A
Other languages
German (de)
French (fr)
Inventor
Klaus Dittmer
Heinz Fabian
Susanne Elsesser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Quarzglas GmbH and Co KG
Original Assignee
Heraeus Tenevo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Tenevo GmbH filed Critical Heraeus Tenevo GmbH
Publication of EP1152988A1 publication Critical patent/EP1152988A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Definitions

  • the present invention relates to a method for producing a quartz glass body, comprising depositing SiO 2 particles on the cylindrical surface of a dome rotating about its longitudinal axis to form a substantially cylindrical, porous blank, which is in the region of one of the ends of the blank attacking holding element made of quartz glass is connected, and sintering of the blank.
  • the invention relates to a holding element made of quartz glass which is connected to one of the ends of the blank to hold a cylindrical blank made of porous quartz glass.
  • a method and a holding element of this type are known from DE-A1 196 49 935.
  • a hollow cylindrical blank made of porous quartz glass is produced according to the so-called "OVD process” (Outside Vapor Depostion), in that fine SiO 2 particles are deposited in layers on a carrier tube rotating about its longitudinal axis tubular holder made of quartz glass is stably embedded in one of the ends of the blank that is formed, and after removal of the carrier tube from the blank, it can be used on the embedded tube for further processing steps, for example a dehydration treatment in a chlorine-containing atmosphere
  • a transparent quartz glass preform is formed from the porous blank by sintering. When glazing, the holder initially remains in the preform and is then removed with the relevant part of the preform.
  • DE 196 49 935 (A1) discloses a method for producing a quartz glass body, in which SiO 2 particles are produced by flame hydrolysis of silicon-containing starting materials and are deposited on a rotating mandrel to form a porous blank (soot body).
  • a quartz glass tube is stably embedded in the area of one of the ends of the blank by setting the density of the blank in this area to at least 60% of the theoretical density of quartz glass.
  • preform and holder are made of quartz glass, differences in expansion and the associated problems with glazing are avoided. However, it has been shown that using the known
  • Holder preforms can be obtained optical fibers with partially fluctuating optical properties.
  • the object of the invention is to improve the known method with regard to the reproducibility of the properties of the products produced from the quartz glass body. Furthermore, the invention is based on the object of specifying a suitable holding element for holding a blank made of porous quartz glass.
  • this object is achieved, based on the method mentioned at the outset, by using a holding element with a metastable OH content of less than 30 ppm by weight and subjecting the holding element to a thermal pretreatment.
  • the fluctuations in the optical properties mentioned can be attributed to the fact that the blank has an axial gradient in the hydroxyl group content (hereinafter also referred to as OH content).
  • the OH content is greatest in the area of the blank - and the quartz glass body produced therefrom - to which the holding element was connected.
  • OH groups are formed during the production process, and in particular during process steps at high temperature diffuse out of the holding element and are delivered to the blank and to the quartz glass body.
  • a release of OH groups cannot be clearly correlated with the hydroxyl group content of the quartz glass.
  • the hydroxyl group content of the quartz glass is rather composed of a chemically firmly bound OH content and a metastable OH content, only the latter being problematic with regard to the release of OH groups.
  • the method according to the invention therefore makes it possible to use a holding element made of quartz glass with a high OH content, with the proviso that its metastable OH content is less than 30 ppm by weight.
  • a “metastable OH content” generally means that
  • metastable OH groups from quartz glass requires a certain activation energy. Regardless of this, the diffusion of metastable OH groups from a quartz glass component is determined by the level of the temperature, the duration of the temperature treatment and the length of the
  • the “metastable OH content” is defined as a hydroxyl group content which is removed by heating a holding element to a temperature of 1040 ° C. over a period of 48 hours with a diffusion path of 5 mm.
  • a low metastable OH content can be achieved by using a holding element made of a quartz glass, which is specified by a correspondingly low OH content.
  • quartz glass is usually expensive and special measures are required to keep the low OH content during the To maintain the shape of the holding element.
  • the metastable OH content of the quartz glass is reduced.
  • inexpensive quartz glass with an initially higher metastable OH content can be used for the production of the holding element.
  • the holding element is formed from a quartz glass with a high metastable OH content.
  • the higher metastable OH content of the quartz glass is reduced before the use of the holding element by a thermal aftertreatment and adjusted according to the invention. Because of the aftertreatment, special precautionary measures regarding the OH content of the quartz glass are not necessary when shaping the holding element.
  • a holding element with a metastable OH content of less than 1 ppm by weight is preferably used. Taking into account the above definition, this is a component made of quartz glass, from which the original OH content is reduced by at most 1% by weight by heating to a temperature of 1040 ° C over a period of 48 hours (in one Diffusion path of 5 mm). Accordingly, the release of metastable OH groups is largely avoided and an essentially axially homogeneous distribution of hydroxyl groups in the blank and in the transparent quartz glass body produced therefrom is achieved.
  • a thermal aftertreatment has proven itself, which comprises heating the holding element at a temperature of at least 900 ° C.
  • the holding element is preferably heated at a temperature of at least 1000 ° C.
  • the heating time in the context of the thermal aftertreatment is advantageously 5 hours, preferably 20 hours and more.
  • the method according to the invention has proven itself when using a cylindrical one Garle ent, which is partially embedded in the area of one of the ends of the blank being formed, has proven to be particularly favorable.
  • the above-mentioned object is achieved according to the invention starting from the holding element of the type mentioned at the outset in that the holding element consists of quartz glass with a metastable OH content of less than 30 ppm by weight.
  • a holding element made of quartz glass with the lowest possible metastable OH content releases little or no OH groups to the blank to be held or to the quartz glass body, so that there is an essentially axially homogeneous distribution of hydroxyl groups in the blank and in the transparent material produced therefrom
  • Quartz glass body guaranteed.
  • a low metastable OH content can be achieved on the one hand by a low-hydroxyl quartz glass, on the other hand by a suitable thermal aftertreatment of a quartz glass with an initially higher metastable OH content.
  • a holding element which consists of quartz glass with a metastable OH content of less than 1 ppm by weight.
  • the holding element according to the invention preferably has a cylindrical region which is at least partially embedded in the tube for the intended mounting.
  • the cylindrical area embedded in the blank ensures a firm connection.
  • Figure 2 shows the same process step as in Figure 1, but using a holder according to the prior art, wherein areas of the blank are marked that contribute to an increased OH content in the preform.
  • FIG. 1 shows a section of the production of a blank 1 made of porous quartz glass by embedding a holder in the form of a tubular holder 2 in the region of one of the end faces 3 of the blank 1.
  • the blank 1 each of which has an outer diameter of approximately 80 mm and a length of approximately 700 mm, is made according to the known OVD method by flame hydrolysis of SiCI and GeCU with layer-by-layer deposition of SiO 2 particles on its
  • the inner region of the blank 1 is doped with germanium dioxide.
  • a deposition burner 5 is provided, which is moved back and forth along the surface of the blank 1 with layer-by-layer deposition of Si0 2 particles (and Ge0 2 particles).
  • the holder 2 is stably embedded over part of its length in the region of the end face 3 of the blank 1.
  • the holder 2 has an outer diameter of 25 mm and a wall thickness of 9 mm.
  • the diffusion path for the diffusion of metastable OH groups in holder 2 is thus 4.5 mm.
  • a particularly stable embedding of the holder 2 is achieved in that a higher temperature and thus a higher density is set in the region of the end face 3 by means of an additional burner 7, so that the holder 2 melts on the surface with the blank 1.
  • the blank is cleaned and dried at 900 ° C in a chlorine-containing atmosphere and then sintered at a temperature of approx. 1350 ° C.
  • a preform for so-called monomode fibers is produced from the core rod thus obtained by covering the core rod with a "jacket tube".
  • the fiber drawn from this preform shows homogeneous optical properties over the entire length of the fiber.
  • the optical attenuation at a wavelength of 1385 nm is less than 0.7 dB / km.
  • the blank 1 was produced as described in Example 1, with the only exception that a holder 12 (see FIG. 2) was used which was not tempered before it was used.
  • the OH content of the holder 12 was approximately 55 ppm by weight.
  • a monomode optical fiber was also drawn from the preform made using the holder 12. Their optical attenuation was inhomogeneous. At the wavelength of 1385 nm, it was in the range between 0.6 dB / km and 7 dB / km, the maximum attenuation values occurring in the preform regions which were originally in the vicinity of the holder 12.
  • a measurement of the OH content of the holder 12 after use showed an OH content of only 5.6 ppm by weight. It follows from this that approx.
  • the hatched area 8 schematically shows the area of increased OH concentration, as is typically found after the blank has been sintered in a method according to the prior art.
  • Concentration reflects the distribution of OH groups in the blank 1 which are released from the holder 12 in the course of the deposition process. These released OH groups diffuse into the porous quartz glass surrounding the holder 12 and thus generate an axial OH gradient in the later preform and the optical fiber drawn therefrom.
  • Those treatment layers that take place at a higher temperature such as chlorination at approx. 900 ° C and sintering at approx. 1350 ° C, are particularly critical. In particular during sintering, during which generally no chlorine or only very little chlorine is available for the reaction, metastable OH groups are released due to the high sintering temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

In a prior art method for producing a quartz glass body, SiO2 particles are deposited on the cylindrical outer surface of a cylindrical mandrel (4), which rotates around the longitudinal axis thereof, while forming an essentially cylindrical porous blank (1), whereby a holding element (12) made of quartz glass is provided in the area of one of the ends of said blank (1). The aim of the invention is to improve, based on existing methods, the reproducibility of the properties of the products made of the quartz glass body. To this end, the invention provides that a holding element (2) is used which has a metastable OH content of less than 30 ppm by weight, and that the holding element (2) is subjected to a thermal pretreatment. A suitable holding element (2) for holding a blank made of quartz glass is characterized in that it is comprised of quartz glass that has a metastable OH content of less than 30 ppm by weight.

Description

Patentanmeldung Patent application
Heraeus Quarzglas GmbH & Co. KG Shin-Etsu Quartz Products Co., Ltd.Heraeus Quarzglas GmbH & Co.KG Shin-Etsu Quartz Products Co., Ltd.
Verfahren für die Herstellung eines Quarzglaskörpers undProcess for the production of a quartz glass body and
Halteelement aus QuarzglasHolding element made of quartz glass
Die vorliegende Erfindung betrifft ein Verfahren für die Herstellung eines Quarzglaskörpers, umfassend ein Abscheiden von SiO2-Partikeln auf der Zylindermantelfläche eines um seine Längsachse rotierenden Doms unter Bildung eines im wesentlichen zylinderförmigen, porösen Rohlings, der mit einem, im Bereich eines der Enden des Rohlings angreifenden Halteelement aus Quarzglas verbunden wird, und Sintern des Rohlings.The present invention relates to a method for producing a quartz glass body, comprising depositing SiO 2 particles on the cylindrical surface of a dome rotating about its longitudinal axis to form a substantially cylindrical, porous blank, which is in the region of one of the ends of the blank attacking holding element made of quartz glass is connected, and sintering of the blank.
Weiterhin betrifft die Erfindung ein Halteelement aus Quarzglas, das zur Halterung eines zylinderförmigen Rohlings aus porösem Quarzglas mit einem der Enden des Rohlings verbunden wird.Furthermore, the invention relates to a holding element made of quartz glass which is connected to one of the ends of the blank to hold a cylindrical blank made of porous quartz glass.
Ein Verfahren und ein Halteelement dieser Gattung sind aus der DE-A1 196 49 935 bekannt. Bei dem darin beschriebenen Verfahren wird ein hohlzylindrischer Rohling aus porösem Quarzglas nach dem sogenannten „OVD-Verfahren" (Outside Vapour Depostion) hergestellt, indem feine SiO2-Partikel schichtweise auf einem ums seine Längsachse rotierenden Trägerrohr abgeschieden werden. Im Verlauf des Abscheideprozesses wird ein rohrförmiger Halter aus Quarzglas in eines der Enden des sich bildenden Rohlings stabil eingebettet. Nach Entfernen des Trägerrohres aus dem Rohling kann dieser für weitere Bearbeitungsschritte - etwa einer Dehydratationsbehandlung in chlorhaltiger Atmosphäre - an dem eingebettetenA method and a holding element of this type are known from DE-A1 196 49 935. In the process described therein, a hollow cylindrical blank made of porous quartz glass is produced according to the so-called "OVD process" (Outside Vapor Depostion), in that fine SiO 2 particles are deposited in layers on a carrier tube rotating about its longitudinal axis tubular holder made of quartz glass is stably embedded in one of the ends of the blank that is formed, and after removal of the carrier tube from the blank, it can be used on the embedded tube for further processing steps, for example a dehydration treatment in a chlorine-containing atmosphere
Halter in vertikaler Ausrichtung hängend gehalten werden. Aus dem porösen Rohling wird durch Sintern eine transparente Quarzglasvorform gebildet. Beim Verglasen verbleibt der Halter zunächst in der Vorform und wird anschließend mit dem betreffenden Teil der Vorform entfernt. Aus der DE 196 49 935 (A1) ist ein Verfahren zur Herstellung eines Quarzglaskörpers bekannt, bei welchem SiO2-Partikel durch Flammhydrolyse von siliziumhaltigen Ausgangsstoffen erzeugt und auf einem rotierenden Dorn unter Bildung eines porösen Rohlings (Sootkörper) abgeschieden werden. Dabei wird im Bereich eines der Enden des Rohlings ein Quarzglasrohr stabil eingebettet, indem die Dichte des Rohlings in diesem Bereich auf mindestens 60% der theoretischen Dichte von Quarzglas eingestellt wird.Hold the holder in a vertical orientation. A transparent quartz glass preform is formed from the porous blank by sintering. When glazing, the holder initially remains in the preform and is then removed with the relevant part of the preform. DE 196 49 935 (A1) discloses a method for producing a quartz glass body, in which SiO 2 particles are produced by flame hydrolysis of silicon-containing starting materials and are deposited on a rotating mandrel to form a porous blank (soot body). A quartz glass tube is stably embedded in the area of one of the ends of the blank by setting the density of the blank in this area to at least 60% of the theoretical density of quartz glass.
Da Vorform und Halter (bzw. Rohr) aus Quarzglas bestehen, werden Ausdehnungsunterschiede und die damit einhergehenden Probleme beim Verglasen vermieden. Es hat sich aber gezeigt, dass aus den unter Einsatz des bekanntenBecause the preform and holder (or tube) are made of quartz glass, differences in expansion and the associated problems with glazing are avoided. However, it has been shown that using the known
Halters hergestellten Vorformen Lichtleitfasern mit teilweise schwankenden optischen Eigenschaften erhalten werden.Holder preforms can be obtained optical fibers with partially fluctuating optical properties.
Der Erfindung liegt die Aufgabe zugrunde, das bekannte Verfahren im Hinblick auf die Reproduzierbarkeit der Eigenschaften der aus dem Quarzglaskörper hergestellten Produkte zu verbessern. Weiterhin liegt der Erfindung die Aufgabe zugrunde, ein geeignetes Halteelement für die Halterung eines Rohlings aus porösem Quarzglas anzugeben.The object of the invention is to improve the known method with regard to the reproducibility of the properties of the products produced from the quartz glass body. Furthermore, the invention is based on the object of specifying a suitable holding element for holding a blank made of porous quartz glass.
Hinsichtlich des Verfahrens wird diese Aufgabe ausgehend von dem eingangs genannten Verfahren erfindungsgemäß dadurch gelöst, dass ein Halteelement mit einem metastabilen OH-Gehalt von weniger als 30 Gew.-ppm eingesetzt wird, und dass das Halteelement einer thermischen Vorbehandlung unterworfen wird.With regard to the method, this object is achieved, based on the method mentioned at the outset, by using a holding element with a metastable OH content of less than 30 ppm by weight and subjecting the holding element to a thermal pretreatment.
Es hat sich gezeigt, dass die erwähnten Schwankungen der optischen Eigenschaften darauf zurückzuführen sind, dass der Rohling einen axialen Gradienten im Hydroxylgruppen-Gehalt (im folgenden auch als OH-Gehalt bezeichnet) aufweist. Der OH-Gehalt ist bei dem bekannten Verfahren in demjenigen Bereich des Rohlings - und dem daraus hergestellten Quarzglaskörper - am größten, mit dem das Halteelement verbunden war.It has been shown that the fluctuations in the optical properties mentioned can be attributed to the fact that the blank has an axial gradient in the hydroxyl group content (hereinafter also referred to as OH content). In the known method, the OH content is greatest in the area of the blank - and the quartz glass body produced therefrom - to which the holding element was connected.
Dies kann darauf zurückgeführt werden, dass während des Herstellungsverfahrens, und insbesondere während Prozessschritten bei hoher Temperatur, OH-Gruppen aus dem Halteelement ausdiffundieren und an den Rohling und an den Quarzglaskörper abgegeben werden. Überraschenderweise ist eine derartige Abgabe von OH- Gruppen jedoch nicht eindeutig mit dem Hydroxylgruppen-Gehalt des Quarzglases korrelierbar. Der Hydroxylgruppen-Gehalt des Quarzglases setzt sich vielmehr aus einem chemisch fest gebundenen OH-Gehalt und einem metastabilen OH-Gehalt zusammen, wobei nur letzterer hinsichtlich der Abgabe von OH-Gruppen problematisch ist. Das erfindungsgemäße Verfahren erlaubt es daher, ein Halteelement aus Quarzglas mit hohem OH-Gehalt einzusetzen, mit der Maßgabe, dass dessen metastabiler OH-Gehalt weniger als 30 Gew.-ppm beträgt.This can be attributed to the fact that OH groups are formed during the production process, and in particular during process steps at high temperature diffuse out of the holding element and are delivered to the blank and to the quartz glass body. Surprisingly, such a release of OH groups cannot be clearly correlated with the hydroxyl group content of the quartz glass. The hydroxyl group content of the quartz glass is rather composed of a chemically firmly bound OH content and a metastable OH content, only the latter being problematic with regard to the release of OH groups. The method according to the invention therefore makes it possible to use a holding element made of quartz glass with a high OH content, with the proviso that its metastable OH content is less than 30 ppm by weight.
Dadurch, dass ein Halteelement mit möglichst geringem metastabilen OH-Gehalt (weniger als 30 Gew.-ppm ) eingesetzt wird, wird eine Abgabe von OH-Gruppen weitgehend vermieden, so dass eine im wesentlichen axial homogene Verteilung von Hydroxylgruppen im Rohling und im daraus hergestellten transparenten Quarzglaskörper gewährleistet ist.Because a holding element with the lowest possible metastable OH content (less than 30 ppm by weight) is used, the release of OH groups is largely avoided, so that an essentially axially homogeneous distribution of hydroxyl groups in the blank and in the blank produced therefrom transparent quartz glass body is guaranteed.
Unter einem „metastabilen OH-Gehalt" wird im allgemeinen derjenigeA "metastable OH content" generally means that
Hydroxylgruppen-Gehalt verstanden, der sich durch eine Temperaturbehandlung des Quarzglases entfernen lässt. Die Lösung metastabiler OH-Gruppen aus Quarzglas benötigt eine gewisse Aktivierungsenergie. Unabhängig davon wird die Ausdiffusion metastabiler OH-Gruppen aus einem Quarzglas-Bauteil durch die Höhe der Temperatur, die Dauer der Temperaturbehandlung und die Länge derUnderstand hydroxyl group content that can be removed by a temperature treatment of the quartz glass. The solution of metastable OH groups from quartz glass requires a certain activation energy. Regardless of this, the diffusion of metastable OH groups from a quartz glass component is determined by the level of the temperature, the duration of the temperature treatment and the length of the
Diffusionswege bestimmt. Bei einem größeren Bauteil ist der Diffusionsweg (= maximaler Abstand eines Punktes innerhalb des Bauteils zur freien Bauteiloberfläche) länger. Im Sinne dieser Erfindung wird als „metastabiler OH- Gehalt" ein Hydroxylgruppen-Gehalt definiert, der durch Erhitzen eines Halteelements auf eine Temperatur von 1040 °C über einen Zeitraum von 48 Stunden bei einem Diffusionsweg von 5 mm entfernt wird.Diffusion paths determined. With a larger component, the diffusion path (= maximum distance of a point within the component to the free component surface) is longer. For the purposes of this invention, the “metastable OH content” is defined as a hydroxyl group content which is removed by heating a holding element to a temperature of 1040 ° C. over a period of 48 hours with a diffusion path of 5 mm.
Ein geringer metastabiler OH-Gehalt kann durch Einsatz eines Halteelements aus einem Quarzglas, das durch einen entsprechend geringen OH-Gehalt spezifiziert ist erreicht werden. Allerdings ist derartiges Quarzglas üblicherweise teuer und es sind besondere Maßnahmen erforderlich, um den geringen OH-Gehalt während der Formgebung des Halteelements beizubehalten. Erfindungsgemäß wird daher vorgeschlagen, das Halteelement vor seinem bestimmungsgemäßen Einsatz einer thermischen Vorbehandlung zu unterwerfen. Dabei wird der metastabile OH-Gehalt des Quarzglases verringert. Dadurch kann für die Herstellung des Halteelements kostengünstiges Quarzglas mit anfänglich höherem metastabilem OH-Gehalt eingesetzt werden. Zunächst wird das Halteelement aus einem Quarzglas mit hohem metastabilen OH-Gehalt geformt. Der höhere metastabile OH-Gehalt des Quarzglases wird vor dem Einsatz des Halteelements durch eine thermische Nachbehandlung verringert und gemäß der Erfindung eingestellt. Aufgrund der Nachbehandlung sind bei der Formgebung des Halteelements besondere Vorsichtsmaßnahmen hinsichtlich des OH-Gehalts des Quarzglases nicht erforderlich.A low metastable OH content can be achieved by using a holding element made of a quartz glass, which is specified by a correspondingly low OH content. However, such quartz glass is usually expensive and special measures are required to keep the low OH content during the To maintain the shape of the holding element. According to the invention, it is therefore proposed to subject the holding element to a thermal pretreatment before it is used as intended. The metastable OH content of the quartz glass is reduced. As a result, inexpensive quartz glass with an initially higher metastable OH content can be used for the production of the holding element. First, the holding element is formed from a quartz glass with a high metastable OH content. The higher metastable OH content of the quartz glass is reduced before the use of the holding element by a thermal aftertreatment and adjusted according to the invention. Because of the aftertreatment, special precautionary measures regarding the OH content of the quartz glass are not necessary when shaping the holding element.
Bevorzugt wird ein Halteelement mit einem metastabilen OH-Gehalt von weniger als 1 Gew.-ppm eingesetzt. Unter Berücksichtigung der obigen Definition handelt es sich dabei um ein Bauteil aus Quarzglas, aus dem durch Erhitzen auf eine Temperatur von 1040 °C über einen Zeitraum von 48 Stunden der ursprüngliche OH-Gehalt des um höchstens 1 Gew.-% verringert wird (bei einem Diffusionsweg von 5 mm). Dementsprechend wird eine Abgabe von metastabilen OH-Gruppen weitgehend vermieden und eine im wesentlichen axial homogene Verteilung von Hydroxylgruppen im Rohling und im daraus hergestellten transparenten Quarzglaskörper erreicht.A holding element with a metastable OH content of less than 1 ppm by weight is preferably used. Taking into account the above definition, this is a component made of quartz glass, from which the original OH content is reduced by at most 1% by weight by heating to a temperature of 1040 ° C over a period of 48 hours (in one Diffusion path of 5 mm). Accordingly, the release of metastable OH groups is largely avoided and an essentially axially homogeneous distribution of hydroxyl groups in the blank and in the transparent quartz glass body produced therefrom is achieved.
Je höher die Temperatur und je länger die Behandlungsdauer bei der thermischen Nachbehandlung ist, umso geringer ist der metastabile OH-Gehalt des nachbehandelten Halteelements. Bewährt hat sich eine thermische Nachbehandlung, die ein Erhitzen des Halteelementes bei einer Temperatur von mindestens 900 °C umfasst. Vorzugsweise erfolgt das Erhitzen des Halteelementes bei einer Temperatur von mindestens 1000 °C. Die Erhitzungsdauer im Rahmen der thermischen Nachbehandlung liegt vorteilhafterweise bei 5 Stunden, vorzugsweise bei 20 Stunden und mehr.The higher the temperature and the longer the treatment time in the thermal aftertreatment, the lower the metastable OH content of the aftertreated holding element. A thermal aftertreatment has proven itself, which comprises heating the holding element at a temperature of at least 900 ° C. The holding element is preferably heated at a temperature of at least 1000 ° C. The heating time in the context of the thermal aftertreatment is advantageously 5 hours, preferably 20 hours and more.
Das erfindungsgemäße Verfahren hat sich bei Einsatz eines zylinderförmigen Halteele ents, das in den Bereich eines der Enden des sich bildenden Rohlings teilweise eingebettet wird, als besonders günstig erwiesen.The method according to the invention has proven itself when using a cylindrical one Haltele ent, which is partially embedded in the area of one of the ends of the blank being formed, has proven to be particularly favorable.
Hinsichtlich des Halteelements wird die oben angegebene Aufgabe ausgehend vom Halteelement der eingangs genannten Gattung erfindungsgemäß dadurch gelöst, dass das Halteelement aus Quarzglas mit einem metastabilen OH-Gehalt von weniger als 30 Gew.-ppm besteht.With regard to the holding element, the above-mentioned object is achieved according to the invention starting from the holding element of the type mentioned at the outset in that the holding element consists of quartz glass with a metastable OH content of less than 30 ppm by weight.
Ein Halteelement aus Quarzglas mit einem möglichst geringen metastabilen OH- Gehalt gibt keine oder wenig OH-Gruppen an den zu haltenden Rohling oder an den Quarzglaskörper ab, so dass es eine im wesentlichen axial homogene Verteilung von Hydroxylgruppen im Rohling und im daraus hergestellten transparentenA holding element made of quartz glass with the lowest possible metastable OH content releases little or no OH groups to the blank to be held or to the quartz glass body, so that there is an essentially axially homogeneous distribution of hydroxyl groups in the blank and in the transparent material produced therefrom
Quarzglaskörper gewährleistet. Ein geringer metastabiler OH-Gehalt kann einerseits durch ein hydroxylarmes Quarzglas erreicht werden, andererseits durch eine geeignete thermische Nachbehandlung eines Quarzglases mit zunächst höherem metastabilen OH-Gehalt.Quartz glass body guaranteed. A low metastable OH content can be achieved on the one hand by a low-hydroxyl quartz glass, on the other hand by a suitable thermal aftertreatment of a quartz glass with an initially higher metastable OH content.
Hinsichtlich weiterer Vorteile und Wirkungen eines geringen „metastabilen OH- Gehalts" im Hinblick auf die oben genannte technische Aufgabe und der Begriffsbestimmung dafür wird auf die obigen Erläuterungen zum erfindungsgemäßen Verfahren verwiesen.With regard to further advantages and effects of a low “metastable OH content” with regard to the technical task mentioned above and the definition thereof, reference is made to the above explanations regarding the method according to the invention.
Im Hinblick auf eine möglichst geringe Abgabe von OH-Gruppen und einen möglichst geringen axialen Gradienten des OH-Gehalts im Rohling und im Quarzglaskörper wird ein Halteelement bevorzugt, das aus Quarzglas mit einem metastabilen OH- Gehalt von weniger als 1 Gew.-ppm besteht.In view of the lowest possible release of OH groups and the lowest possible axial gradient of the OH content in the blank and in the quartz glass body, a holding element is preferred which consists of quartz glass with a metastable OH content of less than 1 ppm by weight.
Bevorzugt weist das erfindungsgemäße Halteelement einen zylinderförmigen Bereich auf, der zur bestimmungsgemäßen Halterung mindestens teilweise im Rohiing eingebettet ist. Der im Rohling eingebettete zylinderförmige Bereich gewährleistet eine feste Verbindung.The holding element according to the invention preferably has a cylindrical region which is at least partially embedded in the tube for the intended mounting. The cylindrical area embedded in the blank ensures a firm connection.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und einer Zeichnung näher erläutert. In der Zeichnung zeigen in schematische Darstellung im einzelnen: Figur 1 den Verfahrensschritt des Abscheidens von Si02-Partikeln unter Bildung eines Rohlings aus porösem Quarzglas mit stirnseitig eingebettetem Halter gemäß der Erfindung, undThe invention is explained in more detail below on the basis of exemplary embodiments and a drawing. In the drawing, a schematic representation shows in detail: 1 shows the step of the deposition of Si0 2 particles to form a blank made of porous quartz glass with a holder embedded on the end face according to the invention, and
Figur 2 den gleichen Verfahrensschritt wie in Figur 1 , jedoch unter Einsatz eines Halters gemäß dem Stand der Technik, wobei Bereiche des Rohlings gekennzeichnet sind, die in der Vorform zu einem erhöhten OH-Gehalt beitragen.Figure 2 shows the same process step as in Figure 1, but using a holder according to the prior art, wherein areas of the blank are marked that contribute to an increased OH content in the preform.
Beispiel 1 : In Figur 1 ist ausschnittsweise die Herstellung eines Rohlings 1 aus porösem Quarzglas unter Einbettung eines Halters in Form eines rohrförmigen Halters 2 im Bereich einer der Stirnseiten 3 des Rohlings 1 dargestellt. Der Rohling 1 , der jeweils einen Außendurchmesser von ca. 80 mm und eine Läge von ca. 700 mm aufweist, wird nach dem bekannten OVD-Verfahren durch Flammenhydrolyse von SiCI und GeCU unter schichtweisem Abscheiden von Si02-Partikeln auf einem um seineExample 1: FIG. 1 shows a section of the production of a blank 1 made of porous quartz glass by embedding a holder in the form of a tubular holder 2 in the region of one of the end faces 3 of the blank 1. The blank 1, each of which has an outer diameter of approximately 80 mm and a length of approximately 700 mm, is made according to the known OVD method by flame hydrolysis of SiCI and GeCU with layer-by-layer deposition of SiO 2 particles on its
Längsachse rotierenden Dorn 4 hergestellt. Der innere Bereich des Rohlings 1 wird mit Germaniumdioxid dotiert. Es ist ein Abscheidebrenner 5 vorgesehen, der unter schichtweisem Abscheiden von Si02-Partikeln (und Ge02-Partikeln) entlang der Oberfläche des Rohlings 1 hin- und herbewegt wird. Im Verlauf des Abscheideprozesses wird der Halter 2 über einen Teil seiner Länge im Bereich der Stirnseite 3 des Rohlings 1 stabil eingebettet. Der Halter 2 hat einen Außendurchmesser von 25 mm und eine Wandstärke von 9 mm. Der Diffusionsweg für die Ausdiffusion metastabiler OH-Gruppen beträgt beim Halter 2 somit 4,5 mm. Eine besonders stabile Einbettung des Halters 2 wird dadurch erreicht, dass mittels eines Zusatzbrenners 7 im Bereich der Stirnseite 3 eine höhere Temperatur und damit eine höhere Dichte eingestellt wird, so dass der Halter 2 oberflächlich mit dem Rohling 1 verschmilzt.Longitudinal axis rotating mandrel 4 made. The inner region of the blank 1 is doped with germanium dioxide. A deposition burner 5 is provided, which is moved back and forth along the surface of the blank 1 with layer-by-layer deposition of Si0 2 particles (and Ge0 2 particles). In the course of the deposition process, the holder 2 is stably embedded over part of its length in the region of the end face 3 of the blank 1. The holder 2 has an outer diameter of 25 mm and a wall thickness of 9 mm. The diffusion path for the diffusion of metastable OH groups in holder 2 is thus 4.5 mm. A particularly stable embedding of the holder 2 is achieved in that a higher temperature and thus a higher density is set in the region of the end face 3 by means of an additional burner 7, so that the holder 2 melts on the surface with the blank 1.
Der so hergestellte Rohling 1 kann mehr als 2 kg wiegen. Nach dem Entfernen des Doms 2 kann er für seine weitere Bearbeitung mittels des aus dem Rohling 1 herausragenden Teils des Halters 2 gehandhabt werden. Zur Herstellung des Halters 2 wird elektrisch erschmolzenes Quarzglas eingesetzt. Der OH-Gehalt dieses Quarzglases beträgt etwa 80 Gew.-ppm. Durch Tempern bei einer Temperatur von 1040 °C während einer Dauer von 48 Stunden wird der OH- Gehalt bis auf 4,8 Gew.-ppm gesenkt. Das bedeutet, dass der metastabile OH- Gehalt des Haltes 2 vor dem Tempern bei. ca. 75 Gew.-ppm lag. Beim bestimmungsgemäßen Einsatz des Halters enthält der Halter 2 gemäß obiger Definition (Temperatur = 1040°C, Behandlungsdauer = 48 h, Diffusionsweg < 5 mm) somit keinen messbaren metastabilen OH-Gehalt mehr.The blank 1 thus produced can weigh more than 2 kg. After the dome 2 has been removed, it can be handled for its further processing by means of the part of the holder 2 protruding from the blank 1. Electrically melted quartz glass is used to produce the holder 2. The OH content of this quartz glass is about 80 ppm by weight. By annealing at a temperature of 1040 ° C for 48 hours, the OH content is reduced to 4.8 ppm by weight. This means that the metastable OH content of the stop 2 before tempering. approx. 75 ppm by weight. When the holder is used as intended, the holder 2 no longer contains any measurable metastable OH content as defined above (temperature = 1040 ° C., treatment time = 48 h, diffusion path <5 mm).
Nach dem Abscheideprozess wird der Rohling bei 900 °C in chlorhaltiger Atmosphäre gereinigt und getrocknet und anschließend bei einer Temperatur von ca. 1350 C gesintert. Aus dem so erhaltenen Kernstab wird eine Vorform für sogenannte Monomode-Fasern hergestellt, indem der Kernstab mit einem "Jacketrohr" überfangen wird. Die aus dieser Vorform gezogenen Faser zeigt über die gesamte Faserlänge homogene optische Eigenschaften. Insbesondere beträgt die optische Dämpfung bei einer Wellenlänge von 1385 nm (im Bereich einer OH- Absorptionsbande) weniger als 0,7 dB/km.After the deposition process, the blank is cleaned and dried at 900 ° C in a chlorine-containing atmosphere and then sintered at a temperature of approx. 1350 ° C. A preform for so-called monomode fibers is produced from the core rod thus obtained by covering the core rod with a "jacket tube". The fiber drawn from this preform shows homogeneous optical properties over the entire length of the fiber. In particular, the optical attenuation at a wavelength of 1385 nm (in the range of an OH absorption band) is less than 0.7 dB / km.
Vergleichsbeispiel 1 :Comparative Example 1:
In einem vergleichenden Ausführungsbeispiel wurde bei der Herstellung des Rohlings 1 verfahren, wie anhand Beispiel 1 beschrieben, mit der einzigen Ausnahme, dass ein Halter 12 (siehe Figur 2) eingesetzt wurde, der vor seinem Einsatz nicht getempert wurde. Der OH-Gehalt des Halters 12 lag bei ca. 55 Gew.-ppm. Aus der unter Einsatz des Halters 12 hergestellten Vorform wurde ebenfalls eine Monomode- Lichtleitfaser gezogen. Deren optische Dämpfung war inhomogen. Sie lag bei der Wellenlänge von 1385 nm im Bereich zwischen 0,6 dB/km und 7 dB/km, wobei die maximalen Dämpfungswerte in den Vorformbereichen auftraten, die ursprünglich in der Nähe des Halters 12 lagen. Eine Messung des OH-Gehalts des Halters 12 nach dem Einsatz ergab einen OH-Gehalt von nur noch 5,6 Gew.-ppm. Daraus ergibt sich, dass ca. 50 Gew.-ppm OH als „metastabile OH-Gruppen" während des Herstellungsprozesses aus dem Halter 12 freigesetzt wurden und sich im Rohling 1 und in der Vorform gelöst und somit zu den oben genannten hohen Dämpfungswerten bei 1385 nm beigetragen haben.In a comparative embodiment, the blank 1 was produced as described in Example 1, with the only exception that a holder 12 (see FIG. 2) was used which was not tempered before it was used. The OH content of the holder 12 was approximately 55 ppm by weight. A monomode optical fiber was also drawn from the preform made using the holder 12. Their optical attenuation was inhomogeneous. At the wavelength of 1385 nm, it was in the range between 0.6 dB / km and 7 dB / km, the maximum attenuation values occurring in the preform regions which were originally in the vicinity of the holder 12. A measurement of the OH content of the holder 12 after use showed an OH content of only 5.6 ppm by weight. It follows from this that approx. 50 ppm by weight of OH were released from the holder 12 as “metastable OH groups” during the production process and were found in the blank 1 and solved in the preform and thus contributed to the above-mentioned high attenuation values at 1385 nm.
In Figur 2 zeigt der schraffierte Bereiches 8 schematisch den Bereich erhöhter OH- Koπzentration, wie er typischerweise nach dem Sintern des Rohlings bei einem Verfahren nach dem Stand der Technik gefunden wird. Die erhöhte OH-In FIG. 2, the hatched area 8 schematically shows the area of increased OH concentration, as is typically found after the blank has been sintered in a method according to the prior art. The increased OH
Konzentration spiegelt die Verteilung von OH-Gruppen im Rohling 1 wider, die im Verlauf des Abscheideverfahrens aus dem Halter 12 freigesetzt werden. Diese frei werdenden OH-Gruppen diffundieren in das den Halter 12 umgebende, poröse Quarzglas und erzeugen so einen axialen OH-Gradienten in der späteren Vorform und der daraus gezogenen Lichtleitfaser. Besonders kritisch erweisen sich dabei diejenigen Behandlungsschhtte, die bei höherer Temperatur erfolgen, wie die Chlorierung bei ca. 900° C und das Sintern bei ca. 1350 °C. Insbesondere während des Sinterns, während dem in der Regel kein oder nur sehr wenig Chlor zur Abreaktion zur Verfügung steht, werden aufgrund der hohen Sintertemperatur metastabile OH-Gruppen freigesetzt. Concentration reflects the distribution of OH groups in the blank 1 which are released from the holder 12 in the course of the deposition process. These released OH groups diffuse into the porous quartz glass surrounding the holder 12 and thus generate an axial OH gradient in the later preform and the optical fiber drawn therefrom. Those treatment layers that take place at a higher temperature, such as chlorination at approx. 900 ° C and sintering at approx. 1350 ° C, are particularly critical. In particular during sintering, during which generally no chlorine or only very little chlorine is available for the reaction, metastable OH groups are released due to the high sintering temperature.

Claims

Patentansprüche claims
1. Verfahren für die Herstellung eines Quarzglaskörpers, umfassend ein Abscheiden von Si02-Partikeln auf der Zylindermantelfläche eines um seine1. A method for the production of a quartz glass body, comprising a deposition of Si0 2 particles on the cylindrical surface of one around it
Längsachse rotierenden, zylinderförmigen Dorns unter Bildung eines im wesentlichen zylinderförmigen, porösen Rohlings, der mit einem, im Bereich eines der Enden des Rohlings angreifenden Halteelement aus Quarzglas verbunden wird, und Sintern des Rohlings, dadurch gekennzeichnet, dass ein Halteelement mit einem metastabilen OH-Gehalt von weniger als 30 Gew.-ppm eingesetzt wird, und dass das Halteelement einer thermischen Vorbehandlung unterworfen wird.Longitudinal axis rotating, cylindrical mandrel to form a substantially cylindrical, porous blank, which is connected to a quartz glass holding element engaging in the region of one of the ends of the blank, and sintering the blank, characterized in that a holding element with a metastable OH content of less than 30 ppm by weight is used, and that the holding element is subjected to a thermal pretreatment.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Halteelement mit einem metastabilen OH-Gehalt von weniger als 1 Gew.-ppm eingesetzt wird.2. The method according to claim 1, characterized in that a holding element with a metastable OH content of less than 1 ppm by weight is used.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die thermische Vorbehandlung ein Erhitzen des Halteelementes bei einer3. The method according to claim 1 or 2, characterized in that the thermal pretreatment involves heating the holding element at a
Temperatur von mindestens 900 °C umfasst.Temperature of at least 900 ° C.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Erhitzen des Halteelementes bei einer Temperatur von mindestens 1000 °C erfolgt.4. The method according to claim 3, characterized in that the heating of the holding element takes place at a temperature of at least 1000 ° C.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die thermische Vorbehandlung ein Erhitzen des Halteelementes während einer5. The method according to any one of claims 1 to 4, characterized in that the thermal pretreatment involves heating the holding element during a
Dauer von mindestens 5 Stunden umfasst.Duration of at least 5 hours.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Erhitzen des Halteelementes mindestens 20 Stunden andauert.6. The method according to claim 5, characterized in that the heating of the holding element lasts at least 20 hours.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zylinderförmiges Halteelement eingesetzt wird, das in den Bereich eines der Enden des sich bildenden Rohlings teilweise eingebettet wird. 7. The method according to any one of the preceding claims, characterized in that a cylindrical holding element is used, which is partially embedded in the region of one of the ends of the blank being formed.
8. Halteelement aus Quarzglas, das zur Halterung eines zylinderförmigen Rohlings aus porösem Quarzglas mit einem der Enden des Rohlings verbunden wird, dadurch gekennzeichnet, dass das Halteelement aus Quarzglas mit einem metastabilen OH-Gehalt von weniger als 30 Gew.-ppm besteht.8. holding element made of quartz glass, which is connected to hold a cylindrical blank made of porous quartz glass with one of the ends of the blank, characterized in that the holding element consists of quartz glass with a metastable OH content of less than 30 ppm by weight.
9. Halteelement nach Anspruch 8, gekennzeichnet durch einen metastabilen OH- Gehalt von weniger als 1 Gew.-ppm.9. Holding element according to claim 8, characterized by a metastable OH content of less than 1 ppm by weight.
10. Halteelement nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass es einen zylinderförmigen Bereich, der zur Halterung des Rohlings mindestens teilweise in diesem eingebettet ist, aufweist. 10. Holding element according to claim 8 or 9, characterized in that it has a cylindrical region which is at least partially embedded in the blank for holding the blank.
EP00974527A 1999-11-24 2000-11-14 Method for producing a quartz glass body and holding element made of quartz glass Withdrawn EP1152988A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19956570A DE19956570B4 (en) 1999-11-24 1999-11-24 Process for the production of a quartz glass body
DE19956570 1999-11-24
PCT/EP2000/011208 WO2001038239A1 (en) 1999-11-24 2000-11-14 Method for producing a quartz glass body and holding element made of quartz glass

Publications (1)

Publication Number Publication Date
EP1152988A1 true EP1152988A1 (en) 2001-11-14

Family

ID=7930195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00974527A Withdrawn EP1152988A1 (en) 1999-11-24 2000-11-14 Method for producing a quartz glass body and holding element made of quartz glass

Country Status (7)

Country Link
EP (1) EP1152988A1 (en)
JP (1) JP4634684B2 (en)
KR (1) KR20010092796A (en)
CN (1) CN1213955C (en)
DE (1) DE19956570B4 (en)
TW (1) TW477777B (en)
WO (1) WO2001038239A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355130A (en) * 1976-10-29 1978-05-19 Fujikura Ltd Production of optical fiber base material
CA1271316A (en) * 1984-12-21 1990-07-10 Koichi Abe Optical waveguide manufacture
JPS6283326A (en) * 1985-10-08 1987-04-16 Furukawa Electric Co Ltd:The Production of synthetic quartz tube
FR2600327B1 (en) * 1986-06-20 1992-04-17 Lenoane Georges METHOD FOR MANUFACTURING PREFORMS FOR OPTICAL FIBERS AND CHUCK FOR USE IN THE IMPLEMENTATION OF THIS METHOD, APPLICATION TO THE MANUFACTURE OF SINGLE-MODE OPTICAL FIBERS
JP3191418B2 (en) * 1992-07-09 2001-07-23 住友電気工業株式会社 Optical fiber manufacturing method
CA2099942C (en) * 1992-07-09 2004-10-26 Sumio Hoshino Method and apparatus for drawing glass preform for optical fiber
DE4236578A1 (en) * 1992-10-29 1994-06-23 Deutsche Bundespost Telekom Method and device for preform production for quartz glass optical fibers
DE19649935C2 (en) * 1996-12-02 1999-09-16 Heraeus Quarzglas Process for the production of quartz glass bodies
DE19736949C1 (en) * 1997-08-25 1999-01-21 Heraeus Quarzglas Quartz glass articles production
GB2331985B (en) * 1997-12-03 2001-11-21 Tosoh Corp High purity transparent silica glass and process for producing same
JP3393063B2 (en) * 1998-04-21 2003-04-07 信越石英株式会社 Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0138239A1 *

Also Published As

Publication number Publication date
WO2001038239A1 (en) 2001-05-31
TW477777B (en) 2002-03-01
JP4634684B2 (en) 2011-02-16
CN1336903A (en) 2002-02-20
DE19956570A1 (en) 2001-06-21
CN1213955C (en) 2005-08-10
KR20010092796A (en) 2001-10-26
DE19956570B4 (en) 2005-03-24
JP2003514755A (en) 2003-04-22

Similar Documents

Publication Publication Date Title
DE69625155T2 (en) Single mode optical fiber and method of making the fiber
DE102006059779B4 (en) A method of producing a synthetic quartz hollow cylinder, a thick-walled hollow cylinder obtained by the method, and a method of producing an optical fiber preform
DE2906070C2 (en) Process for manufacturing optical waveguides
DE2358880C3 (en) Process for producing an optical fiber
DE2833051A1 (en) METHOD FOR MANUFACTURING GLASS PARTS
DE10152328B4 (en) Process for producing a tube made of quartz glass, tubular semi-finished product made of porous quartz glass and. Use of the same
DE10225773B4 (en) Jacket tube made of synthetically produced quartz glass
EP1286926A1 (en) Method for producing an optical fibre
WO2013156459A1 (en) Method for producing a cylindrical component from synthetic quartz glass containing fluorine
DE2837261A1 (en) METHOD OF MANUFACTURING OPTICAL WAVE GUIDES
DE102005015706B4 (en) Process for producing a preform for optical fibers
EP0999190B1 (en) Optical fibre preform, processes for producing the core glass of and an optical fibre preform and for producing an optical fibre as well as the use of synthetic quartz glass
DE19958276C1 (en) Quartz glass preform production comprises preparing a quartz glass hollow cylinder collapsed on a quartz glass rod containing a dopant and collapsing the cylinder
DE2939339C2 (en)
WO2010052163A1 (en) Method and cylindrical semi-finished product for producing an optical component
DE10218864C1 (en) Production of a cylindrical quartz glass body comprises pretreating a soot body in a protective gas and/or under vacuum in a vitrifying oven after dehydration and before vitrification
WO2004067458A2 (en) Method for the production of a hollow cylinder made of synthetic quartz glass with the aid of a holding device, and appropriate holding device for carrying out said method
DE102008049325B4 (en) Method for producing a tubular semifinished product made of quartz glass and semi-finished products made of quartz glass
EP1152988A1 (en) Method for producing a quartz glass body and holding element made of quartz glass
WO2002051759A2 (en) Method and device for producing a hollow cylinder from silica glass, and products produced by said method
DE102008046892B4 (en) Process for the production of a microstructured optical fiber
DE19958289C1 (en) Process for the production of a quartz glass rod and use thereof for the production of a preform
DE102009024267B4 (en) Method for producing a cylinder of synthetic quartz glass
DE2912960A1 (en) METHOD FOR THE PRODUCTION OF OPTICAL FIBERS
DE3206176A1 (en) Process for the production of a preform from which optical fibres can be drawn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040211