EP1125086B1 - Keramische glühstiftkerze - Google Patents

Keramische glühstiftkerze Download PDF

Info

Publication number
EP1125086B1
EP1125086B1 EP00960315A EP00960315A EP1125086B1 EP 1125086 B1 EP1125086 B1 EP 1125086B1 EP 00960315 A EP00960315 A EP 00960315A EP 00960315 A EP00960315 A EP 00960315A EP 1125086 B1 EP1125086 B1 EP 1125086B1
Authority
EP
European Patent Office
Prior art keywords
glow plug
ceramic
electrically conductive
temperature
conductive powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00960315A
Other languages
English (en)
French (fr)
Other versions
EP1125086A1 (de
Inventor
Albrecht Geissinger
Christoph Kern
Steffen Schott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10020328A external-priority patent/DE10020328A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1125086A1 publication Critical patent/EP1125086A1/de
Application granted granted Critical
Publication of EP1125086B1 publication Critical patent/EP1125086B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing

Definitions

  • the invention is based on a ceramic glow plug for diesel engines according to the preamble of independent claim 1.
  • glow plugs with external ceramic heater for example from the Patent application DE-OS 40 28 859 known.
  • metallic glow plugs known in which the metallic filament with a Thermocouple is welded.
  • you can during the Operation of the glow plug by detecting the Thermovoltage measure the temperature in the respective cylinder.
  • a glow plug with ceramic heating element there is no metallic filament.
  • DE 198 44 347 is a glow plug known with a connecting element that with the glow plug is electrically connected via a contacting element.
  • This contacting element is shown in FIG. 1 is designed as a spring.
  • the ceramic glow plug with the invention has the advantage that the temperature of the glow plug is measurable. It is in a ceramic glow plug possible for the first time without additional equipment expenditure the temperature of the Glow plug directly in a selected area on the Measure the outside of the glow plug. The measurement of Temperature takes place in a compared to the volume of the entire glow plug small, selected area, which the error caused by a temperature distribution over a large volume occurs when determining the temperature can be reduced. It is also advantageous that in the glow plug according to the invention a concentration of Heating output in a selected area of the glow plug can be realized without the cross section of the conductive Change layer so that the surface in the area in to which the heating output should be concentrated, remains constant and thus also the interaction surface is kept constant. Another advantage is that the Manufacture of such a ceramic temperature measuring glow plug can be designed inexpensively.
  • the ceramic glow plug can be one elastic Have spring portion that ensures that thermal shifts the surrounding components due to different Thermal expansion coefficients can be compensated.
  • the glow plug with an inventive contacting is according to the procedure Claim 4 made.
  • FIG. 1 shows a glow plug according to the invention in longitudinal section
  • FIG. 2 shows the front section of the external ceramic heater as a side view
  • FIG. 3 shows an interconnection of the glow plug according to the invention with the control units
  • 4 shows the resistances occurring in the ceramic glow plug according to the invention and in the feed lines
  • Figure 5 shows a glow plug according to the invention in longitudinal section.
  • FIG. 1 shows schematically a longitudinal section through a Ceramic glow plug according to the invention 1.
  • Am End of the glow plug 1 remote from the combustion chamber takes place electrical contact via a circular connector 2, which has a Seal 3 separated from the candle housing 4 and with the cylindrical feed line 5 is connected.
  • the fixation of the cylindrical feed line 5 in the candle housing 4 takes place via a metal ring 7 and an electrically insulating Ceramic sleeve 8.
  • the cylindrical feed line 5 is over a Contact pin 10, the cylindrical lead 5 also with the contact pin 10 can be combined in one component, and a suitable contacting element 12, the preferably as a contact spring or as an electrical conductive powder pack or as an electrically conductive Tablet with an elastic spring component, preferably made of Graphite is formed with the ceramic glow plug 14 connected.
  • the inside of the glow plug is covered by a Sealing packing 15 sealed against the combustion chamber.
  • the Sealing pack 15 consists of an electrically conductive Carbon compound.
  • the packing 15 can also through metals, a mixture of carbon and metal or a mixture of ceramic and metal can be formed.
  • the Glow plug 14 consists of a ceramic heating layer 18 and ceramic lead layers 20 and 21, the two supply layers 20, 21 through the heating layer 18 are connected and together with the heating layer 18 Form a guiding layer.
  • the supply layers 20, 21 have any shape, including the heating layer 18 have any shape.
  • the conductive layer is preferably U-shaped educated.
  • the lead layers 20 and 21 are via an insulation layer 22, which is also made of ceramic material exists, separately.
  • the illustrated embodiment is the glow plug 14 designed in such a way that the feed layers 20 and 21 and the heating layer 18 arranged on the outside of the glow plug 14 are.
  • at least the Arrange lead layers 20 and 21 so that they are are inside the glow plug and from the outside lying, ceramic, insulating layer.
  • the ceramic glow pencil Inside the candle case is the ceramic glow pencil through a glass layer, not shown, from the rest Components of the glow plug 4, 8, 12, 15 isolated.
  • the layer of glass is also interrupted for electrical contact between lead layer 21 and candle housing 4 via the Sealing packing 15 at the point 26.
  • the exemplary embodiment was the preferred embodiment Heating layer 18 placed at the tip of the glow plug. It it is also conceivable, this heating layer on another Place the guiding layer.
  • the heating layer 18 should be where the largest Heating effect should be achieved.
  • the ceramic heating element is again in one View shown from the side.
  • the Embodiment in which the heating layer 18 on the Tip of the glow plug is shown. Furthermore are the lead layers 20, 21 and Insulation layer 22 can be seen.
  • the embodiment is shown in which the conductive layer, consisting of the supply layers 20 and 21 and the Heating layer 18 has a U-shaped shape.
  • the ceramic glow plug Material of the heating layer 18 chosen so that the absolute electrical resistance of the heating layer 18 is greater than that absolute electrical resistance of the lead layers 20, 21.
  • the absolute electrical resistance to cross currents between the conductive layer avoid the resistance of the insulation layer chosen that it is significantly larger than the resistance of the Heating layer 18 and the supply layers 20, 21 is.
  • FIG 3 is shown schematically which devices with the glow plug 1 communicate.
  • the one computer and one Storage unit includes.
  • Be in the engine control unit 30 the engine-dependent parameters of the glow plug saved. This can be the resistance-temperature maps, for example depending on load and speed of the engine.
  • the memory of the engine control unit contains also one or more temperature reference values for one correct combustion.
  • the engine control unit can set parameters taxes that affect combustion, for example the injection duration, the start of injection and the end of injection of fuel.
  • the control device 32 regulates a voltage, specified by the engine control unit. This tension represents the total voltage used for the glow plug
  • the control unit 32 also houses Current measuring device, with which the amperage, which over the Glow plug flows, is measured. It also includes Control unit 32 a memory and a computing unit.
  • the Engine control unit 30 and control unit 32 can also be used in be united in one device.
  • FIG 4 illustrates the glow plug occurring resistances.
  • the resistor 41 with a value R20 is the resistance of the ceramic lead layer 20.
  • the resistor 43 with a value R1 contains the Resistance of the heating layer.
  • the resistor 45 with a value R21 includes the resistance of the ceramic Supply layer 21. Added to this are the resistances of the other supply and return lines, but all small against resistors R20 and R21 and therefore are not taken into account. They are not in Figure 4 drawn.
  • Resistors 41, 43 and 45 are in series connected. For those carried out on the basis of FIG Any cross currents that may arise should be considered be ignored. This results in the Total resistance R from the sum of resistances R20, R1 and R21. Resistor R1 forms the largest summand.
  • the measured current I is measured by the control unit 32 a stored map into a temperature converted, which is due to the significantly higher Resistor R1 compared to resistors R20 and R21 results mainly from the temperature of the heating layer 18. This temperature is sent to the engine control unit 30 returned, the due to the determined temperature RMS voltage is newly specified for the glow plug.
  • the temperature of the heating layer 18 can spend the glow pencil elsewhere, for example on a display. It is also possible to use the determined temperature, for example, taking into account of one or more in engine control unit 30 stored, reference temperatures conclusions about derive the quality of the combustion on a cylinder-specific basis. In the event of incorrect combustion, from Control unit cylinder-specific measures are taken, that affect the combustion process and so again for can ensure correct combustion. Then it could for example the injection duration, the start of injection or the injection pressure of the fuel can be varied.
  • ⁇ (T) the specific resistance as a function of the temperature T, ⁇ 0 the specific resistance at room temperature T 0 and ⁇ (T) a temperature coefficient that is temperature-dependent.
  • the specific resistance of the heating layer 18 can be chosen such that ⁇ 0 of the heating layer is greater than ⁇ 0 of the supply layers.
  • the temperature coefficient ⁇ of the heating layer 18 can be greater in the operating range of the glow plug than the temperature coefficient ⁇ of the supply layers 20, 21. It is also possible to choose both ⁇ 0 and ⁇ for the heating layer 18 larger for the operating range of the glow plug than for Lead layers 20, 21.
  • the composition of the heating layer 18 and the supply layers 20, 21 is selected such that the ⁇ 0 of the supply layers 20, 21 is at least 10 times smaller than the ⁇ 0 of the heating layer 18.
  • the temperature coefficient ⁇ of the heating layer 18 and the supply layers 20, 21 is approximately the same. This ensures an accuracy of 20 Kelvin in the entire operating range of the glow plug.
  • the specific one Resistance of the insulation layer 22 as a whole Operating range of the glow plug at least 10 times larger than the specific resistance of the heating layer 18.
  • the heating layer, the supply layers and the insulation layer consist of ceramic composite structures which contain at least two of the compounds Al 2 O 3 , MoSi 2 , Si 3 N 4 and Y 2 O 3 . These composite structures can be obtained by a single or multi-stage sintering process.
  • the specific resistance of the layers can preferably be determined by the MoSi 2 content and / or the grain size of MoSi 2 , preferably the MoSi 2 content of the supply layers 20, 21 is higher than the MoSi 2 content of the heating layer 18, the Heating layer 18 in turn has a higher MoSi 2 content than the insulation layer 22.
  • the heating layer 18, supply layers 20, 21 and the insulation layer 22 consist of a composite precursor ceramic with different proportions of fillers.
  • the matrix of this material consists of polysiloxanes, polysilsequioxanes, polysilanes or polysilazanes, which can be doped with boron or aluminum and which are produced by pyrolysis.
  • the filler forms at least one of the compounds Al 2 O 3 , MoSi 2 and SiC for the individual layers.
  • the MoSi 2 content and / or the grain size of MoSi 2 can preferably determine the specific resistance of the layers.
  • the MoSi 2 content of the supply layers 20, 21 is preferably set higher than the MoSi 2 content of the heating layer 18, the heating layer 18 in turn having a higher MoSi 2 content than the insulation layer 22.
  • compositions of the insulation layer, the Lead layers and the heating layer are in the above specified embodiments chosen so that their thermal expansion coefficient and during the Shrinkage occurring during the sintering or pyrolysis process of the individual supply, heating and insulation layers are the same, so that there are no cracks in the glow plug.
  • FIG. 5 shows a further preferred exemplary embodiment the invention using a schematic longitudinal section a glow plug 1 according to the invention is shown.
  • the in electrical contact with the cylindrical feed line 5 is located.
  • the cylindrical feed line 5 is over the Contact pin 10 and the contacting element 12 with the ceramic glow plug 14 electrically connected.
  • the cylindrical lead 5, the contact pin 10, the Contacting element 12 and the ceramic glow plug 14 are consecutive in this order, as in Figure 5 shown, arranged in the direction of the combustion chamber.
  • the Ceramic glow plug 14 has in the in FIG. 5 shown preferred embodiment on the distant combustion chamber End a pin 11 on.
  • the pin 11 forms a Extension of the glow plug 14 in the direction of end away from the combustion chamber by a cylindrical Leading out of the ceramic supply layers 20, 21 and the insulation layer 22, the pin 11 a has a smaller outer diameter than that in Part of the glow plug adjoining the combustion chamber 14, the Bund 13. It is still not necessary for the Glow plug 14 at the combustion chamber end of a heating layer 18 having. In a preferred embodiment, you can the two supply layers 20 and 21 only on be connected to the combustion chamber end of the glow plug in such a way how this is done via the heating element 18.
  • a flange is provided, which together with the pin 11, the contacting element 12 in the direction limited to the axis of the glow plug.
  • the contacting element 12 which consists of a tablet electrically conductive powder, is preferably as Graphite or a metal powder or an electric conductive ceramic powder.
  • the tablet can be made electrically conductive powder also at least from a predominant Portion from graphite or from the metal powder or from the electrically conductive ceramic powder exist. Due to the Formation of the contacting element 12 as electrical The contacting element ensures conductive powder 12 a resilient contact that is capable of high To carry currents without thermal destruction. The size Surface of the powder provides good thermal conductivity for sure. For the same reason, a small one can Contact resistance with good conductivity can be realized. Graphite and ceramic conductive materials are also corrosion resistant. The elastic part of the spring Tablet made of electrically conductive powder ensures that the tablet through thermal movements of the components compensates for different coefficients of thermal expansion.
  • the tablet is made of electrically conductive powder limited by a cylindrical adapter sleeve 9, which here instead of the ceramic sleeve 8 shown in Figure 1 as a independent component is present.
  • the adapter sleeve 9 is analogous to the ceramic sleeve 8 as an insulating component provided, it consists in a preferred Embodiment made of ceramic material.
  • the glow plug is made from the tablet electrically conductive powder firmly between the flange of the Connection element on the end remote from the combustion chamber, the Pin 11 of the glow plug 14 on the combustion chamber side End face and the clamping sleeve 9 pressed.
  • the fixation between these fixed components, especially the Fixed stop of the clamping sleeve 9 on the ceramic sleeve 8, i.e. the limited pressing height prevents the surrounding Clamping sleeve 9 is not due to excessive internal pressure build-up due to the pressing of the contacting element 12 tears.
  • the by clamping the tablet from electrical conductive powder reached axial preload of the elastic spring component can cause thermal expansion, Settling behavior and vibration stress Balanced shaking stress of the glow plug become.
  • a glow plug according to Figure 5 with a tablet electrically conductive powder as contacting element 12 is made as follows. First is the Sealing packing 15 from the top of the combustion chamber ceramic glow plug 14 over the ceramic glow plug 14 performed and as a composite in the candle housing 4 from Inserted end distant from the combustion chamber. Then that will be Contacting element 12, the clamping sleeve 9, the Connection element 5, 10, the ceramic sleeve 8 and the metal ring 7 arranged in a holding element and then also from Inserted end distant from the combustion chamber into the candle housing 4.
  • the contacting element 12 is made of one tablet consists of electrically conductive powder, and compresses the packing 15. It is on the Contacting element 12 only exerted a force as long as until the contact pin 10 of the connecting element 5, 10th has completely pressed into the clamping sleeve 9 and the Face of the ceramic sleeve 8 on the face of the Adapter sleeve 9 rests.
  • the tablet is compressed electrically conductive powder also ensures that the elastic spring portion of the tablet is biased.
  • by means of a radially from the outside on the Candle housing 4 applied force of the metal ring 7th caulked.
  • the seal 3 and the circular connector 2 assembled and also by means of a radial from the outside the candle housing 4 applied force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Stand der Technik
Die Erfindung geht aus von einer keramischen Glühstiftkerze für Dieselmotoren nach der Gattung des unabhängigen Anspruchs 1. Es sind bereits Glühstiftkerzen mit außenliegendem keramischen Heizer beispielsweise aus der Patentanmeldung DE-OS 40 28 859 bekannt. Desweiteren sind z.B. aus DE-OS 29 37 884 metallische Glühstiftkerzen bekannt, bei denen die metallische Glühwendel mit einem Thermoelement verschweißt ist. Hier läßt sich während des Betriebs der Glühstiftkerze durch die Erfassung der Thermospannung die Temperatur im jeweiligen Zylinder messen. In einer Glühstiftkerze mit keramischem Heizelement ist jedoch eine metallische Glühwendel nicht vorhanden.
Weiterhin ist aus der DE 198 44 347 eine Glühstiftkerze mit einem Anschlußelement bekannt, das mit dem Glühstift über ein Kontaktierungselement elektrisch verbunden ist. Dieses Kontaktierungselement wird, wie Figur 1 zu entnehmen ist, als Feder ausgeführt.
Vorteile der Erfindung
Die erfindungsgemäße keramische Glühstiftkerze mit den Merkmalen des ersten unabhängigen Anspruchs hat den Vorteil, daß die Temperatur des Glühstiftes meßbar ist. Es ist in einer keramischen Glühstiftkerze erstmals möglich, ohne zusätzlichen apparativen Aufwand die Temperatur des Glühstiftes direkt in einem ausgewählten Bereich an der Außenseite des Glühstiftes zu messen. Die Messung der Temperatur erfolgt in einem gegenüber dem Volumen des gesamten Glühstiftes kleinen, ausgewählten Bereich, wodurch der Fehler, der durch eine Temperaturverteilung über ein großes Volumen auftritt, bei der Temperaturbestimmung verringert werden kann. Es ist weiterhin vorteilhaft, daß in der erfindungsgemäßen Glühstiftkerze eine Konzentration der Heizleistung in einem ausgewählten Bereich des Glühstiftes realisiert werden kann, ohne den Querschnitt der leitfähigen Schicht zu ändern, sodaß die Oberfläche in dem Bereich, in dem die Konzentration der Heizleistung erfolgen soll, konstant bleibt und somit auch die Wechselwirkungsfläche konstant gehalten wird. Von Vorteil ist weiterhin, daß die Fertigung einer derartigen keramischen Temperaturmeß-Glühstiftkerze kostengünstig gestaltet werden kann.
Durch die in den auf den ersten unabhängigen Anspruch bezogenen Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen keramischen Glühstiftkerze möglich. Insbesondere ist durch eine geeignete Wahl der für die verschiedenen Bereiche der Glühstiftkerze verwendeten keramischen Materialien sichergestellt, daß die mechanische Stabilität des Heizers nicht beeinträchtigt wird. Eine Vearbeitung der gemessenen Temperaturwerte durch ein Steuergerät erlaubt eine Regelung der Temperatur in dem ausgewählten Bereich des Glühstiftes. Es ist außerdem vorteilhaft, die erfindungsgemäße Glühstiftkerze im Passivbetrieb, nachdem sie die Aufheizfunktion erfüllt hat, als Temperatursensor zu benutzen. Es kann so festgestellt werden, ob die Verbrennung im jeweiligen Zylinder korrekt abläuft. Vorteilhaft ist, daß aufgrund dieser Informationen eine Beeinflussung von für die Verbrennung relevanten Parametern erfolgen kann.
Die erfindungsgemäße keramische Glühstiftkerze kann einen elastischen Federanteil aufweisen, der sicherstellt, daß thermische Verschiebungen der umgebenden Bauteile aufgrund von unterschiedlichen Wärmeausdehnungskoeffizienten ausgeglichen werden können.
Die Glühstiftkerze mit einem erfindungsgemäßen Kontaktierungselement wird nach dem Verfahren gemäß Anspruch 4 hergestellt.
Durch die Anordnung der in dem Kerzengehäuse befindlichen Bestandteile werden Kurzschlüsse verhindert. Außerdem ist gewährleistet, daß die Bestandteile so verpreßt werden, daß einerseits keine Lockerung der Bestandteile und andererseits keine Sprengung von Bestandteilen durch eine zu große Gegenkraft von federnden Elementen (z.B. durch das Kontaktierungselement) erfolgt.
Zeichnungen
Die Ausführungsbeispiele der Erfindung sind in Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Figur 1 eine erfindungsgemäße Glühstiftkerze im Längsschnitt,
Figur 2 den vorderen Abschnitt des außenliegenden keramischen Heizers als Seitenansicht,
Figur 3 eine Verschaltung der erfindungsgemäßen Glühstiftkerze mit den Steuergeräten,
Figur 4 die in der erfindungsgemäßen keramischen Glühstiftkerze und in den Zuleitungen auftretenden Widerstände und
Figur 5 eine erfindungsgemäße Glühstiftkerze im Längsschnitt.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt schematisch einen Längsschnitt durch eine erfindungsgemäße keramische Glühstiftkerze 1. Am brennraumfernen Ende der Glühstiftkerze 1 erfolgt der elektrische Kontakt über einen Rundstecker 2, der über eine Dichtung 3 vom Kerzengehäuse 4 getrennt und mit der zylindrischen Zuleitung 5 verbunden ist. Die Fixierung der zylindrischen Zuleitung 5 im Kerzengehäuse 4 erfolgt über einen Metallring 7 und eine elektrisch isolierende Keramikhülse 8. Die zylindrische Zuleitung 5 ist über einen Kontaktstift 10, wobei die zylindrische Zuleitung 5 auch mit dem Kontaktstift 10 in einem Bauteil vereinigt sein kann, und ein geeignetes Kontaktierungselement 12, das vorzugsweise als Kontaktfeder oder als eine elektrisch leitfähige Pulverpackung oder als eine elektrisch leitfähige Tablette mit einem elastischen Federanteil, vorzugsweise aus Graphit, ausgebildet ist, mit dem keramischen Glühstift 14 verbunden. Das Innere der Glühkerze wird mittels einer Dichtpackung 15 gegenüber dem Brennraum abgedichtet. Die Dichtpackung 15 besteht aus einer elektrisch leitenden Kohlenstoff-Verbindung. Die Dichtpackung 15 kann aber auch durch Metalle, eine Mischung aus Kohlenstoff und Metall oder eine Mischung aus Keramik und Metall ausgebildet sein. Der Glühstift 14 besteht aus einer keramischen Heizschicht 18 und keramischen Zuleitungsschichten 20 und 21, wobei die beiden Zuleitungsschichten 20, 21 durch die Heizschicht 18 verbunden sind und mit der Heizschicht 18 zusammen die Leitschicht bilden. Die Zuleitungsschichten 20, 21 besitzen eine beliebige Form, auch die Heizschicht 18 kann eine beliebige Form besitzen. Vorzugsweise ist die Leitschicht u-förmig ausgebildet. Die Zuleitungschichten 20 und 21 sind über eine Isolationsschicht 22, die ebenfalls aus keramischem Material besteht, getrennt. In dem in Figur 1 dargestellten Ausführungsbeispiel ist der Glühstift 14 derart gestaltet, daß die Zuleitungsschichten 20 und 21 sowie die Heizschicht 18 außen am Glühstift 14 angeordnet sind. Es ist jedoch auch möglich, mindestens die Zuleitungsschichten 20 und 21 so anzuordnen, daß sie sich innerhalb des Glühstiftes befinden und noch von einer außen liegenden, keramischen, isolierenden Schicht bedeckt werden. Innerhalb des Kerzengehäuses ist der keramische Glühstift durch eine nicht dargestellte Glasschicht von den übrigen Bestandteilen der Glühstiftkerze 4, 8, 12, 15 isoliert. Um den elektrischen Kontakt zwischen dem Kontaktierungselement 12 und der Zuleitungsschicht 20 herzustellen, ist die Glasschicht an der Stelle 24 unterbrochen. Die Glasschicht ist ebenfalls unterbrochen, für einen elektrischen Kontakt zwischen Zuleitungsschicht 21 und Kerzengehäuse 4 über die Dichtpackung 15 an der Stelle 26. In diesem Ausführungsbeispiel wurde als bevorzugte Ausführungsform die Heizschicht 18 an der Spitze des Glühstiftes plaziert. Es ist jedoch auch denkbar, diese Heizschicht an einer anderen Stelle der Leitschicht zu plazieren. Die Heizschicht 18 sollte sich an der Stelle befinden, an der die größte Heizwirkung erzielt werden soll.
In Figur 2 ist nochmals das keramische Heizelement in einer Ansicht von der Seite gezeigt. Wie in Figur 1 ist die Ausführungsform, bei der sich die Heizschicht 18 an der Spitze des Glühstiftes befindet, dargestellt. Desweiteren sind die Zuleitungsschichten 20, 21 und die Isolationsschicht 22 zu erkennen. In dieser Seitenansicht ist die Ausführungsform gezeigt, in der die Leitschicht, bestehend aus den Zuleitungsschichten 20 und 21 und der Heizschicht 18, eine U-förmige Gestalt aufweist.
Der Betriebszustand, in dem der Glühstift zur Unterstützung der Verbrennung im Brennraum beheizt wird, wobei dieses Heizen beim Start der Brennkraftmaschine, während einer Nachglühphase, die sich vorzugsweise über 3 Minuten erstreckt, sowie während einer Zwischenglühphase erfolgt, wenn die Temperatur des Brennraums während des Betriebs der Brennkraftmaschine zu stark absinkt, wird Aktivbetrieb genannt.
Bei der keramischen Glühstiftkerze ist das Material der Heizschicht 18 so gewählt, daß der absolute elektrische Widerstand der Heizschicht 18 größer ist als der absolute elektrische Widerstand der Zuleitungsschichten 20, 21. (Im Folgenden soll unter der Bezeichnung Widerstand ohne Zusatz der absolute elektrische Widerstand verstanden werden.) Um Querströme zwischen der Leitschicht zu vermeiden, ist der Widerstand der Isolationsschicht so gewählt, daß er deutlich größer als der Widerstand der Heizschicht 18 und der Zuleitungsschichten 20, 21 ist.
In Figur 3 ist schematisch dargestellt, welche Geräte mit der Glühstiftkerze 1 kommunizieren. Dies ist zunächst das Motorsteuergerät 30, das eine Rechner- und eine Speichereinheit beinhaltet. Im Motorsteuergerät 30 werden die motorabhängigen Parameter der Glühstiftkerze gespeichert. Dies können beispielsweise die Widerstands-Temperaturkennfelder in Abhängigkeit von Last und Drehzahl des Motors sein. Der Speicher des Motorsteuergeräts enthält auch einen oder mehrere Temperatur-Referenzwerte für eine korrekte Verbrennung. Das Motorsteuergerät kann Parameter steuern, die die Verbrennung beeinflussen, beispielsweise die Einspritzdauer, den Einspitzbeginn und das Einspritzende des Kraftstoffs. Das Steuergerät 32 regelt eine Spannung, die vom Motorsteuergerät vorgegeben wurde. Diese Spannung stellt die für die Glühstiftkerze verwendete Gesamtspannung dar. Das Steuergerät 32 beherbergt außerdem ein Strommeßgerät, mit dem die Stromstärke, die über den Glühstift fließt, gemessen wird. Außerdem beinhaltet das Steuergerät 32 eine Speicher- und eine Recheneinheit. Das Motorsteuergerät 30 und das Steuergerät 32 können auch in einem Gerät vereinigt sein.
Die Figur 4 veranschaulicht die über die Glühstiftkerze auftretenden Widerstände. Der Widerstand 41 mit einem Wert R20 ist der Widerstand der keramischen Zuleitungsschicht 20. Der Widerstand 43 mit einem Wert R1 beinhaltet den Widerstand der Heizschicht. Der Widerstand 45 mit einem Wert R21 beinhaltet den Widerstand der keramischen Zuleitungsschicht 21. Hinzu kommen noch die Widerstände der übrigen Zu- und Rückleitungen, die jedoch alle klein gegenüber den Widerständen R20 und R21 sind und deshalb nicht berücksichtigt werden. Sie sind in Figur 4 nicht gezeichnet. Die Widerstände 41, 43 und 45 sind in Reihe verschaltet. Für die anhand von Figur 4 durchgeführten Betrachtungen sollen evtl. auftretende Querströme vernachlässigt werden. Somit ergibt sich der Gesamtwiderstand R aus der Summe der Widerstände R20, R1 und R21. Der Widerstand R1 bildet dabei den größten Summanden.
Vom Motorsteuergerät 30 wird anhand der dort enthaltenen Kennfelder und der gewünschten Temperatur des Glühstiftes eine Effektivspannung vorgegeben, die vom Steuergerät 32 geregelt wird. Aufgrund der Temperaturabhängigkeit der Widerstände 41, 43 und 45 stellt sich ein Strom I über die Glühstiftkerze, also über den Widerstand R, ein, der im Steuergerät 32 gemessen wird. Die Temperaturabhängigkeit des Gesamtwiderstandes R = R20 + R1 + R21 ergibt sich dabei hauptsächlich aus der Temperaturabhängigkeit des Widerstandes R1, da dieser Widerstand den größten Wert besitzt. Die Temperaturabhängigkeit der Widerstände R20, R1 und R21 ist über den gesamten Betriebsbereich der Glühstiftkerze zwischen Raumtemperatur und einer Temperatur von ca. 1400°C nahezu konstant. Die Temperatur des Brennraums liegt im Betriebsbereich der Glühstiftkerze.
Die gemessene Stromstärke I wird vom Steuergerät 32 anhand eines gespeicherten Kennfeldes in eine Temperatur umgerechnet, die sich aufgrund des deutlich höheren Widerstandes R1 gegenüber den Widerständen R20 und R21 hauptsächlich aus der Temperatur der Heizschicht 18 ergibt. Diese Temperatur wird an das Motorsteuergerät 30 zurückgegeben, wobei aufgrund der ermittelten Temperatur die Effektivspannung für die Glühstiftkerze neu vorgegeben wird.
Es ist ebenfalls möglich, die Temperatur der Heizschicht 18 des Glühstiftes anderweitig auszugeben, beispielsweise auf einem Display. Weiterhin ist es möglich, anhand der ermittelten Temperatur beispielsweise unter Berücksichtigung von einer oder mehreren, im Motorsteuergerät 30 gespeicherten, Referenztemperaturen Schlußfolgerungen über die Qualität der Verbrennung zylinderspezifisch herzuleiten. Im Falle einer nicht korrekten Verbrennung können vom Steuergerät zylinderspezifische Maßnahmen ergriffen werden, die den Verbrennungsvorgang beeinflussen und so wieder für eine korrekte Verbrennung sorgen können. Es könnte dann beispielsweise die Einspritzdauer, der Einspritzbeginn oder der Einspritzdruck des Kraftstoffs variiert werden.
In einem weiteren Ausführungsbeispiel ist es möglich, auch im Passivbetrieb der Glühstiftkerze, d.h. nach der Nachglühzeit, wenn sich die Glühstiftkerze nicht mehr im Aktivbetrieb befindet, eine Messung der Temperatur des Brennraums vorzunehmen. Hier wird eine entsprechend niedrigere Effektivspannung vorgegeben und, analog zum Aktivbetrieb der sich über den Widerstand R einstellende Strom I gemessen und so auf die Temperatur des Heizbereichs geschlossen, der dann der Temperatur des Brennraums entspricht. Ebenso wie im Aktivbetrieb kann die Temperatur des Brennraums zylinderspezifisch mit einem oder mehreren im Motorsteuergerät gespeicherten Referenzwerten für eine korrekte Verbrennung verglichen werden. Sollte die Temperatur des Brennraums nicht einer korrekten Verbrennung entsprechen, können, wie für den aktiven Betrieb der Glühstiftkerze erläutert, Maßnahmen ergriffen werden, die wieder für eine korrekte Verbrennung sorgen, beispielsweise eine Variation der Einspritzdauer, des Einspritzbeginns und des Einspritzdrucks des Kraftstoffes.
Der Wert der Widerstände R20, R1 und R21 sowie deren Temperaturabhängigkeit wird wegen R = ρ * 1 / A , wobei 1 die Länge des Widerstandes und A die Querschnittsfläche darstellt,
durch die Temperaturabhängigkeit des spezifischen Widerstandes ρ eingestellt. Dabei ergibt sich die Temperaturabhängigkeit aus ρ(T) = ρ0(T0) * (1 + α(T) * (T-T0)).
Es bezeichnet ρ(T) den spezifischen Widerstand als Funktion der Temperatur T, ρ0 den spezifischen Widerstand bei der Raumtemperatur T0 und α(T) einen Temperaturkoeffizienten, der temperaturabhängig ist.
Um eine unterschiedliche Temperaturabhängigkeit der Widerstände der Zuleitungen R20 und R21 gegenüber dem Widerstand R1 zu erreichen, kann der spezifische Widerstand der Heizschicht 18 so gewählt werden, daß ρ0 der Heizschicht größer ist als ρ0 der Zuleitungsschichten. Oder aber der Temperaturkoeffizient α der Heizschicht 18 kann im Betriebsbereich der Glühstiftkerze größer sein als der Temperaturkoeffizient α der Zuleitungsschichten 20, 21. Es ist auch möglich, sowohl ρ0 als auch α für die Heizschicht 18 für den Betriebsbereich der Glühstiftkerze größer zu wählen als für Zuleitungsschichten 20, 21.
In einem bevorzugten Ausführungsbeispiel wird die Zusammensetzung der Heizschicht 18 und der Zuleitungsschichten 20, 21 so gewählt, daß das ρ0 der Zuleitungsschichten 20, 21 mindestens 10 mal kleiner als das ρ0 der Heizschicht 18 ist. Der Temperaturkoeffizient α der Heizschicht 18 und der Zuleitungsschichten 20, 21 ist näherungsweise gleich. Somit ist eine Genauigkeit der Temperaturmessung von 20 Kelvin im gesamten Betriebsbereich der Glühstiftkerze realisiert.
In einem bevorzugten Ausführungsbeispiel ist der spezifische Widerstand der Isolationsschicht 22 im gesamten Betriebsbereich der Glühstiftkerze mindestens 10 mal größer als der spezifische Widerstand der Heizschicht 18.
In einem bevorzugten Ausführungsbeispiel bestehen Heizschicht, die Zuleitungsschichten und die Isolationsschicht aus keramischen Verbundgefügen, die mindestens zwei der Verbindungen Al2O3, MoSi2, Si3N4 und Y2O3 enthält. Diese Verbundgefüge sind durch einen ein- oder mehrstufigen Sinterprozeß erhältlich. Der spezifische Widerstand der Schichten kann dabei vorzugsweise durch den MoSi2-Gehalt und/oder die Korngröße von MoSi2 bestimmt werden, vorzugsweise ist der MoSi2-Gehalt der Zuleitungsschichten 20, 21 höher als der MoSi2-Gehalt der Heizschicht 18, wobei die Heizschicht 18 wiederum einen höheren MoSi2-Gehalt als die Isolationsschicht 22 aufweist.
In einem weiteren Ausführungsbeispiel bestehen Heizschicht 18, Zuleitungsschichten 20, 21 und die Isolationsschicht 22 aus einer Komposit-Precursor-Keramik mit unterschiedlichen Anteilen an Füllstoffen. Die Matrix dieses Materials besteht dabei aus Polysiloxanen, Polysilsequioxanen, Polysilanen oder Polysilazanen, die mit Bor oder Aluminium dotiert sein können und die durch Pyrolyse hergestellt werden. Den Füllstoff bilden für die einzelnen Schichten mindestens eine der Verbindungen Al2O3, MoSi2 und SiC. Analog zu dem obengenannten Verbundgefüge kann vorzugsweise der MoSi2-Gehalt und/oder die Korngröße von MoSi2 den spezifischen Widerstand der Schichten bestimmen. Vorzugsweise wird der MoSi2-Gehalt der Zuleitungsschichten 20, 21 höher als der MoSi2-Gehalt der Heizschicht 18 eingestellt, wobei die Heizschicht 18 wiederum einen höheren MoSi2-Gehalt als die Isolationsschicht 22 aufweist.
Die Zusammensetzungen der Isolationsschicht, der Zuleitungsschichten und der Heizschicht werden in den oben angegebenen Ausführungsbeispielen so gewählt, daß ihre thermischen Ausdehnungskoeffizienten und die während des Sinter- bzw. Pyrolyseprozesses auftretenden Schrumpfungen der einzelnen Zuleitungs-, Heiz- und Isolationsschichten gleich sind, so daß keine Risse im Glühstift entstehen.
In Figur 5 ist ein weiteres bevorzugtes Ausführungsbeispiel der Erfindung anhand eines schematischen Längsschnitts durch eine erfindungsgemäße Glühstiftkerze 1 dargestellt. Dabei bedeuten in den vorangegangenen Figuren verwendete gleiche Bezugszeichen gleiche Bauteile, die hier nicht noch einmal erläutert werden. Analog zu Figur 1 weist die in Figur 5 dargestellte Glühstiftkerze einen Rundstecker 2 auf, der sich in elektrischem Kontakt mit der zylindrischen Zuleitung 5 befindet. Die zylindrische Zuleitung 5 ist über den Kontaktstift 10 und das Kontaktierungselement 12 mit dem keramischen Glühstift 14 elektrisch verbunden. Die zylindrische Zuleitung 5, der Kontaktstift 10, das Kontaktierungselement 12 und der keramische Glühstift 14 sind hintereinander in dieser Reihenfolge, wie in Figur 5 dargestellt, in Richtung des Brennraums angeordnet. Der keramische Glühstift 14 weist in der in Figur 5 dargestellten bevorzugten Ausführungsform am brennraumfernen Ende einen Zapfen 11 auf. Den Zapfen 11 bildet eine Verlängerung des Glühstifts 14 in Richtung des brennraumfernen Endes durch eine zylinderförmige Herausführung der keramischen Zuleitungsschichten 20, 21 und der Isolationsschicht 22, wobei der Zapfen 11 einen geringeren Außendurchmesser aufweist als der sich in Richtung des Brennraums anschließende Teil des Glühstifts 14, der Bund 13. Es ist weiterhin nicht notwendig, daß der Glühstift 14 am brennraumseitigen Ende eine Heizschicht 18 aufweist. In einem bevorzugten Ausführungsbeispiel können die beiden Zuleitungsschichten 20 und 21 lediglich am brennraumseitigen Ende des Glühstifts derart verbunden sein, wie dies über das Heizelement 18 erfolgt.
Die zylindrische Zuleitung 5 und der Kontaktstift 10 bilden zusammen das Anschlußelement, das auch einstückig ausgebildet sein kann. Am brennraumseitigen Ende des Anschlußelements ist ein Flansch vorgesehen, der zusammen mit dem Zapfen 11 das Kontaktierungselement 12 in Richtung der Achse der Glühstiftkerze begrenzt.
Das Kontaktierungselement 12, das aus einer Tablette aus elektrisch leitfähigem Pulver besteht, ist vorzugsweise als Graphit oder einem Metallpulver oder einem elektrisch leitenden Keramikpulver ausgebildet. In einer weiteren bevorzugten Ausführungsform kann die Tablette aus elektrisch leitfähigem Pulver auch mindestens aus einem überwiegenden Anteil aus Graphit oder aus dem Metallpulver oder aus dem elektrisch leitenden Keramikpulver bestehen. Aufgrund der Ausbildung des Kontaktierungselements 12 als elektrisch leitfähiges Pulver gewährleistet das Kontaktierungselement 12 eine federnde Kontaktierung, die in der Lage ist, hohe Ströme ohne thermische Zerstörung zu tragen. Die große Oberfläche des Pulvers stellt eine gute Wärmeleitfähigkeit sicher. Aus dem gleichen Grund kann auch ein geringer Kontaktwiderstand bei guter Leitfähigkeit realisiert werden. Graphit und keramische leitfähige Materialen sind außerdem korrosionsbeständig. Der elastische Federanteil der Tablette aus elektrisch leitfähigem Pulver gewährleistet, daß die Tablette thermische Bewegungen der Bauteile durch unterschiedliche Wärmeausdehnungskoeffizienten ausgleicht.
Seitlich wird die Tablette aus elektrisch leitfähigem Pulver durch eine zylindrische Spannhülse 9 begrenzt, die hier anstelle der in Figur 1 dargestellten Keramikhülse 8 als ein selbständiges Bauteil vorhanden ist. Die Spannhülse 9 wird analog zur Keramikhülse 8 als isolierendes Bauteil vorgesehen, es besteht in einem bevorzugten Ausführungsbeispiel aus keramischem Material. Bei der Herstellung der Glühstiftkerze wird die Tablette aus elektrisch leitfähigem Pulver fest zwischen dem Flansch des Anschlußelements auf der brennraumfernen Stirnseite, dem Zapfen 11 des Glühstifts 14 auf der brennraumseitigen Stirnseite und der Spannhülse 9 eingepreßt. Die Einspannung zwischen diesen festen Bauteilen, insbesondere der Festanschlag der Spannhülse 9 auf der Keramikhülse 8, d.h. die limitierte Verpreßhöhe, verhindert, daß die umgebende Spannhülse 9 nicht durch einen zu großen Innendruckaufbau aufgrund der Verpressung des Kontaktierungselements 12 reißt. Die durch die Einspannung der Tablette aus elektrisch leitfähigem Pulver erreichte axiale Vorspannung des elastischen Federanteils können thermische Dehnungen, Setzverhalten und Schwingungsbeanspruchung bei Schüttelbeanspruchung der Glühstiftkerze ausgeglichen werden.
Eine Glühstiftkerze nach Figur 5 mit einer Tablette aus elektrisch leitfähigem Pulver als Kontaktierungselement 12 wird folgendermaßen hergestellt. Zuerst wird die Dichtpackung 15 von der brennraumseitigen Spitze des keramischen Glühstifts 14 über den keramischen Glühstift 14 geführt und als Verbund in das Kerzengehäuse 4 vom brennraumfernen Ende her eingeführt. Anschließend werden das Kontaktierungselement 12, die Spannhülse 9, das Anschlußelement 5, 10, die Keramikhülse 8 und der Metallring 7 in einem Halteelement angeordnet und danach ebenfalls vom brennraumfernen Ende in das Kerzengehäuse 4 eingeführt. Dann werden mittels einer axialen Kraft, die auf das brennraumferne Ende des Metallrings 7 ausgeübt wird, die im Kerzengehäuse befindlichen Bestandteile verpreßt, insbesondere wird das Kontaktierungselement 12, das aus einer Tablette aus elektrisch leitfähigem Pulver besteht, und die Dichtpackung 15 verpreßt. Dabei wird auf das Kontaktierungselement 12 nur so lange eine Kraft ausgeübt, bis den Kontaktstift 10 des Anschlußelements 5, 10 vollständig in die Spannhülse 9 gepreßt hat und die Stirnseite der Keramikhülse 8 auf der Stirnseite der Spannhülse 9 aufliegt. Die Verpressung der Tablette aus elektrisch leitfähigem Pulver stellt außerdem sicher, daß der elastische Federanteil der Tablette vorgespannt wird. Anschließend wird mittels einer radial von außen auf das Kerzengehäuse 4 aufgebrachten Kraft der Metallring 7 verstemmt. Danach werden die Dichtung 3 und der Rundstecker 2 montiert und ebenfalls mittels einer radial von außen auf das Kerzengehäuse 4 aufgebrachten Kraft verstemmt.

Claims (5)

  1. Glühstiftkerze (1) mit einem keramischen Glühstift (14) und einem der Stromzuführung dienenden Anschlußelement (5, 10), wobei das Anschlußelement mit dem keramischen Glühstift (14) über ein Kontaktierungselement (12) elektrisch verbunden ist, dadurch gekennzeichnet, daß das Kontaktierungselement (12) als eine Tablette aus elektrisch leitfähigem Pulver ausgebildet ist.
  2. Glühstiftkerze nach Anspruch 1 dadurch gekennzeichnet, daß die Tablette aus elektrisch leitfähigem Pulver einen axial vorgespannten elastischen Federanteil aufweist.
  3. Glühstiftkerze nach Anspruch 1 dadurch gekennzeichnet, daß das elektrisch leitfähige Pulver aus Graphit oder aus Metallpulver oder aus elektrisch leitfähigem Keramikpulver oder zumindestens aus einem überwiegendem Anteil dieser Materialien besteht.
  4. Verfahren zur Herstellung einer Glühstiftkerze nach Anspruch 1 mit folgenden Schritten:
    a)Einführen einer Dichtpackung (15) von der brennraumseitigen Spitze des keramischen Glühstifts (14) über den keramischen Glühstift (14) und Ausbildung eines Verbunds, wobei dieser Verbund in ein Kerzengehäuse (4) eingeführt wird,
    b) Anordnen der Tablette aus elektrisch leitfähigem Pulver, einer Spannhülse (9), des Anschlußelements (5, 10), einer Keramikhülse (8) und eines Metallrings (7) in einem Halteelement und Einführung desselben in das Kerzengehäuse (4),
    c) Verpressung der im Kerzengehäuse (4) befindlichen Bestandteile mittels einer axialen Kraft, die auf das brennraumferne Ende des Metallrings (7) ausgeübt wird,
    d) Verstemmung des Metallrings (7) mittels einer radial von außen auf das Kerzengehäuse (4) aufgebrachten Kraft.
  5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, daß durch die Verpressung der im Kerzengehäuse (4) befindlichen Bestandteile mittels einer axialen Kraft auf einen elastischen Federanteil der Tablette aus elektrisch leitfähigem Pulver eine axiale Vorspannung aufgebracht wird.
EP00960315A 1999-08-27 2000-07-25 Keramische glühstiftkerze Expired - Lifetime EP1125086B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19940668 1999-08-27
DE19940668 1999-08-27
DE10020328 2000-04-26
DE10020328A DE10020328A1 (de) 1999-08-27 2000-04-26 Keramische Glühstiftkerze
PCT/DE2000/002420 WO2001016529A1 (de) 1999-08-27 2000-07-25 Keramische glühstiftkerze

Publications (2)

Publication Number Publication Date
EP1125086A1 EP1125086A1 (de) 2001-08-22
EP1125086B1 true EP1125086B1 (de) 2004-04-21

Family

ID=26005464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00960315A Expired - Lifetime EP1125086B1 (de) 1999-08-27 2000-07-25 Keramische glühstiftkerze

Country Status (9)

Country Link
US (1) US6759631B1 (de)
EP (1) EP1125086B1 (de)
JP (1) JP4567265B2 (de)
AT (1) ATE265023T1 (de)
CZ (1) CZ300971B6 (de)
ES (1) ES2220531T3 (de)
HU (1) HU224369B1 (de)
PL (1) PL347434A1 (de)
WO (1) WO2001016529A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045273A1 (de) 2009-10-02 2011-04-07 Robert Bosch Gmbh Verfahren zum Herstellen einer Glühkerze

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10228076A1 (de) * 2002-06-20 2004-01-08 Friedrich-Schiller-Universität Jena Verfahren zur Herstellung eines stabilen elektrischen Kontaktes an ein vorzugsweise stiftförmiges keramisches Element, insbesondere bei Glühkerzen für Dieselmotoren
DE10339641A1 (de) * 2003-08-28 2005-03-24 Robert Bosch Gmbh Glühstiftkerze mit besonders eingebettetem Kontaktelement
US7115836B2 (en) * 2004-06-29 2006-10-03 Ngk Spark Plug Co., Ltd. Glow plug
DE102005017802A1 (de) * 2005-04-18 2006-10-19 Robert Bosch Gmbh Glühstiftkerze mit Brennraumdrucksensor und Dichtelement
US7607206B2 (en) * 2005-12-29 2009-10-27 Federal Mogul World Wide, Inc. Method for forming layered heating element for glow plug
DE102006048225A1 (de) * 2006-10-11 2008-04-17 Siemens Ag Verfahren zur Bestimmung einer Glühkerzentemperatur
CN101743060B (zh) * 2007-06-01 2014-03-12 微宏公司 包括金属卤化物或金属卤氧化物的光降解催化剂和光降解催化剂前驱体
JP5188506B2 (ja) * 2007-10-29 2013-04-24 京セラ株式会社 セラミックヒータおよびこれを備えたグロープラグ
US20090184101A1 (en) * 2007-12-17 2009-07-23 John Hoffman Sheathed glow plug
WO2009104401A1 (ja) * 2008-02-20 2009-08-27 日本特殊陶業株式会社 セラミックヒータ及びグロープラグ
US20100059496A1 (en) * 2008-09-08 2010-03-11 Federal-Mogul Ignition Company Metal sheath glow plug
US20100082219A1 (en) * 2008-09-30 2010-04-01 Gm Global Technology Operations, Inc. Engine Using Glow Plug Resistance For Estimating Combustion Temperature
CN102216689A (zh) * 2008-10-23 2011-10-12 费德罗-莫格尔点火公司 带有改良密封的电热塞,其热探头组件及其构造方法
DE102009028948A1 (de) * 2009-08-27 2011-03-03 Robert Bosch Gmbh Glühkerze zum Einsatz in einem Verbrennungsmotor
DE102013215269A1 (de) * 2013-08-02 2015-02-05 Robert Bosch Gmbh Glühstiftkerze mit einem Heizelement mit innen liegender Kontaktierung, und Herstellungsverfahren derselben
FR3025153B1 (fr) * 2014-09-01 2016-12-09 Bosch Gmbh Robert Bougie de prechauffage
DE102016216963A1 (de) 2016-09-07 2018-03-08 Robert Bosch Gmbh Glührohr für eine Glühstiftkerze und Verfahren zur Herstellung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281451A (en) * 1978-02-10 1981-08-04 General Motors Corporation Electric heater -method of making
JPS54153935A (en) * 1978-05-26 1979-12-04 Hitachi Chem Co Ltd Glow plug
US4437440A (en) * 1979-06-20 1984-03-20 Ngk Spark Plug Co., Ltd. Auxiliary combustion chamber preheating device
DE2937884A1 (de) 1979-09-19 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Dieselmotor mit gluehkerze
JPS61107013A (ja) * 1984-10-31 1986-05-24 Ngk Spark Plug Co Ltd セラミツクグロ−プラグ
JPS6361662U (de) * 1986-10-09 1988-04-23
JPS63179448U (de) * 1987-05-08 1988-11-21
JPH0721894Y2 (ja) * 1989-02-13 1995-05-17 自動車機器株式会社 デイーゼルエンジン用予熱装置
JPH03175210A (ja) 1989-09-11 1991-07-30 Jidosha Kiki Co Ltd セラミツクヒータ型グロープラグ
GB2282640A (en) * 1993-10-05 1995-04-12 Wellman Automotive Products Li Glow plug
DE4335292A1 (de) * 1993-10-15 1995-04-20 Beru Werk Ruprecht Gmbh Co A Glühkerze
JPH09112904A (ja) * 1995-10-19 1997-05-02 Jidosha Kiki Co Ltd ディーゼルエンジン用グロープラグ
JPH10208853A (ja) * 1996-11-19 1998-08-07 Ngk Spark Plug Co Ltd セラミックヒータ、およびその製造方法
JPH10332149A (ja) * 1997-03-31 1998-12-15 Ngk Spark Plug Co Ltd セラミックヒータ
DE19844347A1 (de) 1998-09-28 2000-03-30 Bosch Gmbh Robert Keramische Glühstiftkerze
EP1162407B1 (de) * 2000-08-11 2002-01-30 Federal-Mogul Ignition Srl Glühkerze für Brennkraftmaschinen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009045273A1 (de) 2009-10-02 2011-04-07 Robert Bosch Gmbh Verfahren zum Herstellen einer Glühkerze

Also Published As

Publication number Publication date
JP4567265B2 (ja) 2010-10-20
HUP0103763A3 (en) 2002-04-29
US6759631B1 (en) 2004-07-06
CZ300971B6 (cs) 2009-09-30
WO2001016529A1 (de) 2001-03-08
ATE265023T1 (de) 2004-05-15
CZ20011473A3 (cs) 2002-02-13
JP2003508713A (ja) 2003-03-04
HU224369B1 (hu) 2005-08-29
EP1125086A1 (de) 2001-08-22
HUP0103763A2 (hu) 2002-03-28
PL347434A1 (en) 2002-04-08
ES2220531T3 (es) 2004-12-16

Similar Documents

Publication Publication Date Title
EP1125086B1 (de) Keramische glühstiftkerze
EP1214551B1 (de) Keramische glühstiftkerze
DE102005051817B4 (de) Druckmessglüheinrichtung, insbesondere Druckmessglühkerze
DE69606009T2 (de) Keramisches Bauteil vom Hülsentyp und Verfahren zur Herstellung desselben
DE19737396A1 (de) Glühkerze
DE10020328A1 (de) Keramische Glühstiftkerze
DE3237628A1 (de) Sauerstoff-sensor mit keramischem heizelement und verfahren zu seiner herstellung
EP1966538A1 (de) Glühstiftkerze
DE19738915A1 (de) Glühkerze
DE4010609A1 (de) Zuendkerze mit temperatur- und druckerfassung
EP0857281B1 (de) Glühstiftkerze
DE3843863C2 (de)
WO2021197752A1 (de) Verfahren zum ermitteln eines zustandsparameters eines abgassensors
DE19959766A1 (de) Glühstiftkerze
EP1611436A1 (de) Messfühler
DE3203149C2 (de)
WO2009130000A2 (de) Druckmessglühkerze
DE3231781A1 (de) Gluehkerze fuer brennkraftmaschinen
WO2017102279A1 (de) Sensor zur anwendung in einem abgasstrang
DE2633622A1 (de) Gluehstiftkerze fuer brennkraftmaschinen
DE102007042157A1 (de) Zündeinrichtung für ein gasförmiges Kraftstoff-Luft-Gemisch
DE9112300U1 (de) Glühkerze mit Sensorelement
DE3138547A1 (de) Temperaturregeleinrichtung fuer einen sauerstoffuehler
DE102015225752A1 (de) Sensor zur Anwendung in einem Abgasstrang
DE19956019A1 (de) Glühkerze vom Typ einer keramischen Heizvorrichtung und Verfahren zur Herstellung dieser Glühkerze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: SI

17P Request for examination filed

Effective date: 20010910

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040421

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006145

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040723

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040725

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040725

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040811

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2220531

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
BERE Be: lapsed

Owner name: ROBERT *BOSCH G.M.B.H.

Effective date: 20040731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050124

BERE Be: lapsed

Owner name: ROBERT *BOSCH G.M.B.H.

Effective date: 20040731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090724

Year of fee payment: 10

Ref country code: FR

Payment date: 20090720

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090724

Year of fee payment: 10

Ref country code: CH

Payment date: 20090727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090728

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100725

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100725

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100726

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180928

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006145

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201