EP1151193B1 - Impulsstartverfahren und impulsstartvorrichtung für eine brennkraftmaschine - Google Patents

Impulsstartverfahren und impulsstartvorrichtung für eine brennkraftmaschine Download PDF

Info

Publication number
EP1151193B1
EP1151193B1 EP00975804A EP00975804A EP1151193B1 EP 1151193 B1 EP1151193 B1 EP 1151193B1 EP 00975804 A EP00975804 A EP 00975804A EP 00975804 A EP00975804 A EP 00975804A EP 1151193 B1 EP1151193 B1 EP 1151193B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
pulse
speed
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00975804A
Other languages
English (en)
French (fr)
Other versions
EP1151193A1 (de
Inventor
Ferdinand Grob
Peter Ahner
Manfred Ackermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1151193A1 publication Critical patent/EP1151193A1/de
Application granted granted Critical
Publication of EP1151193B1 publication Critical patent/EP1151193B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N5/00Starting apparatus having mechanical power storage
    • F02N5/04Starting apparatus having mechanical power storage of inertia type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0848Circuits or control means specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder

Definitions

  • the invention relates to a pulse starting method for an internal combustion engine according to the preamble of claim 1 and a pulse starting device according to the preamble of claim 12, as known from JP-A-58 124 066.
  • a pulse starting method and a pulse starting device for an internal combustion engine are known.
  • a flywheel is accelerated in rotation during a winding phase. This is done using an electrical starter.
  • a pulse start clutch arranged between the internal combustion engine and the flywheel is opened. Mechanical work is saved by driving the flywheel.
  • this stored work together with the drive torque of the starter, turns the internal combustion engine on.
  • a disadvantage of the known pulse starting method or the known device is that the starting system must be designed for high performance. In particular, because a safe start must be guaranteed for every operating state of the internal combustion engine. This high starter power is required in particular with increasing cold, because the towing power to be applied by the starter increases and the starter battery power decreases. Compared to the conventional starter system, this problem is even more pronounced when starting the pulse, because the drag power to be applied by the electric starter also increases with the speed. The towing power also increases when an automatic transmission is provided for torque transmission in the drive train, so that additional towing power must also be applied for the converter input of the transmission.
  • Known pulse starting methods or pulse starting devices are also designed with regard to output in such a way that a reliable start is to be achieved even when the crankshaft of the internal combustion engine is in an unfavorable rotational position. In the worst case, it may be necessary, for example, to turn the crankshaft by 400 ° in order to achieve synchronization of the internal combustion engine that is necessary for starting.
  • positions of the pistons or the valves in particular should be determined. Corresponding These positions must be used for fuel injection and ignition.
  • care must be taken to ensure that the narrow time window for starting the internal combustion engine can be maintained even in the case of unfavorable starting operating positions or environmental parameters.
  • This time window results in particular from the fact that when the impulse start clutch is closed, the rotational speed of the flywheel mass decreases very quickly and thus the rotational speed of the internal combustion engine remains lower, whereby the internal combustion engine must be started at the latest when the rotational speed of the internal combustion engine is below the minimum rotational speed for starting ability drops.
  • this time window is narrowed. To ensure a cold start, it must therefore be dimensioned for a very high starting power, in particular also because if the start is aborted, ignorance of the mixture condition of the intake manifold and the individual cylinders reduces the chances of a successful second attempt to start.
  • the pulse starting method with the features of claim 1 and the pulse starting device with the features of claim 12 offer the advantage that a significant reduction in the starting power required to secure the start when starting the pulse is possible.
  • a speed observer evaluating the speed curve of the flywheel during the pull-up and / or the coupling phase it can be determined whether the available starting power, which is reduced compared to the prior art, is sufficient to start the internal combustion engine on a first attempt to start. If this is not the case, the internal combustion engine is at least brought into an operating position which is favorable for a subsequent second attempt to start by means of the rotationally accelerated flywheel and / or the electrical starting device.
  • the clutch phase can be initiated prematurely and the internal combustion engine can be brought into an operating position that is favorable for the second attempt to start.
  • the first turning on the first attempt to start also reduces the drag torque here, so that the subsequent second attempt to start is also successful with less power.
  • the pulse starting method and the pulse starting device according to the invention also offer the advantage that no additional hardware components have to be provided.
  • the pulse start clutch is usually only closed when the flywheel mass has reached a certain speed.
  • a speed sensor is therefore provided anyway.
  • Its signal can of course also be used to assess the speed curve in the method according to the invention or in the pulse starting device according to the invention.
  • existing sensors in particular rotary angle sensors, are also provided on modern internal combustion engines, for example can detect the rotational position of the crankshaft and / or camshaft and / or the piston position. In modern internal combustion engines, these values are required to control or regulate the combustion process.
  • the signal from these transmitters can thus also be advantageously evaluated in the pulse starting method according to the invention or in the pulse starting device.
  • the speed of the flywheel mass can be recorded at definable points in time for the evaluation or assessment of the speed curve, the clutch phase also being initiated at a certain point in time if the speed is too low.
  • the impulse start clutch is closed prematurely during the pull-up phase, preferably no attempt is made at all in the sense that the ignition is activated or an injection is carried out on the internal combustion engine. This ensures that there is in the intake duct do not set any uncontrolled mixture states on the internal combustion engine.
  • the start attempt is stopped prematurely, i.e. the control of the electrical starter device is canceled, but preferably only when the internal combustion engine is running for the second attempt to start has taken a favorable operating position. It can therefore be provided that the electric starting device continues to drive or brake the flywheel during the coupling phase in order to be able to stop the internal combustion engine in a certain desired operating position or to bring it into a desired position.
  • At least the synchronization of the internal combustion engine takes place when the start is aborted, during which the piston position and / or the valve position of the internal combustion engine is determined.
  • a rotation of the crankshaft by 200 ° is typically sufficient to be able to determine the piston and / or valve positions of the internal combustion engine.
  • 400 ° crankshaft rotation may also be necessary to carry out the synchronization.
  • additional start parameters are preferred considered. These include, for example, the ambient temperature, the operating temperature of the internal combustion engine and the state of charge of the starter battery.
  • the starter battery is recharged between the first and second starting attempts via the on-board electrical system battery of a motor vehicle. This makes it possible to increase the power to be output by the electrical starting device.
  • the oscillation of the internal combustion engine is influenced.
  • This is possible, for example, via the electrical starting device that drives the flywheel.
  • the electrical starting device can also have a braking function.
  • the electrical starter is therefore preferably designed as a so-called starter generator which supplies the electrical system of the motor vehicle with electrical energy during operation of the internal combustion engine.
  • provision is made in particular for at least one piston to be brought into a stroke position from which combustion of this fuel can be achieved after a fuel has been introduced into the combustion chamber, i.e. a working stroke of the piston can be provided, so that a first supporting combustion in of the internal combustion engine can be reached, specifically before the speed of the internal combustion engine drops under the start limit condition, which can be estimated at approx. 80 l / min.
  • FIG. 1 shows a block diagram of an internal combustion engine 1, which can comprise at least one reciprocating piston (not shown here) with associated valves, the reciprocating piston driving a shaft, in particular crankshaft 2, of the internal combustion engine.
  • a pulse start clutch 4 known per se is arranged between a rotatably mounted flywheel mass 3 and the crankshaft 2, so that the flywheel mass 3 can be coupled to the crankshaft 2.
  • the flywheel 3 is driven by an electric starter 5.
  • the starter 5 is preferably a so-called starter generator.
  • a speed transmission means 7 is also provided, the drive input 8 of which can be connected to the crankshaft 2.
  • the speed transmission means 7 is preferably designed as an automatic transmission. However, it can also be a known sound transmission.
  • the electric starter 5 is controlled by a starter control 9.
  • the starter control 9 also controls the opening and closing of the pulse start clutch 4.
  • the electric starter 5 and the starter control 9 form a pulse starting device 10, in which the electric starter 5 accelerates the flywheel 3 to a predeterminable speed n. If the speed n reaches a winding speed n n which is necessary for the start of the internal combustion engine 1, the starter control 9 controls the impulse start clutch 4 so that it is closed and the crankshaft 2 is accelerated by the flywheel mass 3.
  • the starter control 9 opens the pulse start clutch before a new winding process, that is to say an acceleration of the flywheel 3, is to take place.
  • an evaluation circuit 11 monitors the speed curve of the flywheel mass 3.
  • the evaluation circuit 11 can determine the level of the rotational speed of the flywheel mass 3 at certain predeterminable times. However, it can also be provided that a speed curve is determined over time, in which case the gradient of the curve can be determined at definable times.
  • the speed n of the flywheel mass 3 is preferably determined via a speed sensor 12 arranged in the starter 5, the measurement signal of which is detected by the evaluation circuit 11. At least one first starting process can be triggered manually via an activation input 13.
  • a pulse start of the internal combustion engine 1 with up to two winding phases is reproduced on the basis of FIG. 2 using the flow diagram shown.
  • Start 14 is triggered via activation input 13.
  • the starter control 9 activates the electric starter 5, which drives the flywheel 3 during the winding phase 15.
  • wind-up 15 monitors the evaluation circuit 11, the speed n of the flywheel 3 as to whether the rotational speed n to n is less than the wind-up is. Alternatively or additionally, it is determined whether the gradient g of the speed curve is greater than a predeterminable minimum gradient g min . If these two conditions listed in decision step 16 are met, it is decided in starter control 9 that the pull-up phase to be continued, as indicated by method step 17.
  • step 18 If it is determined via the speed sensor 12 that the speed n is greater than or equal to the wind-up speed (step 18), the wind-up phase is ended and the pulse start clutch 4 is closed, which is represented by method step 19.
  • the evaluation circuit 11 also determines whether the gradient g of the speed curve is less than the predeterminable minimum gradient g min . Is intended is also the rotational speed n is less than the target speed n (Step 20) is also closed, the pulse start clutch 4, thus proceeding to the process to step 19.
  • Method step 19 is followed by first coupling phase 21, in which synchronization is carried out on internal combustion engine 1. The positions of the pistons and the valves of the internal combustion engine 1 are determined during the synchronization. In the subsequent second coupling phase 22, the synchronization is achieved or ended.
  • step 22 extrapolation of the speed curve recorded by the evaluation circuit 11, possibly including the gradient g, estimates whether at least one combustion process above the startability limit (minimum speed at which a start can be expected) of the internal combustion engine 1 is possible.
  • this method step 23 it is estimated whether the speed n is greater than or equal to a minimum speed n kmin , which represents a minimum speed during the clutch phase .
  • the gradient g can have a limit value for the gradient g km can be compared in the speed curve during the clutch phase. If the speed n or the gradient g is greater than the comparison values n kmin or g kmin , the start is continued in method step 24.
  • the crankshaft 2 is preferably stopped at a rotational position that corresponds to an operating position of the internal combustion engine 1 that is favorable for a second attempt to start.
  • the favorable operating position it is preferably provided that at least one piston of the internal combustion engine 1 has a position such that a combustion process can be initiated or started immediately afterwards in its associated cylinder. If the internal combustion engine 1 has come to a standstill, the pulse start clutch 4 is opened during method step 25.
  • a second start attempt (method step 26) can subsequently be initiated, that is to say a new pull-up phase 15 can begin. Since the internal combustion engine 1 is in a favorable operating position for the second start, fuel can be injected into a cylinder of the internal combustion engine immediately before the end of the second pull-up phase 15 and before the start of the second clutch phase 22, so that a safe start is brought about during the second clutch phase 22 .
  • method step 21 ie the synchronization of the internal combustion engine may be waived. It is also provided that no fuel injection and / or ignition takes place after the abort of the first start during method step 25.
  • FIG. 3 shows two speed curves of the flywheel mass 3 over time t during a second start attempt.
  • the upper curve of the speed curve was determined during the second starting process, the internal combustion engine 1 or its crankshaft 2 being driven until an engine was stopped Reduction in friction losses occurred. This additional measure was not carried out on the lower speed curve.
  • the winding phase 15 of the flywheel 3 takes place until the time t1.
  • the first clutch phase 21 is then initiated, in which the pulse start clutch 4 is closed.
  • the curves show that when the pulse start clutch is closed at time t1, the speed of crankshaft 2 increases until time t2 or t2 'and the speed of the flywheel mass decreases.
  • time t2 or t2 ' there is no slippage between the clutch part on the crankshaft side and the flywheel-side clutch part, so that the impulse start clutch 4 is completely closed.
  • the flywheel mass 3 Due to the fact that the flywheel mass 3 has given up its rotational energy to the internal combustion engine, the speed n of the flywheel mass 3 and thus also that of the crankshaft 2 drops. upper speed curve) the first supporting combustion is possible. It can thus be seen that the first auxiliary combustion at time t3 or t3 'can be activated even before the minimum speed n min of the internal combustion engine 1 is reached, with the pre-injection of the fuel into the cylinder of the internal combustion engine being possible during the period t0 to t1. It can be seen that in both cases there is a sufficient safety distance between the first supportive Combustion and the minimum speed n min is present, so that the internal combustion engine 1 can be started safely at least during the second attempt to start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Description

  • Die Erfindung betrifft ein Impulsstartverfahren für eine Brennkraftmaschine gemäß Oberbegriff des Anspruchs 1 sowie eine Impulsstartvorrichtung gemäß Oberbegriff des Anspruchs 12, wie aus JP-A-58 124 066 bekannt.
  • Stand der Technik
  • Ein Impulsstartverfahren und eine Impulsstartvorrichtung für eine Brennkraftmaschine sind bekannt. Bei dem Impulsstartverfahren wird während einer Aufziehphase eine Schwungmasse drehangetrieben beschleunigt. Dies erfolgt mittels eines elektrischen Starters. Dabei ist eine zwischen der Brennkraftmaschine und der Schwungmasse angeordnete Impulsstart-Kupplung geöffnet. Durch den Antrieb der Schwungmasse wird mechanische Arbeit gespeichert. Während einer Kupplungsphase, bei der die Impulsstart-Kupplung geschlossen wird, wird durch diese gespeicherte Arbeit zusammen mit dem Antriebsmoment des Starters die Brennkraftmaschine angedreht. Vorteil gegenüber einem konventionellen Start, bei dem über eine zeitlich relativ lange Phase mit einer quasistationären Drehzahl die Brennkraftmaschine angetrieben wird, ist, dass sich beim Impulsstart ein impulsartiger Drehzahlverlauf mit steil ansteigender Flanke beim Schließen der Impulsstart-Kupplung ergibt, so dass ein sicherer Start der Brennkraftmaschine erreicht wird.
  • Nachteilig bei dem bekannten Impulsstart-Verfahren beziehungsweise der bekannten Vorrichtung ist, dass das Startsystem auf hohe Leistung ausgelegt werden muss. Insbesondere deshalb, weil für jeden Betriebszustand der Brennkraftmaschine ein sicherer Start gewährleistet werden muss. Insbesondere bei zunehmender Kälte wird diese hohe Starterleistung benötigt, weil die vom Starter aufzubringende Schleppleistung zu- und die Starterbatterieleistung abnimmt. Gegenüber dem konventionellen Startsystem ist diese Problematik beim Impulsstart noch ausgeprägter, weil die von dem elektrischen Starter aufzubringende Schleppleistung auch mit der Drehzahl ansteigt. Die Schleppleistung erhöht sich auch dann, wenn zur Drehmomentübertragung im Antriebsstrang ein Automatikgetriebe vorgesehen ist, so dass zusätzlich Schleppleistung für den Wandlereingang des Getriebes mit aufzubringen ist. Bekannte Impulsstartverfahren beziehungsweise Impulsstartvorrichtung sind außerdem hinsichtlich Leistung derart ausgelegt, dass auch bei ungünstigen Drehstellungen der Kurbelwelle der Brennkraftmaschine ein sicherer Start erreicht werden soll. Im schlechtesten Fall kann es beispielsweise notwendig sein, die Kurbelwelle um 400° zu drehen, um eine für den Start notwendige Synchronisation der Brennkraftmaschine zu erreichen. Bei der Synchronisation sollen insbesondere Stellungen der Kolben beziehungsweise der Ventile ermittelt werden. Entsprechend diesen Stellungen muss das Einspritzen von Kraftstoff und die Zündung erfolgen. Außerdem muss beim Impulsstart darauf geachtet werden, dass selbst bei ungünstigen Ausgangsbetriebsstellungen beziehungsweise Umgebungsparameter das enge Zeitfenster für den Start der Brennkraftmaschine eingehalten werden kann. Dieses Zeitfenster ergibt sich insbesondere daraus, dass beim Schließen der Impulsstart-Kupplung die Drehzahl der Schwungmasse sehr schnell abnimmt und damit auch die Drehzahl der Brennkraftmaschine geringer bleibt, wobei ein Start der Brennkraftmaschine spätestens dann erreicht sein muss, wenn die Drehzahl der Brennkraftmaschine unter die Minimaldrehzahl für die Startfähigkeit abfällt. Da sich bei niedrigen Temperaturen die Schleppmomente erhöhen, beispielsweise durch geringere Viskosität der Schmierstoffe, verschmälert sich dieses Zeitfenster. Es muss daher zur Sicherung des Kaltstarts auf eine sehr hohe Startleistung dimensioniert werden, insbesondere auch deshalb, weil bei einem Startabbruch die Unkenntnis über den Gemischzustand des Saugrohrs und der einzelnen Zylinder die Chancen für einen erfolgreichen zweiten Startversuch noch geringer werden. Eine Abschätzung der Startleistung für einen 3-Liter-6-Zylindermotor mit Automatikgetriebe ergibt beispielsweise bei einer Umgebungstemperatur von -25°C eine notwendige Aufziehdrehzahl der Schwungmasse von ca. 1500 l/min bei einem aufzubringenden Schleppmoment von ca. 35 Nm. Daraus resultiert die mechanische Leistung des Starters von ca. 5,2 kW und daraus eine Batterieleistung von ca. 6,6 kW.
  • Vorteile der Erfindung
  • Das Impulsstartverfahren mit den Merkmalen des Anspruchs 1 und die Impulsstartvorrichtung mit den Merkmalen des Anspruchs 12 bieten demgegenüber den Vorteil, dass eine deutliche Reduzierung der zur Startabsicherung beim Impulsstart notwendigen Startleistung möglich ist. Insbesondere dadurch, dass ein Drehzahlbeobachter während der Aufzieh-und/oder der Kupplungsphase den Drehzahlverlauf der Schwungmasse auswertet, kann ermittelt werden, ob die zur Verfügung stehende, gegenüber dem Stand der Technik reduzierte Startleistung ausreicht, die Brennkraftmaschine bei einem ersten Startversuch zu starten. Ist dies nicht der Fall, wird mittels der drehbeschleunigten Schwungmasse und/oder der elektrischen Startvorrichtung die Brennkraftmaschine zumindest noch in eine für einen nachfolgenden zweiten Startversuch günstige Betriebsstellung gebracht. Insbesondere bei Kaltstartbedingungen hat sich gezeigt, dass bei einem ersten Andrehen der Brennkraftmaschine die Schleppleistung für einen nachfolgenden zweiten Startversuch verringert werden kann, da bereits durch das erste Andrehen eine Schmierung der beweglichen Teile in der Brennkraftmaschine und/oder des angeflanschten Getriebes erreicht wird. Insbesondere bei Automatikgetrieben hat sich gezeigt, dass einige wenige Umdrehungen genügen, um die Schleppleistung am Wandlereingang zu reduzieren. Somit wird für den zweiten nachfolgenden Startversuch weniger Schleppleistung benötigt, so dass auch durch das Einstellen der günstigen Betriebsstellung der Brennkraftmaschine für den zweiten Startversuch eine wesentlich geringere Startleistung aufgebracht werden muss, wobei dennoch ein sicherer Start erzielt werden kann. Wird während der Aufziehphase der Drehzahlverlauf der Schwungmasse ausgewertet, kann auch ermittelt werden, ob die Starterbatterie ausreichend Leistung bereitstellen kann. Lässt sich aus dem Drehzahlverlauf jedoch ablesen, dass die Schwungmasse nicht auf die erforderliche Drehzahl gebracht werden kann, kann vorzeitig die Kupplungsphase eingeleitet werden, und die Brennkraftmaschine in eine für den zweiten Startversuch günstige Betriebsstellung gebracht werden. Durch das erste Andrehen beim ersten Startversuch wird auch hier bereits das Schleppmoment verringert, so dass der nachfolgende zweite Startversuch auch mit geringerer Leistung Erfolg hat.
  • Das erfindungsgemäße Impulsstartverfahren beziehungsweise die Impulsstartvorrichtung bieten außerdem den Vorteil, dass keine zusätzlichen Hardwarekomponenten bereitgestellt werden müssen. Üblicherweise wird beim Impulsstart einer Brennkraftmaschine die Impulsstart-Kupplung erst dann geschlossen, wenn die Schwungmasse eine bestimmte Drehzahl erreicht hat. Es ist also ohnehin ein Drehzahlsensor vorgesehen. Dessen Signal kann selbstverständlich auch zur Beurteilung des Drehzahlverlaufs beim erfindungsgemäßen Verfahren beziehungsweise bei der erfindungsgemäßen Impulsstartvorrichtung verwendet werden. Um die günstige Betriebsstellung der Brennkraftmaschine einstellen beziehungsweise bereitstellen zu können, sind auch hier bereits vorhandene Geber, insbesondere Drehwinkelgeber, an modernen Brennkraftmaschinen vorgesehen, die beispielsweise die Drehstellung der Kurbel- und/oder Nockenwelle und/oder die Kolbenstellung detektieren können. Bei modernen Brennkraftmaschinen werden diese Werte zur Steuerung beziehungsweise Regelung des Verbrennungsvorganges benötigt. Somit kann auch das Signal dieser Geber in vorteilhafter Weise beim erfindungsgemäßen Impulsstartverfahren beziehungsweise bei der Impulsstartvorrichtung ausgewertet werden.
  • Um den Drehzahlverlauf der Schwungmasse beurteilen zu können, ist während der Aufziehphase vorgesehen, den Gradient des Drehzahlverlaufs zu beobachten, wobei bei einem zu geringen Gradient -wie vorstehend erwähnt- die Kupplungsphase eingeleitet wird, so dass die Brennkraftmaschine noch in die für den zweiten Startversuch günstige Betriebsstellung gebracht werden kann.
  • Alternativ oder zusätzlich kann für die Auswertung beziehungsweise Beurteilung des Drehzahlverlaufs die Höhe der Drehzahl der Schwungmasse zu festlegbaren Zeitpunkten erfasst werden, wobei auch hier bei einer zu geringen Drehzahlhöhe bei einem bestimmten Zeitpunkt die Kupplungsphase eingeleitet wird.
  • Wird während der Aufziehphase die Impulsstart-Kupplung vorzeitig geschlossen, wird vorzugsweise überhaupt kein Startversuch in dem Sinn unternommen, dass eine Aktivierung der Zündung beziehungsweise eine Einspritzung an der Brennkraftmaschine erfolgt. Dadurch wird gewährleistet, dass sich im Ansaugkanal der Brennkraftmaschine keine unkontrollierten Gemischzustände einstellen.
  • Wird während der Kupplungsphase ein zu geringer Gradient der Drehzahlkurve und/oder zu einem bestimmten Zeitpunkt eine zu geringe Drehzahl der Schwungmasse ermittelt, wird der Startversuch vorzeitig abgebrochen, also die Ansteuerung der elektrischen Startvorrichtung aufgehoben, jedoch vorzugsweise erst dann, wenn die Brennkraftmaschine die für den zweiten Startversuch günstige Betriebsstellung eingenommen hat. Es kann also vorgesehen sein, dass auch während der Kupplungsphase die elektrische Startvorrichtung die Schwungmasse weiter antreibt beziehungsweise abbremst, um die Brennkraftmaschine in einer bestimmten gewünschten Betriebsstellung anhalten oder in einen gewünschte Stellung bringen zu können.
  • Nach einer Weiterbildung der Erfindung ist vorgesehen, dass beim Startabbruch zumindest noch die Synchronisierung der Brennkraftmaschine erfolgt, während der die Kolbenstellung und/oder die Ventilstellung der Brennkraftmaschine ermittelt wird. Typischerweise genügt eine Drehung der Kurbelwelle um 200°, um die Kolben- und/oder Ventilstellungen der Brennkraftmaschine ermitteln zu können. In einem ungünstigen Fall können auch 400° Kurbelwellendrehung notwendig sein, um die Synchronisation durchzuführen.
  • Um die Beurteilung beziehungsweise Auswertung des Drehzahlverlaufs der Schwungmasse verbessern zu können, werden vorzugsweise weitere Startparameter berücksichtigt. Hierzu zählen beispielsweise die Umgebungstemperatur, die Betriebstemperatur der Brennkraftmaschine und der Ladezustand der Starterbatterie.
  • Für einen verbesserten zweiten Startversuch kann vorgesehen sein, dass zwischen dem ersten und dem zweiten Startversuch ein Nachladen der Starterbatterie über die Bordnetzbatterie eines Kraftfahrzeugs erfolgt. Damit ist es möglich, die von der elektrischen Startvorrichtung abzugebende Leistung zu erhöhen.
  • Um die Brennkraftmaschine in die für den zweiten Startversuch günstige Betriebsstellung zu bringen, ist insbesondere vorgesehen, dass das Auspendeln der Brennkraftmaschine beeinflusst wird. Dies ist beispielsweise über die elektrische Startvorrichtung möglich, die die Schwungmasse antreibt. Die elektrische Startvorrichtung kann also neben ihrer Antriebsfunktion noch eine Bremsfunktion aufweisen. Bevorzugt wird daher der elektrische Starter als sogenannter Starter-Generator ausgebildet, der im Betrieb der Brennkraftmaschine das Bordnetz des Kraftfahrzeugs mit elektrischer Energie versorgt. Für die günstige Betriebsstellung ist insbesondere vorgesehen, dass zumindest ein Kolben in eine Hubposition gebracht wird, aus der nach einer Kraftstoffeinbringung in den Brennraum eine Verbrennung dieses Kraftstoffs erreicht werden kann, also ein Arbeitshub des Kolbens bereitgestellt werden kann, so dass eine erste unterstützende Verbrennung in der Brennkraftmaschine erreicht werden kann, und zwar vor Abfall der Drehzahl der Brennkraftmaschine unter die Startgrenzbedingung, die ca. bei 80 l/min veranschlagt werden kann.
  • Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Zeichnung
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen mit Bezug auf die Zeichnung näher erläutert. Es zeigen:
  • Figur 1
    ein Blockschaltbild einer Impulsstartvorrichtung,
    Figur 2
    ein Ablaufdiagramm eines Impulsstartverfahrens,
    Figur 3
    einen Drehzahlverlauf einer Brennkraftmaschine bei einem zweiten Startversuch.
    Beschreibung der Ausführungsbeispiele
  • Figur 1 zeigt in einem Blockschaltbild eine Brennkraftmaschine 1, die zumindest einen hier nicht dargestellten Hubkolben mit zugehörigen Ventilen umfassen kann, wobei der Hubkolben eine Welle, insbesondere Kurbelwelle 2, der Brennkraftmaschine antreibt. Zwischen einer drehbar gelagerten Schwungmasse 3 und der Kurbelwelle 2 ist eine an sich bekannte Impulsstart-Kupplung 4 angeordnet, so dass die Schwungmasse 3 mit der Kurbelwelle 2 gekuppelt werden kann. Die Schwungmasse 3 wird von einem elektrischen Starter 5 drehangetrieben. Zwischen Schwungmasse 3 und Starter 5 kann ein Startergetriebe 6 angeordnet sein, das vorzugsweise mehrstufig ausgebildet ist. Bei dem Starter 5 handelt es sich vorzugsweise um einen sogenannten Starter-Generator. Um ein hier nicht dargestelltes Kraftfahrzeug anzutreiben, ist ferner eine Drehzahlübersetzungsmittel 7 vorgesehen, dessen Antriebseingang 8 mit der Kurbelwelle 2 verbindbar ist. Das Drehzahlübersetzungsmittel 7 ist vorzugsweise als Automatik-Getriebe ausgebildet. Es kann jedoch auch ein an sich bekanntes Schall-Getriebe sein.
  • Der elektrische Starter 5 wird von einer Startersteuerung 9 angesteuert. Die Startersteuerung 9 steuert ebenso das Öffnen und das Schließen der Impulsstart-Kupplung 4. Signale von in der Brennkraftmaschine 1 angeordneten Sensoren, die beispielsweise die Drehstellung der Kurbelwelle 2 und/oder einer nicht dargestellten Nockenwelle erfassen und/oder die Temperatur der Brennkraftmaschine 1, werden von der Startersteuerung 9 erfasst. Der elektrische Starter 5 und die Startersteuerung 9 bilden eine Impulsstartvorrichtung 10, bei der der elektrische Starter 5 die Schwungmasse 3 auf eine vorgebbare Drehzahl n beschleunigt. Erreicht die Drehzahl n eine für den Start der Brennkraftmaschine 1 notwendige Aufziehdrehzahl nsoll steuert die Startersteuerung 9 die Impulsstart-Kupplung 4 an, so dass diese geschlossen und die Kurbelwelle 2 von der Schwungmasse 3 beschleunigt wird. Die Startersteuerung 9 öffnet die Impulsstart-Kupplung bevor ein neuer Aufziehvorgang, also ein Beschleunigen der Schwungmasse 3 erfolgen soll.
  • Während der Aufziehphase der Schwungmasse 3 auf die Aufziehdrehzahl nsoll überwacht eine vorzugsweise der Startersteuerung 9 zugeordnete Auswerteschaltung 11 den Drehzahlverlauf der Schwungmasse 3. Die Auswerteschaltung 11 kann zu bestimmten vorgebbaren Zeitpunkten die Höhe der Drehzahl der Schwungmasse 3 ermitteln. Es kann jedoch auch vorgesehen sein, dass eine Drehzahlkurve über der Zeit ermittelt wird, wobei dann der Gradient der Kurve zu festlegbaren Zeitpunkten ermittelt werden kann. Vorzugsweise wird die Drehzahl n der Schwungmasse 3 über einen in dem Starter 5 angeordneten Drehzahlsensor 12 ermittelt, dessen Messsignal von der Auswerteschaltung 11 erfasst wird. Über einen Aktivierungseingang 13 kann zumindest ein erster Startvorgang manuell ausgelöst werden.
  • Anhand von Figur 2 wird mittels des dargestellten Flussdiagramms ein Impulsstart der Brennkraftmaschine 1 mit bis zu zwei Aufziehphasen wiedergegeben. Der Startbeginn 14 wird über den Aktivierungseingang 13 ausgelöst. Die Startersteuerung 9 aktiviert den elektrischen Starter 5, der die Schwungmasse 3 während der Aufziehphase 15 antreibt. Während der Aufziehphase 15 überwacht die Auswerteschaltung 11 die Drehzahl n der Schwungmasse 3 dahingehend, ob die Drehzahl n kleiner als die Aufziehdrehzahl nsoll ist. Alternativ oder zusätzlich wird ermittelt, ob der Gradient g der Drehzahlkurve größer als ein vorgebbarer minimaler Gradient gmin ist. Sind diese beiden im Entscheidungsschritt 16 aufgeführten Bedingungen erfüllt, wird in der Startersteuerung 9 entschieden, dass die Aufziehphase fortgesetzt werden soll, wie dies durch den Verfahrensschritt 17 angedeutet ist.
  • Wird über den Drehzahlsensor 12 ermittelt, dass die Drehzahl n größer oder gleich der Aufziehdrehzahl ist (Schritt 18), wird die Aufziehphase beendet und die Impulsstart-Kupplung 4 geschlossen, was durch den Verfahrensschritt 19 wiedergegeben ist. Die Auswerteschaltung 11 ermittelt auch, ob der Gradient g der Drehzahlkurve geringer ist als der vorgebbare minimale Gradient gmin. Ist außerdem die Drehzahl n geringer als die Solldrehzahl nsoll (Schritt 20), wird die Impulsstart-Kupplung 4 ebenfalls geschlossen, also zum Verfahrensschritt 19 übergegangen. An den Verfahrensschritt 19 schließt sich die erste Kupplungsphase 21 an, bei der die Synchronisation an der Brennkraftmaschine 1 durchgeführt wird. Während der Synchronisation werden die Stellungen der Kolben und der Ventile der Brennkraftmaschine 1 ermittelt. Bei der nachfolgenden zweiten Kupplungsphase 22 ist die Synchronisation erreicht beziehungsweise beendet. Während der zweiten Kupplungsphase 22 wird durch Extrapolation der von der Auswerteschaltung 11 erfassten Drehzahlkurve, gegebenenfalls unter Einbeziehung des Gradienten g, abgeschätzt, ob mindestens ein Verbrennungsvorgang oberhalb der Startfähigkeitsgrenze (Minimaldrehzahl, bei der ein Start erwartet werden kann) der Brennkraftmaschine 1 möglich ist. In diesem Verfahrensschritt 23 wird abgeschätzt, ob die Drehzahl n größer oder gleich einer Minimaldrehzahl nkmin ist, die eine Minimaldrehzahl während der Kupplungsphase darstellt. Außerdem kann der Gradient g mit einem Grenzwert für den Gradient gkmin der Drehzahlkurve während der Kupplungsphase verglichen werden. Ist die Drehzahl n beziehungsweise der Gradient g größer als die Vergleichswerte nkmin beziehungsweise gkmin, wird der Start im Verfahrensschritt 24 fortgeführt. Ist die Drehzahl zu gering beziehungsweise der Drehzahlabfall (Gradient) zu groß, weist also die Drehzahlkurve n(t) große negative Steigung auf, wird der erste Startversuch im Verfahrensschritt 25 abgebrochen. Beim Auspendeln der Brennkraftmaschine wird die Kurbelwelle 2 vorzugsweise bei einer Drehstellung angehalten, die einer für einen zweiten Startversuch günstige Betriebsstellung der Brennkraftmaschine 1 entspricht. Bei der günstigen Betriebsstellung ist vorzugsweise vorgesehen, dass zumindest ein Kolben der Brennkraftmaschine 1 eine Stellung derart aufweist, dass in seinem zugeordneten Zylinder unmittelbar nachfolgend ein Verbrennungsvorgang eingeleitet beziehungsweise gestartet werden kann. Ist die Brennkraftmaschine 1 zum Stillstand gekommen, wird die Impulsstart-Kupplung 4 während des Verfahrensschritts 25 geöffnet. Nachfolgend kann ein zweiter Startversuch (Verfahrensschritt 26) eingeleitet werden, also eine neue Aufziehphase 15 beginnen. Da die Brennkraftmaschine 1 für den zweiten Start in einer günstigen Betriebsstellung ist, kann unmittelbar vor Beendigung der zweiten Aufziehphase 15 und vor Beginn der zweiten Kupplungsphase 22 Kraftstoff in einen Zylinder der Brennkraftmaschine eingespritzt werden, so dass während der zweiten Kupplungsphase 22 ein sicherer Start herbeigeführt wird. Beim zweiten Startversuch kann auf den Verfahrensschritt 21, also die Synchronisation der Brennkraftmaschine gegebenenfalls verzichtet werden. Es ist auch vorgesehen, dass nach dem Abbruch des ersten Starts während des Verfahrensschritts 25 keine Kraftstoffeinspritzung und/oder Zündung erfolgt.
  • Wird während des ersten Startversuchs im Verfahrensschritt 20 ermittelt, dass der Gradient g beziehungsweise die Drehzahl n zu gering ist, kann vorgesehen sein, dass die Kurbelwelle 2 der Brennkraftmaschine 1 noch über eine bestimmte vorgebbare Zeit weiter drehangetrieben wird, wobei auch eine entsprechende Drehzahl beibehalten wird, die sich beispielsweise aus der Starterdrehzahl unter Last ergibt. Dadurch wird insbesondere beim Kaltstart gewährleistet, dass die beweglichen Teile in der Brennkraftmaschine und in dem Drehzahlübersetzungsmittel 7 geschmiert werden, wodurch insgesamt eine Reduzierung der Schleppleistung eintritt, die der elektrische Starter aufbringen muss. Dadurch ist während dem zweiten Startvorgang der Reibungsverlust in der Brennkraftmaschine 1 und dem Drehzahlübersetzungsmittel 7 reduziert, so dass sowohl die Aufziehdrehzahl als auch die Drehzahl der Brennkraftmaschine bei geschlossener Impulsstart-Kupplung erhöht wird, wodurch die Startsicherheit gesteigert wird.
  • In Figur 3 sind zwei Drehzahlkurven der Schwungmasse 3 über der Zeit t während eines zweiten Startversuchs wiedergegeben. Die obere Kurve des Drehzahlverlaufs wurde während des zweiten Startvorgangs ermittelt, wobei beim Startabbruch die Brennkraftmaschine 1 beziehungsweise deren Kurbelwelle 2 noch so lange angetrieben wurde, bis eine Reduzierung der Reibungsverluste eintrat. Bei der unteren Drehzahlkurve wurde diese Zusatzmaßnahme nicht durchgeführt.
  • Im folgenden wird der Verlauf der Kurven näher beschrieben: Bis zum Zeitpunkt t1 findet die Aufziehphase 15 der Schwungmasse 3 statt. Zum Zeitpunkt t1 wird dann die erste Kupplungsphase 21 eingeleitet, bei der die Impulsstart-Kupplung 4 geschlossen wird. Aus den Kurven ist ersichtlich, dass beim Schließen der Impulsstart-Kupplung zum Zeitpunkt t1 die Drehzahl der Kurbelwelle 2 bis zum Zeitpunkt t2 beziehungsweise t2' zunimmt und die Drehzahl der Schwungmasse abnimmt. Zum Zeitpunkt t2 beziehungsweise t2' liegt dann zwischen kurbelwellenseitigem Kupplungsteil und schwungmassenseitigem Kupplungsteil kein Schlupf vor, so dass also die Impulsstart-Kupplung 4 vollständig geschlossen ist. Dadurch, dass die Schwungmasse 3 ihre Rotationsenergie an die Brennkraftmaschine abgegeben hat, fällt die Drehzahl n der Schwungmasse 3 und damit auch die der Kurbelwelle 2. Zu Beginn dieses abfallenden Drehzahlkurvenabschnitts wird während des zweiten Starts zum Zeitpunkt t3 (untere Drehzahlkurve) beziehungsweise t3' (obere Drehzahlkurve) die erste unterstützende Verbrennung möglich. Es zeigt sich also, dass die erste unterstützende Verbrennung zum Zeitpunkt t3 beziehungsweise t3' noch vor Erreichen der Minimaldrehzahl nmin der Brennkraftmaschine 1 aktiviert werden kann, wobei während dem Zeitraum t0 bis t1 die Voreinspritzung des Kraftstoffs in den Zylinder der Brennkraftmaschine möglich ist. Es zeigt sich also, dass in beiden Fällen ein ausreichender Sicherheitsabstand zwischen der ersten unterstützenden Verbrennung und der Minimaldrehzahl nmin vorliegt, so dass also die Brennkraftmaschine 1 zumindest während des zweiten Startversuchs sicher gestartet werden kann.

Claims (12)

  1. Impulsstartverfahren für eine Brennkraftmaschine, bei dem während einer Aufziehphase eine Schwungmasse drehangetrieben beschleunigt wird und anschließend während einer Kupplungsphase die drehende Schwungmasse mit einer drehbar gelagerten Welle, vorzugsweise Kurbelwelle, der Brennkraftmaschine zur Drehmomentübertragung gekuppelt wird, dadurch gekennzeichnet, dass während der Aufziehphase (15) und/oder der Kupplungsphase (21,22) der Drehzahlverlauf der Schwungmasse (3) ausgewertet wird, dass aus dieser Auswertung abgeleitet wird, ob ein erfolgreicher Start der Brennkraftmaschine (1) möglich ist, und dass -sofern ein erfolgreicher Start nicht erwartet wird- die Brennkraftmaschine (1) über die Welle (2) in eine für einen nachfolgenden zweiten Startversuch günstige Betriebsstellung gebracht wird.
  2. Impulsstartverfahren nach Anspruch 1, dadurch gekennzeichnet, dass während der Aufziehphase (15) für die Auswertung der Gradient (g) des Drehzahlverlaufs (n(t)) der Schwungmasse (3) verwendet wird und dass bei zu geringem Gradient (g) die Kupplungsphase (21,22) eingeleitet wird.
  3. Impulsstartverfahren nach Anspruch 1, dadurch gekennzeichnet, dass während der Aufziehphase (15) für die Auswertung die Höhe der Drehzahl (n) der Schwungmasse (3) zu festlegbaren Zeitpunkten (t) erfasst wird und dass bei einer zu geringen Drehzahlhöhe bei einem bestimmten Zeitpunkt die Kupplungsphase (21,22) eingeleitet wird.
  4. Impulsstartverfahren nach Anspruch 1, dadurch gekennzeichnet, dass während der Kupplungsphase für die Auswertung der Gradient (g) des Drehzahlverlaufs (n(t)) der Schwungmasse (3) verwendet wird und dass bei zu negativem Gradient (g) der Startversuch abgebrochen und die Brennkraftmaschine (1) in die für den zweiten Startversuch günstige Betriebsstellung gebracht wird.
  5. Impulsstartverfahren nach Anspruch 1, dadurch gekennzeichnet, dass während der Kupplungsphase für die Auswertung die Höhe der Drehzahl (n) der Schwungmasse (3) zu festlegbaren Zeitpunkten (t) erfasst wird und dass bei einer zu geringen Drehzahlhöhe bei einem bestimmten Zeitpunkt (t) der Start abgebrochen und die Brennkraftmaschine (1) in die für den zweiten Startversuch günstige Betriebsstellung gebracht wird.
  6. Impulsstartverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Startabbruch zumindest noch die Synchronisierung der Brennkraftmaschine (1) erfolgt, während der die Kolbenstellung und/oder Ventilstellung ermittelt wird.
  7. Impulsstartverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Auswertung des Drehzahlverlaufs (n(t)) weitere Startparameter, vorzugsweise die Umgebungstemperatur, die Betriebstemperatur der Brennkraftmaschine und/oder der Ladezustand einer Starterbatterie berücksichtigt werden.
  8. Impulsstartverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während die Brennkraftmaschine (1) in die für den zweiten Startversuch günstige Betriebsstellung gebracht wird keine Kraftstoffeinspritzung und/oder Zündung erfolgt.
  9. Impulsstartverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass -sofern ein erfolgreicher erster Start nicht erwartet wirddie Welle (2) der Brennkraftmaschine (1) über einen festlegbaren Zeitraum mit vorgebbarer Drehzahl (n) angetrieben wird, bevor sie in die günstige Betriebsstellung gebracht wird.
  10. Impulsstartverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem ersten und zweiten Startversuch ein Nachladen der Starterbatterie über die Bordnetzbatterie eines Kraftfahrzeugs erfolgt.
  11. Impulsstartverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch Beeinflussen des Auspendelns der Brennkraftmaschine (1) nach dem Startabbruch diese in die günstige Betriebsstellung gebracht wird.
  12. Impulsstartvorrichtung für eine Brennkraftmaschine, mit einem elektrischen Starter (5), der eine drehbar gelagerte Schwungmasse (3) antreibt, einer Startersteuerung (9), die den Starter (5) und eine Impulsstart-Kupplung (4) steuert, insbesondere zur Durchführung eines Impulsstartverfahrens nach einem der Ansprüche 1 bis 11, gekennzeichnet durch eine Auswerteschaltung (11), die die Drehzahl (n) der Schwungmasse (3) zu bestimmten Zeitpunkten und/oder den Gradient (g) der Drehzahlkurve (n(t)) über der Zeit (t) auswertet und beurteilt, ob ein erfolgreicher Start der Brennkraftmaschine (1) möglich ist.
EP00975804A 1999-11-24 2000-09-28 Impulsstartverfahren und impulsstartvorrichtung für eine brennkraftmaschine Expired - Lifetime EP1151193B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19956384 1999-11-24
DE19956384A DE19956384C1 (de) 1999-11-24 1999-11-24 Impulsstartverfahren und Impulsstartvorrichtung für eine Brennkraftmaschine
PCT/DE2000/003391 WO2001038725A1 (de) 1999-11-24 2000-09-28 Impulsstartverfahren und impulsstartvorrichtung für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1151193A1 EP1151193A1 (de) 2001-11-07
EP1151193B1 true EP1151193B1 (de) 2004-03-31

Family

ID=7930078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00975804A Expired - Lifetime EP1151193B1 (de) 1999-11-24 2000-09-28 Impulsstartverfahren und impulsstartvorrichtung für eine brennkraftmaschine

Country Status (8)

Country Link
US (1) US6581559B1 (de)
EP (1) EP1151193B1 (de)
JP (1) JP2003515051A (de)
KR (1) KR20010101637A (de)
BR (1) BR0007659A (de)
DE (2) DE19956384C1 (de)
ES (1) ES2218247T3 (de)
WO (1) WO2001038725A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030367C5 (de) 2000-06-21 2018-07-19 Daimler Ag Verfahren für einen Impulsstart eines Kolbenmotors
JP3815261B2 (ja) * 2001-06-08 2006-08-30 トヨタ自動車株式会社 内燃機関の始動制御装置
DE10159210A1 (de) * 2001-11-28 2003-06-18 Volkswagen Ag Antrieb von Hilfsaggregaten
EP1588047B1 (de) * 2003-01-27 2008-04-02 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für verbrennungsmotor
JP3815441B2 (ja) * 2003-02-04 2006-08-30 トヨタ自動車株式会社 内燃機関の停止始動制御装置
DE10359168B4 (de) * 2003-02-10 2013-10-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine
JP4639743B2 (ja) * 2003-12-12 2011-02-23 株式会社デンソー クラッチ状態検出装置
WO2005100777A2 (de) * 2004-04-16 2005-10-27 Avl List Gmbh Verfahren zur steuerung des anfahrvorganges eines kraftfahrzeuges
DE102004048808A1 (de) * 2004-10-07 2006-04-13 Adam Opel Ag Verfahren zum Ansteuern eines Starterrelais
CA2631154A1 (en) * 2005-11-28 2007-05-31 Navy Island Plywood, Inc. Method of rating wood product quality
DE102006016138B4 (de) * 2006-04-06 2014-11-20 Robert Bosch Gmbh Hybridantrieb mit Notstartmöglichkeit
JP4839960B2 (ja) 2006-05-24 2011-12-21 トヨタ自動車株式会社 車両用動力装置およびその制御装置
US8604709B2 (en) 2007-07-31 2013-12-10 Lsi Industries, Inc. Methods and systems for controlling electrical power to DC loads
US7598683B1 (en) 2007-07-31 2009-10-06 Lsi Industries, Inc. Control of light intensity using pulses of a fixed duration and frequency
US8903577B2 (en) 2009-10-30 2014-12-02 Lsi Industries, Inc. Traction system for electrically powered vehicles
DE102007047619A1 (de) 2007-10-04 2009-04-09 Robert Bosch Gmbh Hybridantrieb mit Notstart- und Fremdstartmöglichkeit
GB2453733B (en) * 2007-10-15 2012-12-05 Cummins Generator Technologies Power generation system
DE102008000013A1 (de) * 2008-01-09 2009-07-16 Zf Friedrichshafen Ag Verfahren zum Start des Verbrennungsmotors bei einem Fahrzeug mit integriertem Startergenerator
DE102008002666B4 (de) 2008-06-26 2017-08-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors eines Hybridantriebsstranges
JP4459280B2 (ja) * 2008-05-13 2010-04-28 川崎重工業株式会社 エンジンの発電・スタータ装置
WO2010114365A2 (en) * 2009-04-03 2010-10-07 Dti Group B.V. Start system for a combustion engine of a vehicle
JP2013510974A (ja) * 2009-11-13 2013-03-28 ディーティーアイ グループ ビー.ブイ. 車両のエンジン用の始動システム
JP5892243B2 (ja) * 2012-05-22 2016-03-23 トヨタ自動車株式会社 ハイブリッド車両の制御装置
DE102016200771A1 (de) * 2016-01-21 2017-07-27 Bayerische Motoren Werke Aktiengesellschaft Antriebsstrang für ein Kraftfahrzeug, insbesondere einen Personenkraftwagen
US9937919B2 (en) * 2016-03-10 2018-04-10 Ford Global Technologies, Llc System and method for coupled and decoupled engine starting in a hybrid vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2748697C2 (de) * 1977-10-29 1985-10-24 Volkswagenwerk Ag, 3180 Wolfsburg Antriebsanordnung für ein Fahrzeug, insbesondere Personenkraftfahrzeug
DE3026569A1 (de) * 1980-07-12 1982-02-04 Volkswagenwerk Ag, 3180 Wolfsburg Antriebsaggregat fuer fahrzeuge, insbesondere kraftfahrzeugen
JPS58124066A (ja) * 1982-01-20 1983-07-23 Hitachi Constr Mach Co Ltd エンジン始動装置
DE19645943A1 (de) * 1996-11-07 1998-05-14 Bosch Gmbh Robert Startereinheit für eine Brennkraftmaschine
DE19817497A1 (de) * 1998-04-20 1999-10-28 Isad Electronic Sys Gmbh & Co Verfahren und Startersystem zum Starten eines Verbrennungsmotors
DE19858992A1 (de) * 1998-04-20 1999-10-21 Bosch Gmbh Robert Start-/Antriebseinheit für eine Brennkraftmaschine eines Kraftfahrzeuges
WO1999054620A1 (de) * 1998-04-20 1999-10-28 Robert Bosch Gmbh Start-/antriebseinheit für eine brennkraftmaschine eines kraftfahrzeuges

Also Published As

Publication number Publication date
JP2003515051A (ja) 2003-04-22
KR20010101637A (ko) 2001-11-14
US6581559B1 (en) 2003-06-24
WO2001038725A1 (de) 2001-05-31
ES2218247T3 (es) 2004-11-16
DE19956384C1 (de) 2000-11-16
BR0007659A (pt) 2001-11-06
EP1151193A1 (de) 2001-11-07
DE50005898D1 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
EP1151193B1 (de) Impulsstartverfahren und impulsstartvorrichtung für eine brennkraftmaschine
EP1113169B1 (de) Starteranordnung für eine Brennkraftmaschine und Verfahren zur Steuerung derselben
EP1991454B1 (de) Hybridantrieb mit einem direktstart unterstützender trennkupplung
EP1994274B1 (de) Vorrichtung mit einem ersten getriebeteil zum einspuren in ein zweites getriebeteil, insbesondere startvorrichtung mit einem ritzel zum einspuren in einen zahnkranz einer brennkraftmaschine sowie verfahren zum betrieb einer derartigen vorrichtung
DE102008002666B4 (de) Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors eines Hybridantriebsstranges
DE19915207A1 (de) Verfahren und Vorrichtung zur Ermittlung des Greifpunktes bei einer Servokupplung
WO2008131983A1 (de) Verfahren zum positionieren einer kurbelwelle einer abgeschalteten brennkraftmaschine eines kraftfahrzeugs
EP0990094A1 (de) Start-/antriebseinheit für eine brennkraftmaschine eines kraftfahrzeuges
WO2014195089A1 (de) Verfahren zum steuern und/oder regeln einer hybridantriebsanordnung eines kraftfahrzeuges
EP2534368B1 (de) Verfahren zum einspuren eines andrehritzels in einen zahnkranz einer brennkraftmaschine
WO2001088370A1 (de) Startverfahren und startvorrichtung für brennkraftmaschinen
EP1173674B2 (de) Antriebsstrang für ein kraftfahrzeug
DE10050170A1 (de) Vorrichtung zum Starten einer Brennkraftmaschine
DE19858992A1 (de) Start-/Antriebseinheit für eine Brennkraftmaschine eines Kraftfahrzeuges
DE102005058864A1 (de) Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
DE19953513A1 (de) Verfahren zum Steuern der Zylinderverdichtung während der Startphase einer Brennkraftmaschine
DE102009046533B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors
DE102016005122B4 (de) Verfahren zum Betreiben einer Hybridantriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Hybridantriebseinrichtung
DE102010040946A1 (de) Verfahren und Vorrichtung zur Steuerung eines Anfahrvorgangs eines Kraftfahrzeugs
DE10245640B3 (de) Verfahren zum Erkennen eines Startabbruchs und Verhindern einer verbrennungsbedingten Rückdrehung einer Brennkraftmaschine beim Start
DE102012011993B4 (de) Verfahren und Vorrichtung zum Anlassen einer Verbrennungskraftmaschine
AT412861B (de) Verfahren zur steuerung des anfahrvorganges von kraftfahrzeugen
DE102019115914B4 (de) Hubkolbenbrennkraftmaschine mit reduziertem Startmoment aufgrund eines spezifizierten Dekompressionsevents an zumindest einem ausgewählten Startzylinder sowie Kraftfahrzeug mit einer und Verfahren zum Starten einer solchen Hubkolbenbrennkraftmaschine
EP3972866B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
DE102016005124A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Antriebseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20011130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005898

Country of ref document: DE

Date of ref document: 20040506

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040709

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2218247

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070921

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070927

Year of fee payment: 8

Ref country code: SE

Payment date: 20070924

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070926

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080929