EP1123381B1 - Wasch- und reinigungsmittelformkörper/verpackung-kombination - Google Patents

Wasch- und reinigungsmittelformkörper/verpackung-kombination Download PDF

Info

Publication number
EP1123381B1
EP1123381B1 EP99950709A EP99950709A EP1123381B1 EP 1123381 B1 EP1123381 B1 EP 1123381B1 EP 99950709 A EP99950709 A EP 99950709A EP 99950709 A EP99950709 A EP 99950709A EP 1123381 B1 EP1123381 B1 EP 1123381B1
Authority
EP
European Patent Office
Prior art keywords
weight
tablet
combination according
acid
laundry detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99950709A
Other languages
English (en)
French (fr)
Other versions
EP1123381A1 (de
Inventor
Andreas Lietzmann
Markus Semrau
Wolfgang Barthel
Heinke Jebens
Werner Künzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7885140&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1123381(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1123381A1 publication Critical patent/EP1123381A1/de
Application granted granted Critical
Publication of EP1123381B1 publication Critical patent/EP1123381B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin

Definitions

  • the present invention relates to tablets containing alkylbenzenesulfonate (s) and disintegration aids based on cellulose and to ensure better disintegration times combined with a special packaging system at the same time high hardness become.
  • the invention relates to such specially packaged tablets as Detergent tablets, detergent tablets, bleach tablets or water softener tablets with alkylbenzenesulfonate (s) and disintegration aid (s) based on cellulose.
  • the delayed disintegration of the tablet also has the disadvantage that usual detergent tablets are not on the Ein Stammier of household washing machines Rinse, as the tablets are not in a sufficiently fast time in Secondary particles, which are small enough to disintegrate from the dispenser compartment, decay Wash tub to be washed.
  • the international patent application WO98 / 40464 (Unilever) describes a combination of at least one tablet of compressed particulate detergent, which is stored at least 24 hours h in a packaging system having a moisture permeability rate of less than 20 g / m 2/24 h. According to this document, this combination increases the hardness of the tablets during storage, while the dissolution times are reduced. Although the disintegration time of the tablets according to the information in this document under mechanical action (stirring) is measured, all disintegration times are well over 2 minutes. Such high disintegration times make the tablets disclosed in this document unusable for metering via the dispensing chamber of household washing machines, since they do not disintegrate sufficiently quickly and thus can not be flushed. The use of disintegration aids based on cellulose is also not mentioned in this document.
  • Phosphate and chlorine-free detergent tablets are the subject of WO95 / 04804 (La Marina).
  • the tablets disclosed in this document likewise contain no cellulose-based disintegration aids such as the detergent tablets based on effervescent systems described in WO 97/35955 (Kärcher).
  • tablets in which microcrystalline to fibrous cellulose is used are disclosed in DE 2321693 (Henkel).
  • the fibrous cellulose acts as a binder depending on the fiber length, for example, and is used in the tablets without prior granulation.
  • the present invention was based on the object, the advantages of the use of alkylbenzenesulfonates also to use in detergent tablets, which Contain cellulosic disintegration aids while providing tablets, which are characterized by high hardness with short decay times.
  • the tablets should be so Have short disintegration times that a dosage on the dispenser usually household Washing machines easily and residue-free is possible.
  • the subject of the present invention is a combination of a detergent tablet (s); containing alkylbenzenesulfonate (s) and cellulose-based disintegration aids in granular, cogranulated or compacted form, in amounts of from 0.5 to 10% by weight, and a packaging system containing the detergent tablet (s), characterized in that the packaging system has a moisture vapor transmission rate from 0.1 g / m 2 / day to less than 20 g / m 2 / day when the packaging system is stored at 23 ° C and a relative equilibrium moisture content of 85%.
  • the packaging system of the detergent tablet (s) combination and packaging system according to the invention has a moisture vapor transmission rate of 0.1 g / m 2 / day to less than 20 g / m 2 / day when the packaging system is at 23 ° C and a relative equilibrium moisture content of 85 % is stored.
  • the temperature and humidity conditions mentioned are the test conditions specified in DIN standard 53122, with minimum deviations permissible according to DIN 53122 (23 ⁇ 1 ° C, 85 ⁇ 2% relative humidity).
  • the moisture vapor transmission rate of a given packaging system or material can be determined by other standard methods and is also, for example, in the ASTM standard E-96-53T (test for measuring water vapor transmission of material in sheet form) and TAPPI standard T464 m-45 ("Water Vapor Permeability of Sheet Materials at High Temperature Humidity").
  • the measuring principle of common methods is based on the water absorption of anhydrous calcium chloride, which is stored in a container in the appropriate atmosphere, the container is sealed at the top with the material to be tested.
  • the relative equilibrium moisture in the measurement of moisture vapor transmission rate in the present invention is 85% at 23 ° C.
  • the absorption capacity of air for water vapor increases with the temperature up to a respective maximum content, the so-called saturation content, and is expressed in g / m 3 .
  • saturation content For example, 1 m 3 of air is saturated by 17 ° with 14.4 g of water vapor, at a temperature of 11 ° saturation is already present with 10 g of water vapor.
  • the relative humidity is the percentage expressed ratio of the actually existing water vapor content to the saturation content corresponding to the prevailing temperature.
  • the relative equilibrium humidity of 85% at 23 ° C can be, for example, in laboratory chambers with humidity control to +/- 2% r.L. depending on the device type. set exactly. Also over saturated solutions of certain salts form in closed systems at a given temperature constant and well-defined relative humidities, the on the phase equilibrium between partial pressure of the water, saturated solution and soil body based.
  • Packaging systems preferred in the present invention have a moisture vapor transmission rate of from 0.5 g / m 2 / day to less than 15 g / m 2 / day.
  • the packaging system of the combination according to the invention encloses depending on the embodiment the invention one or more detergent tablets. It is according to the invention preferred to make either a tablet such that it is an application unit of the washing and cleaning agent, and to pack this tablet individually, or to pack the number of tablets in a single packaging unit Application unit includes. At a nominal dosage of 80 g washing and cleaning agent So it is possible according to the invention to produce a tablet weighing 80 g and individually pack, but it is also possible according to the invention, two each 40 g heavy Pack detergent tablets in a package to form a present invention Combination to arrive. Of course, this principle can be extended so that According to the invention combinations also three, four, five or more detergent tablets contained in a packaging unit. Of course, two or three more tablets in a package have different compositions. On this way it is possible to spatially separate certain components from one another For example, to avoid stability problems.
  • the packaging system of the combination according to the invention can be made of the most diverse Materials exist and assume any external forms. For economic reasons however, for reasons of ease of processing, packaging systems are preferred in which the packaging material has a low weight, easy to process and is inexpensive. In preferred combinations according to the invention the packaging system from a bag or sack. single layer or laminated Paper and / or plastic film.
  • the detergent tablet may be unsorted, i. as loose bulk, in one Pouch can be filled from the mentioned materials. It is for aesthetic reasons and preferred for sorting the combinations in secondary packaging, the detergent tablet one by one or several sorted into sacks or bags to fill.
  • the term "flow pack” has become common in the art. Such "flow packs” can then - optionally again sorted - optionally packed in outer packaging become what the compact offering form of the tablet underlines.
  • the preferably used as packaging system bags or bags of single-layer or laminated paper or plastic film can be designed in a variety of ways, such as inflated bag without center seam or bags with center seam, which closed by heat (heat fusion), adhesives or adhesive tapes become.
  • Single-layer bag or bag materials are the known papers, which may optionally be impregnated, as well as plastic films, which may optionally be coextruded.
  • Plastic films which can be used in the context of the present invention as a packaging system, for example, in Hans Domining House "The Plastics and their properties", 3rd edition, VDI Verlag, Dusseldorf, 1988, page 193 indicated.
  • the figure 111 shown there also provides clues to the water vapor permeability of the materials mentioned.
  • a bag or bags of single-layer or laminated Plastic film with a thickness of 10 to 200 .mu.m, preferably from 20 to 100 .mu.m and in particular from 25 to 50 microns.
  • packaging system indicates in the context of the present invention always the primary packaging of the tablets, i. the packaging, which on its inside directly with the tablet surface is in contact. At an optional secondary packaging are no requirements so that all the usual materials and systems are used here can.
  • the detergent tablets of the invention Combination depending on their intended use further ingredients of washing and Detergents in varying amounts. Regardless of the purpose of the According to the invention, tablets are preferred in that the detergent tablets have a relative Equilibrium moisture content of less than 30% at 35 ° C / exhibit.
  • the relative equilibrium moisture content of the detergent tablet can be standardized Be determined in the context of the present investigations
  • a water-impermeable 1-liter jar with a lid, which has a closable opening for the introduction of samples has been filled with a total of 300 g detergent tablets and kept at a constant 23 ° C for 24 h to ensure a uniform temperature of vessel and substance -
  • the water vapor pressure in the room above the tablets can then with a hygrometer (Hygrotest 6100, Testoterm Ltd., England).
  • the water vapor pressure is now every 10th Minutes until two consecutive values show no deviation (Equilibrium moisture).
  • the o.g. Hygrometer allows a direct display of the recorded Values in% relative humidity.
  • these contain a disintegration aid based on cellulose.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted. Detergent tablets containing disintegrating agents in granular or optionally cogranulated form are described in German Patent Application DE 197 10 254 (Henkel).
  • the detergent tablet (s) comprises the disintegration aid based on cellulose in granular, cogranulated or compacted form, in amounts of from 3 to 7% by weight and in particular from 4 to 6% by weight, in each case on tablet weight, contains / contains.
  • Microcrystalline cellulose can be used. This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only the amorphous regions (about 30% of the total cellulose mass) attack the celluloses and completely dissolve, leaving the crystalline areas (about 70%) undamaged. A subsequent deaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline celluloses having primary particle sizes of about 5 microns and, for example, compactable into granules with an average particle size of 200 microns are.
  • Disintegration-promoting systems are often also called “detergent tablets” "Showering systems” used.
  • oligomeric oligocarboxylic acids such as succinic acid, maleic acid and especially citric acid in combination used with carbonates or bicarbonates.
  • the detergent tablet is not a "effervescent tablet", i.e. preferred detergent tablets are free of oligomeric oligocarboxylic acids, especially citric acid.
  • Such coated detergent tablets can be sprayed on a melt or solution of the coating material on the tablet body or Immerse the tablet body in the melt or solution are prepared.
  • disintegration aid based on cellulose and the alkylbenzenesulfonate in combination with the packaging system and optionally supported by the use of further disintegration aids (see above)
  • detergent tablets are produced which at high hardnesses in water extremely quickly disintegrate into their components.
  • Alkylbenzenesulfonates as powerful anionic Surfactants have been known since the thirties of this century. At that time were by monochlorination of kogasin fractions and subsequent Friedel-Crafts alkylation Alkylbenzenes prepared that sulfonated with oleum and neutralized with sodium hydroxide solution were.
  • Linear alkylbenzenesulfonates are prepared from linear alkylbenzenes, which in turn are accessible from linear olefins.
  • petroleum fractions are industrially separated with molecular sieves into the n-paraffins of the desired purity and dehydrogenated to the n-olefins, resulting in both ⁇ - and i-olefins.
  • the resulting Olefins are then in the presence of acidic catalysts with benzene to the alkylbenzenes implemented, with the choice of Friedel-Crafts catalyst influence the isomer distribution of the resulting linear alkylbenzenes has:
  • Aluminum trichloride the content of the 2-phenyl isomers in the mixture with the 3-, 4-, 5 and other isomers at about 30 wt .-%, however, is hydrogen fluoride as a catalyst used, the content of 2-phenyl isomer can be reduced to about 20 wt .-%.
  • the neutralizing agent By choosing the neutralizing agent, a wide variety of salts, ie alkylbenzenesulfonates, can be obtained from the ABSS. For reasons of economy, it is preferred in this case to prepare and use the alkali metal salts and, among these, preferably the sodium salts of ABSS. These can be described by the general formula I: in which the sum of x and y is usually between 5 and 13. In the present invention combinations are preferred in which the detergent tablets of the alkali metal, preferably sodium salts, of C 8-16 - containing, preferably C 9-13 -alkylbenzenesulfonic acids derived from alkylbenzenes having a tetralin content below 5 wt %, based on the alkylbenzene.
  • alkylbenzenesulfonates whose alkylbenzenes were prepared by the HF process, so that combinations are preferred in which the alkylbenzenesulfonate compounds, the alkali metal, preferably sodium, of C 8-16 -, preferably C 9-13 -Alkybenzolsulfonklaren containing a content of 2-phenyl isomer below 22 wt .-%, based on the alkylbenzenesulfonic acid.
  • the alkali metal preferably sodium
  • the detergent tablet (s) contains / Alkylbenzenesulfonates in amounts preferably from 0.5 to 30 wt .-%, very preferably from 1 to 25 wt .-%, particularly preferably from 2 to 20% by weight and in particular from 5 to 15% by weight, respectively based on the weight of the tablet.
  • the detergent tablets in the inventive Combination other surfactants (surfactants) containing preferably come from the groups of anionic and / or nonionic surfactants.
  • the total surfactant content of the tablets is from 5 to 60% by weight, based on the tablet weight, wherein surfactant contents above 15 wt .-% are preferred.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • surfactants of the sulfonate type are olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as are obtained, for example, from C 12-18 monoolefins having terminal or internal double bonds by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis the sulfonation obtained.
  • alkanesulfonates which are obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids are suitable.
  • sulfated fatty acid glycerol esters are sulfated fatty acid glycerol esters.
  • fatty acid glycerine esters are the mono-, di- and triesters and their mixtures to understand, as with the preparation by esterification of a monoglycerol with 1 to 3 mol fatty acid or obtained in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • preferred Sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids with 6 to 22 carbon atoms, for example caproic acid, caprylic acid, Capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates are preferred.
  • 2,3-alkyl sulfates prepared, for example, according to U.S. Patents 3,234,258 or 5,075,041, which can be obtained as commercial products of the Shell Oil Company under the name DAN®, are suitable anionic surfactants.
  • EO ethylene oxide
  • Fatty alcohols with 1 to 4 EO are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • suitable saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid, Stearic acid, hydrogenated erucic acid and behenic acid and in particular from natural Fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants including the soaps may be in the form of their sodium, potassium or Ammonium salts and as soluble salts of organic bases, such as mono-, di- or Triethanolamine.
  • the anionic surfactants are in the form of their Sodium or potassium salts, especially in the form of the sodium salts.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12- 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C12-18 alcohol containing 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters, as they are for example, in Japanese Patent Application JP 58/217598 , or which are preferably prepared according to the method described in International Patent Application WO-A-90/13533 .
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamide may be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of ethoxylated fatty alcohols, in particular not more than half of it.
  • polyhydroxy fatty acid amides of the formula (II) wherein RCO is an aliphatic acyl group having 6 to 22 carbon atoms, R 1 is hydrogen, an alkyl or hydroxyalkyl group having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl group having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (III) in the R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having
  • [Z] is preferably obtained by reductive amination of a reduced sugar, For example, glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar For example, glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds may then be used, for example the teaching of international application WO-A-95/07331 by reaction with fatty acid methyl esters in the presence of an alkoxide as a catalyst in the desired polyhydroxy fatty acid amides be transferred.
  • combinations are particularly preferred in which in the detergent tablets the ratio of anionic surfactant (s) to nonionic surfactant (s) between 10: 1 and 1:10, preferably between 7.5: 1 and 1: 5 and in particular between 5: 1 and 1: 2.
  • the invention therefore provides that at least one phase of the tablet is free of nonionic Is surfactants.
  • nonionic surfactants can also be removed from the omission of anionic Surfactants resulting from single or all phases of detergent tablets, resulting better suited for certain applications. It is therefore within the scope of the present Detergent tablets also conceivable in which at least one phase of Tablet is free of anionic surfactants.
  • detergent tablets of the combination according to the invention all can usually Be contained in detergents and cleaning agents builders, in particular So zeolites, silicates, carbonates, organic cobuilders and -where no ecological Prejudices against their use exist - also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 .H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Such crystalline sheet silicates are described, for example, in European Patent Application EP-A-0 164 514 .
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred, whereby ⁇ -sodium disilicate can be obtained, for example, by the process described in international patent application WO-A-91/08171 .
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray-amorphous silicates which likewise have a dissolution delay compared to the conventional water glasses, are described, for example, in German patent application DE-A-44 00 024 .
  • Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and zeolite A are cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula nNa 2 O • (1-n) K 2 O • Al 2 O 3 • (2 - 2.5) SiO 2 • (3.5-5.5) H 2 O can be described.
  • the zeolite can be used both as a builder in a granular compound, as well as to a kind of "powdering" of the entire mixture to be pressed, wherein usually both ways for incorporating the zeolite are used in the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 gcm -3 , melting point 60 °) and as a monohydrate (density 2.04 gcm -3 ). Both salts are white powders which are very soluble in water and which lose their water of crystallization when heated and at 200 ° C into the weak acid diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate potassium phosphate primary or monobasic potassium phosphate, KDP
  • KH 2 PO 4 is a white salt of 2.33 gcm -3 density, has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very slightly water-soluble crystalline salt. It exists anhydrous and with 2 moles (density 2.066 gcm -3 , loss of water at 95 °), 7 moles (density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O) and 12 moles water ( Density 1.52 gcm -3 , melting point 35 ° with loss of 5 H 2 O) becomes anhydrous at 100 ° C and, upon increased heating, passes into the diphosphate Na 4 P 2 O 7 .
  • Disodium hydrogen phosphate is prepared by neutralization of phosphoric acid with soda solution using phenolphthalein as an indicator.
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which have a density of 1.62 gcm -3 as dodecahydrate and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • Tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder of density 2.56 gcm -3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction. It arises, for example, when heating Thomasschlacke with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over the corresponding sodium compounds in the detergent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) , For substances are colorless, in water with alkaline reaction soluble crystals.
  • Na 4 P 2 O 7 is formed on heating of disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH being 1% Solution at 25 ° 10.4.
  • Sodium and potassium phosphates in which one can distinguish cyclic representatives, the sodium or Kaliummetaphosphate and chain types, the sodium or potassium polyphosphates. In particular, for the latter are a variety of names in use: hot or cold phosphates, Graham's salt, Kurrolsches and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • sodium tripolyphosphate sodium tripolyphosphate
  • n 3
  • 100 g of water dissolve at room temperature about 17 g, at 60 ° about 20 g, at 100 ° around 32 g of the salt water-free salt; after two hours of heating the solution to 100 ° caused by hydrolysis about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the preparation of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dehydrated by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentakaliumtriphosphat, K 5 P 3 O 10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) in the trade. The potassium polyphosphates are widely used in the washing and cleaning industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two can be used; also mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can be used according to the invention.
  • organic cobuilders in the laundry detergent tablets according to the invention in particular Polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, Polyacetals, dextrins, other organic cobuilders (see below) and phosphonates used become. These classes of substances are described below.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, wherein among polycarboxylic acids such carboxylic acids be understood that carry more than one acid function.
  • these are citric acid, Adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, Fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if one such use is not objectionable for environmental reasons, as well as mixtures from these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, Succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids have besides their builder effect typically also the property of an acidifying component and serve thus also for setting a lower and milder pH of washing or Detergents.
  • polymeric polycarboxylates are suitable, these are for example the Alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a molecular weight of 500 to 70000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular mass of 2000 to 20,000 g / mol. Because of their superior solubility, this can be Group again the short-chain polyacrylates, the molar masses from 2000 to 10000 g / mol, and more preferably from 3000 to 5000 g / mol, are preferred be.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid.
  • Your molecular weight, based on free acids, is generally from 2000 to 70000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution be used.
  • the content of the (co) polymeric polycarboxylates is preferably 0.5 to 20 wt .-%, in particular 3 to 10 wt .-%.
  • the polymers may also be allyl sulfonic acids, such as For example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.
  • biodegradable polymers of more than two different Monomer units for example those containing as monomers salts of acrylic acid and the maleic acid and vinyl alcohol or vinyl alcohol derivatives or as Monomeric salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives contain.
  • copolymers are those which are described in the German patent applications DE-A-43 03 320 and DE-A-44 17 734 and preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • polyaspartic acids or their salts and derivatives of which German Patent Application DE-A-195 40 086 discloses that they also have a bleach-stabilizing effect in addition to cobuilder properties.
  • polyacetals which are prepared by reaction of dialdehydes with polyol carboxylic acids having 5 to 7 C atoms and at least 3 hydroxyl groups can be obtained.
  • Preferred polyacetals are made from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from Polyolcarboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates obtained by partial hydrolysis of starches can be.
  • the hydrolysis can be carried out by conventional, for example acid or enzyme catalyzed Procedures are performed.
  • they are hydrolysis products with average molecular weights in the range of 400 to 500,000 g / mol.
  • This is a polysaccharide with a dextrose equivalent (DE) in the range of 0.5 to 40, in particular from 2 to 30, where DE is a common measure of the reducing effect of a polysaccharide compared to dextrose which has a DE of 100.
  • DE dextrose equivalent
  • Useful are both maltodextrins with a DE between 3 and 20 and dry glucose syrups with a DE between 20 and 37 as well as so-called yellow dextrins and White dextrins with higher molecular weights in the range from 2000 to 30,000 g / mol.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are described, for example, in European Patent Applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 and International Patent Applications WO 92 / 18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 and WO 95/20608 .
  • an oxidized oligosaccharide according to the German patent application DE-A-196 00 018.
  • a product oxidized to C 6 of the saccharide ring may be particularly advantageous
  • oxydisuccinates and other derivatives of disuccinates are other suitable cobuilders.
  • This is ethylenediamine-N, N'disuccinat (EDDS) preferably used in the form of its sodium or magnesium salts.
  • EDDS ethylenediamine-N, N'disuccinat
  • glycerol disuccinates and glycerol trisuccinates are also preferred. Suitable amounts are zeolithissen and / or silicate-containing Formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are described, for example, in International Patent Application WO 95/20029 .
  • phosphonates are in particular hydroxyalkane or aminoalkanephosphonates.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • It is preferably used as the sodium salt, wherein the disodium salt neutral and the tetrasodium salt alkaline (pH 9).
  • Aminoalkane phosphonates are preferably ethylenediamine tetramethylene phosphonate (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) and their higher homologues in question. They are preferably in the form of neutral sodium salts, z.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the Aminoalkanphosphonate also have a pronounced Schwerinetallbindeabmögen. Accordingly, especially if the agents also contain bleach, be preferred to use Aminoalkanphosphonate, in particular DTPMP, or Use mixtures of the above phosphonates.
  • the amount of builder is usually between 10 and 70 wt .-%, preferably between 15 and 60 wt .-% and in particular between 20 and 50 wt .-%.
  • the amount of Buildem used depends on the purpose, so that Bleaching agent tablets may have higher amounts of builders (for example between 20 and 70 wt .-%, preferably between 25 and 65 wt .-% and in particular between 30 and 55% by weight), for example detergent tablets (usually 10 to 50 wt .-%, preferably 12.5 to 45 wt .-% us and in particular between 17.5 and 37.5% by weight).
  • the detergent tablets in the combinations according to the invention further in washing and Detergents conventional ingredients from the group of bleaches, bleach activators, Dyes, fragrances, optical brighteners, enzymes, foam inhibitors, silicone oils, anti redeposition agents, Graying inhibitors, color transfer inhibitors and corrosion inhibitors contain.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [phthaloiminoperoxyhexanoic acid (PAP)] , o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassic acid, the diperoxyphthalic acids, 2-decy
  • Chlorine or bromine releasing substances are used.
  • chlorine or bromine-releasing materials include, for example, heterocyclic N-bromo and N-chloroamides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, Dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or salts thereof with Cations such as potassium and sodium into consideration.
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • Combinations preferred in the context of the present invention are packaged Detergent tablets that are suitable for washing colored textiles and no bleach contain.
  • a particularly preferred combination is therefore characterized that the detergent tablet (s) is / are free of bleach (s).
  • bleach activators can be incorporated.
  • Bleach activators may be compounds which are aliphatic under perhydrolysis conditions
  • Peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid, can be used.
  • Suitable substances are the O- and / or N-acyl groups of said C atom number and / or optionally substituted benzoyl groups.
  • acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated Glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl or Isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular Phthalic anhydride, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetyl
  • bleach catalysts are incorporated. These substances are to bleach-enhancing transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes. Also Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes are useful as bleach catalysts.
  • the detergent tablets can be colored with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the funds and against Light and no pronounced substantivity to textile fibers, not these to stain.
  • Preferred for use in the detergent tablets of the combination according to the invention are all colorants that can be oxidatively destroyed in the washing process and mixtures the same with suitable blue dyes, so-called Blautönem. It turned out to be have proven advantageous to use colorants which are in water or at room temperature in liquid organic substances are soluble. Suitable examples are anionic Colorants, e.g. anionic nitrosofarads.
  • a possible colorant is, for example Naphthol green (Color Index (CI) Part 1: Acid Green 1, Part 2: 10020), which is a commercial product for example, as Basacid® Green 970 from BASF, Ludwigshafen, available is, as well as mixtures of these with suitable blue dyes.
  • Pigmosol® Blue 6900 (CI 74160), Pigmosol® Green 8730 (CI 74260), Basonyl® Red 545 FL (CI 45170), Sandolan® Rhodamine EB400 (CI 45100), Basacid® Yellow 094 (CI No.
  • the colorant When choosing the colorant, it must be taken into account that the colorants do not have too high an affinity for the textile surfaces and, in particular, for synthetic fibers. At the same time, it should also be taken into account when choosing suitable colorants that colorants have different stabilities to the oxidation. In general, water-insoluble colorants are more stable to oxidation than water-soluble colorants. Depending on the solubility and thus also on the sensitivity to oxidation, the concentration of the colorant in the detergents or cleaners varies. In the case of readily water-soluble colorants, for example the abovementioned Basacid® Green or the abovementioned Sandolan® Blue, colorant concentrations in the range from a few 10 -2 to 10 -3 % by weight are typically selected.
  • the suitable concentration of the colorant in detergents or cleaners is typically between 10 -3 and 10 -4 % by weight.
  • the tablets may be optical brighteners of the diaminostilbene disulfonic acid type or their alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similar compounds which, instead of the morpholino group, have a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group wear. Furthermore, brighteners of the type of substituted Diphenylstyryle present be, e.g.
  • the optical brighteners are in the laundry detergent tablets according to the invention in concentrations between 0.01 and 1 Wt .-%, preferably between 0.05 and 0.5 wt .-% and in particular between 0.1 and 0.25 wt .-%, each based on the total tablet used, if their use desired becomes.
  • the packaged detergent tablets however, free of optical brighteners, so that preferred combinations are characterized are that the detergent tablet (s) is / are free of optical brighteners.
  • Fragrances are added to the compositions according to the invention to give the aesthetic impression to improve the products and give the consumer a visual and in addition to performance sensory "typical and distinctive" product to provide.
  • perfume oils or fragrances may be individual fragrance compounds, e.g. the synthetic one Products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type be used. Fragrance compounds of the ester type are known e.g.
  • benzyl acetate Phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, Phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, Allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • Ethem include, for example, benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals with 8-18 C-atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, Lilial and Bourgeonal
  • ketones e.g. the ionone, ⁇ -isomethylionone and methyl cedryl ketone
  • the hydrocarbons belong mainly the terpenes like limonene and pinene.
  • mixtures of various are preferred Uses fragrances that together create a pleasing fragrance.
  • Perfume oils may also contain natural fragrance mixtures, such as those from vegetable Sources are accessible, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • Natural fragrance mixtures such as those from vegetable Sources are accessible, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the content of detergent tablets is usually in the combinations according to the invention perfumes up to 2% by weight of the total formulation.
  • the perfumes can be incorporated directly into the compositions of the invention, but it can also be advantageous to apply the fragrances on carriers that the adhesion of the perfume intensify the wash and by a slower release of fragrance for long-lasting Fragrance of the textiles provide.
  • carrier materials are cyclodextrins proven, wherein the cyclodextrin-perfume complexes additionally with other Excipients can be coated.
  • Enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof in question. Particularly suitable are from bacterial strains or Fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus enzymatic agents. Preferably, subtilisin-type proteases and in particular Proteases derived from Bacillus lentus.
  • enzyme mixtures for example from protease and amylase or protease and lipase or Protease and cellulase or cellulase and lipase or protease, amylase and lipase or protease, lipase and cellulase, but especially cellulase-containing mixtures of special interest. Peroxidases or oxidases have also been found in some Cases proved to be suitable.
  • the enzymes can be adsorbed to carriers and / or embedded in encapsulants to protect against premature decomposition.
  • Proportion of the enzymes enzyme mixtures or enzyme granules in the tablets of the invention Combinations may, for example, be about 0.1 to 5% by weight, preferably 0.1 to about 2 wt .-% amount.
  • the detergent tablets may also contain components containing the oil and Soil repellents from textiles positively influence (so-called soil repellents). This effect becomes particularly clear when a textile is soiled before several times with a detergent according to the invention, this oil and fat dissolving Component contains, was washed.
  • nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and at hydroxypropoxyl groups from 1 to 15 wt .-%, each based on the nonionic cellulose ethers, as well as the polymers known from the prior art phthalic acid and / or terephthalic acid or their derivatives, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionically modified derivatives of these.
  • sulfonated derivatives of phthalic and terephthalic acid polymers are especially preferred of these.
  • dye transfer inhibiting agents are preferred in the packaged detergent tablets of the present invention.
  • Color transfer inhibitors have the task, possibly from colored textiles dissolved dyes from the wash liquor to keep or suspend them suspended in the fleet and so prevent re-application to the fiber.
  • color transfer inhibitors in particular polymers have proven, with the polyvinylpyrrolidone (PVP) plays an outstanding role.
  • the detergent tablet (s) additionally comprises color transfer inhibitors, preferably polyvinylpyrrolidone, in amounts of from 0.1 to 2.0% by weight, preferably from 0.2 to 1.5% by weight. and in particular from 0.5 to 1.0 wt .-%, each based on the tablet weight.
  • the preparation of washing and cleaning active tablets is done by applying pressure to a mixture to be compressed, which is located in the cavity of a press.
  • a mixture to be tableted is compressed directly, ie without prior granulation.
  • the advantages of this so-called Maistablett ist are their simple and cost-effective application, since no further process steps and consequently no other systems are needed. However, these advantages are also faced with disadvantages.
  • a powder mixture, which is to be tabletted directly have sufficient plastic deformability and have good flow properties, furthermore, it must not show any separation tendencies during storage, transport and filling of the die.
  • washing and cleaning agent tablets are based on pulverulent components ("primary particles") which are agglomerated or granulated by suitable processes to form secondary particles having a relatively high particle diameter. These granules or mixtures of different granules are then mixed with individual powdered additives and fed to the tableting.
  • detergent tablets are preferred Pressing a particulate premix of at least one surfactant-containing granules and at least one subsequently admixed powdered component.
  • the surfactant-containing granules can be processed by conventional granulation processes such as mixing and plate granulation, fluidized bed granulation, extrusion, pelletizing or compaction getting produced. It is advantageous for the later detergent tablets, if the premix to be compressed has a bulk density of at least 500 g / l, preferably at least 600 g / l and in particular above 700 g / l. Another Advantage can be gained from a narrower particle size distribution of the surfactant granules used result.
  • Detergent tablets are preferred in the context of the present invention, in which the granules particle sizes between 10 and 4000 microns, preferably between 100 and 2000 microns and in particular between 600 and 1400 microns have.
  • the Premix Prior to compression of the particulate premix to detergent tablets, the Premix be "powdered” with finely divided surface treatment agents. This can for the nature and physical properties of both the premix (Storage, compression) and the finished detergent tablets are beneficial. Fine particulate powdering agents are well known in the art, with mostly zeolites, Silicates or other inorganic salts are used. Preference is given to the premix but “powdered” with finely divided zeolite, wherein zeolites of the faujasite type are preferred. In the context of the present invention, the term "zeolite of the faujasite type "all three zeolites containing the faujasite subgroup of the zeolite structure group 4 (Compare Donald W.
  • mixtures or cocrystallizates of zeolites of the faujasite type with other zeolites, which do not necessarily belong to the zeolite structure group 4 are as powdering agents can be used, wherein it is advantageous if at least 50 wt .-% of the powdering agent consist of a zeolite of the faujasite type.
  • detergent tablets consist of a consist of particulate premix, the granular components and subsequently contains admixed powdery substances, wherein the or one of the subsequently admixed powdery components, a faujasite-type zeolite having particle sizes below 100 ⁇ m, preferably below 10 ⁇ m and especially below 5 ⁇ m and at least 0.2 wt .-%, preferably at least 0.5 wt .-% and in particular more than 1 wt .-% of the premix to be compressed.
  • the finely divided treatment components with the above particle sizes can while being dry admixed to the pre-mix to be compressed. It is also possible and preferred, they by adding small amounts of liquid substances to the surface of the coarser particles "stick".
  • These Abpud mecanics vide are in the state of Technique widely described and familiar to the expert.
  • liquid components the suitable for the adhesion of the powdering agent, for example, nonionic Surfactants or aqueous solutions of surfactants or other detergent and cleaner ingredients be used. It is within the scope of the present invention preferably, as a liquid adhesion promoter between finely divided Abwud fürsstoff and the coarse particle to use perfume.
  • the tabletting is carried out in commercial tablet presses, which in principle with single or Double stamping can be equipped. In the latter case, not only the upper punch used for pressure build-up, also the lower punch moves during the Pressing on the upper punch, while the upper punch presses down.
  • the one or more stamps are attached to an eccentric disc, which in turn to a Axis is mounted at a certain rotational speed.
  • the movement of this Preßstempel is similar to the operation of a conventional four-stroke engine.
  • the compression can be done with a top and bottom stamp, but it can also be several Stamp be attached to an eccentric disc, the number of die holes is extended accordingly.
  • the throughputs of eccentric presses vary according to type from a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses where on a so-called Matrizentisch a larger number of matrices is arranged in a circle.
  • the Number of matrices varies depending on the model between 6 and 55, with larger matrices are commercially available.
  • Each die on the die table is a top and bottom stamp assigned, in turn, the pressing pressure active only by the upper or lower punch, but can also be built by both stamps.
  • the die table and the Stamps move around a common perpendicular axis, with the stamp by means of rail-like cam tracks during circulation in the positions for filling, Compression, plastic deformation and ejection are brought.
  • these curved paths are supplemented by Low pressure pieces, Nierderzugschienen and Aushebebahnen supported.
  • the filling the die is made via a rigidly arranged supply device, the so-called Fill shoe connected to a pre-mix reservoir.
  • the Pressing pressure on the premix is individualized via the pressing paths for upper and lower punches adjustable, wherein the pressure build-up by the Vorbeirollen the stamp shank heads happens on adjustable pressure rollers.
  • Concentric presses can also be equipped with two filling shoes to increase throughput be, with the preparation of a tablet only a semicircle are passed through got to.
  • To produce two- and multi-layered tablets several filling shoes are used arranged one behind the other without the slightly pressed first layer before the other Filling is ejected.
  • suitable process control are in this way too
  • Coat and point tablets can be produced, which have an onion-shell-like structure, wherein in the case of the point tablets, the top of the core or the core layers not is covered and thus remains visible.
  • Rotary tablet presses are also available with or multiple tools can be equipped, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for crimping. The Throughputs of modern rotary tablet presses amount to over one million tablets per Hour.
  • plastic coatings plastic inserts or plastic stamps.
  • Even rotating stamps have proven to be beneficial proven, where possible upper and lower punch be made rotatable should. With rotating punches can be dispensed with a plastic insert usually become. Here, the stamp surfaces should be electropolished.
  • Tableting machines suitable for the purposes of the present invention are, for example available from Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMAmaschinessysteme GmbH Viersen, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Press AG, Berlin, and Romaco GmbH, Worms. Further providers are, for example Dr. Herbert Pete, Vienna (AU), Mapag Maschinenbau AG, Berne (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (UK), Courtoy N.V., Halle (BE / LU) and Mediopharm Kamnik (SI).
  • the hydraulic double pressure press is particularly suitable HPF 630 from LAEIS, D.
  • tabletting tools are, for example, from the companies Adams tabletting tools, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber% Sons GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms and Notter negligencebau, Tamm available.
  • Other providers are e.g. the Senss AG, Reinach (CH) and the Medicopharm, Kamnik (SI).
  • the tablets can be made in a predetermined spatial form and predetermined size are always made up of several phases, i. Layers, inclusions or cores and wrestling exist.
  • Layers, inclusions or cores and wrestling exist.
  • the training as a blackboard the rod or Barrel shape, cubes, cuboids and corresponding room elements with flat side surfaces and in particular cylindrical configurations with circular or oval Cross-section.
  • This last embodiment detects the presentation form of the tablet up to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each as separate individual elements be formed, the predetermined dosage of the detergent and / or detergent equivalent. However, it is also possible to form compacts, a plurality connect such mass units in a compact, in particular by predetermined Predetermined breaking points the easy separability of portioned smaller units provided is.
  • the formation of the portioned compacts as Tablets to be useful in cylindrical or cuboidal shape, with a diameter / height ratio in the range of about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, Eccentric or rotary presses are suitable devices in particular for producing such compacts.
  • the spatial form of another embodiment of the tablets is in their dimensions of Ein Titanauer-Teller adapted from commercial household washing machines, so that the Tablets without dosing aid can be metered directly into the dispenser, where they dissolves during the flushing process.
  • the Tablets without dosing aid can be metered directly into the dispenser, where they dissolves during the flushing process.
  • a dosing aid can be metered directly into the dispenser, where they dissolves during the flushing process.
  • Another preferred multiphase tablet which can be prepared has one plate-like or tabular structure with alternately thick long and thin short segments, so that individual segments of this "multiphase bar" at the predetermined breaking points, which represent the short thin segments, canceled and entered into the machine can be.
  • This principle of the "bar-shaped" tablet detergent can in other geometric shapes, such as vertical triangles, the are connected together only on one side, be realized.
  • a different staining of both phases is in this embodiment especially sexy.
  • multiphase tablets can also be produced in the form of ring-core tablets, core-coat tablets or so-called "bulleye" tablets.
  • An overview of such embodiments of multiphase tablets is described in EP 055 100 (Jeyes Group).
  • This document discloses toilet cleaner blocks comprising a molded body of a slow-dissolving detergent composition in which a bleach tablet is embedded.
  • This document simultaneously discloses the most varied embodiments of multiphase tablets from the simple multiphase tablet to complicated multi-layered systems with inserts.
  • the detergent tablets After pressing, the detergent tablets have a high stability.
  • stands for the diametrical fracture stress (DFS) in Pa
  • P is the force in N that leads to the pressure exerted on the tablets, which causes the pressure Breakage of the tablet causes
  • D is the diameter of the tray in meters
  • t is the height the tablet.
  • a surfactant granulate was mixed with further treatment components and compressed on an eccentric tablet press into tablets.
  • the composition of the surfactant granules is given in the following Table 1, the composition of the premix to be compressed (and thus the composition of the tablets) can be found in Table 2.
  • Surfactant granules [% by weight] C 9-13 alkyl benzene sulphonate 19.4 C 12-18 fatty alcohol sulfate 5.2 C 12-18 fatty alcohol with 7 EO 4.8 C 12-16 alkyl-1,4-glycoside 1.0 Soap 1.6 sodium 17.2 sodium silicate 5.6 Zeolite A (anhydrous active substance) 28.5 Na-hydroxyethane-1,1-diphosphonate 0.8 Acrylic acid-maleic acid copolymer 5.6 Water, salts rest Premix [% by weight] Surfactant granules 87.3 foam inhibitor 3.5 enzymes 1.7 Perfume 0.5 Zeolite A (Wessalith® P, Degussa) 1.0 cellulose 5.0
  • the tabletting premixes were compressed in a Korsch eccentric press into tablets (diameter: 44 mm, height: 22 mm, weight: 37.5 g). In this case, the pressing pressure was adjusted so that in each case three series of tablets were obtained (E, E ', E "and V, V', V"), which differ in their hardness.
  • the detergent tablets E according to the invention were packaged after manufacture for a combination of the invention by two tablets in a flow pack of laminate foil (aluminized film, thickness: 35 microns, the water vapor permeability of 1 g / m 2/24 hr) were packed; Comparative Examples V were stored open. Of all the tablet series, hardness and disintegration time were measured before packaging.
  • Both tablets (combination E according to the invention and comparison tablet V were stored for 14 days in a climate cell at 23 ° C. and 85% relative humidity (test conditions according to DIN 53122), after which the hardnesses and disintegration times were determined again the tablet measured to break, with the force acting on the side surfaces of the tablet and determining the maximum force that sustained the tablet.
  • the tablet was placed in a beaker with water (600 ml of water, temperature 30 ° C) and measured the time to complete tablet disintegration.
  • the Ein Cyprus Kings 3 tablets were placed in the Ein Cyprushunt a household washing machine (AEG ⁇ ko Lavärnat) and started a 40 ° C program without prewash. After completion of the Ein Cyprusvorgangs the residues located in the Ein Cyprushunt were dried and weighed.
  • Table 3 shows impressively that the hardness and disintegration times of detergent tablets change only slightly in the combinations according to the invention, while the Tablets of Comparative Example V unacceptably aftercure and very bad or not decay anymore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Wrappers (AREA)

Description

Die vorliegende Erfindung betrifft Tabletten, welche Alkylbenzolsulfonat(e) und Desintegrationshilfsmittel auf Cellulose-Basis enthalten und zur Gewährleistung besserer Zerfallszeiten bei gleichzeitig hohen Härten mit einem speziellen Verpackungssystem kombiniert werden. Insbesondere betrifft die Erfindung solche speziell verpackten Tabletten wie Waschmitteltabletten, Reinigungsmitteltabletten, Bleichtabletten oder Wasserenthärtertabletten mit Alkylbenzolsulfonat(en) und Desintegrationshilfsmittel(n) auf Cellulose-Basis.
Wasch- und Reinigungsmittelzusammensetzungen in Form von Tabletten, sind im Stand der Technik lange bekannt und breit beschrieben, obwohl diese Angebotsform auf dem Markt bislang keine herausragende Bedeutung hat. Dies hat seine Ursache darin, daß die Angebotsform der Tablette neben einer Reihe von Vorteilen auch Nachteile hat, die sowohl die Herstellung und Verwendung als auch die Verbraucherakzeptanz beeinträchtigen. Die wesentlichen Vorteile von Tabletten wie der Wegfall des Abmessens der benötigten Produktmenge durch den Verbraucher, die höhere Dichte und damit der verringerte Verpackungs- und Lageraufwand und ein nicht zu unterschätzender ästhetischer Aspekt werden dabei durch Nachteile wie die Dichotomie zwischen akzeptabler Härte und genügend schneller Desintegration und Auflösung der Tabletten sowie zahlreiche technologische Schwierigkeiten bei der Herstellung und Verpackung relativiert.
Insbesondere die Dichotomie zwischen einem genügend harten Tabletten und einer hinreichend schnellen Zerfallszeit ist dabei ein zentrales Problem. Da hinreichend stabile, d.h. form- und bruchbeständige Tabletten nur durch verhältnismäßig hohe Preßdrücke hergestellt werden können, kommt es zu einer starken Verdichtung der Tablettenbestandteile und zu einer daraus folgenden verzögerten Desintegration der Tablette in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw.
Reinigungsvorgang. Die verzögerte Desintegration der Tablett hat weiterhin den Nachteil, daß sich übliche Waschmitteltabletten nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus der Einspülkammer in die Waschtrommel eingespült zu werden.
Im Stand der Technik wird oftmals eine gewisse Instabilität von Wasch- und Reinigungsmittel-Inhaltsstoffen, insbesondere Bleichmitteln, hervorgehoben. Lösungsansätze zu dieser Problematik werden beispielsweise in der Beschichtung der kristallinen Bleichmittel, in der Zugabe von Stabilisierungsmitteln während des Herstellprozesses bzw. in einer Kombination dieser beiden Maßnahmen gesehen. Der zur Stabilisierung und/oder Beschichtung von Bleichmitteln existierende Technik befaßt sich nicht mit der Dichotomie zwischen Härte und Zerfallszeiten von Wasch- und Reinigungsmitteltabletten. Probleme, die die Inkorporation bestimmter Aniontenside in Wasch- und Reinigungsmitteltabletten mit sich bringt, insbesondere, wenn diese Desintegrationsmittel auf Cellulosebasis enthalten, sind bislang im Stand der Technik weder gewürdigt, noch werden Lösungsansätze beschrieben.
Ein interessanter Ansatz, um die Stabilität von Natriumpercarbonat über längere Lagerzeiten hinweg zu gewährleisten, wird in der EP-B-0 634 484 (Procter & Gamble) gegeben: In dieser Schrift wird die Kombination aus einer granularen Waschmittelzusammensetzung und einem Verpackungssystem beschrieben, um Aktivsauerstoff-Verluste aus dem Percarbonat zu vermeiden. Auch in dieser Schrift finden sich weder Angaben zu Waschmitteltabletten, noch wird das Problem zu hoher Zerfallszeiten bei hohen Härten erwähnt.
Die internationale Patentanmeldung WO98/40464 (Unilever) beschreibt eine Kombination aus mindestens einer Tablette aus verpreßtem teilchenförmigen Waschmittel, welche mindestens 24 Stunden in einem Verpackungssystem mit einer Feuchtigkeitsdurchlässigkeitsrate von weniger als 20 g/m2/24 h gelagert wird. Nach den Angaben dieser Schrift erhöht sich durch diese Kombination die Härte der Tabletten bei Lagerung, während die Auflösezeiten sich verringern. Obwohl die Zerfallszeit der Tabletten nach den Angaben dieser Schrift unter mechanischer Einwirkung (Rühren) gemessen wird, liegen alle Zerfallszeiten z.T. weit über 2 Minuten. Solche hohen Zerfallszeiten machen die in dieser Schrift offenbarten Tabletten für eine Dosierung über die Einspülkammer haushaltsüblicher Waschmaschinen unbrauchbar, da sie nicht hinreichend schnell zerfallen und sich somit nicht einspülen lassen. Der Einsatz von Desintegrationshilfsmitteln auf Cellulosebasis wird in dieser Schrift ebenfalls nicht erwähnt.
In der US 4,099,912 (Colgate) werden Kombinationsprodukte auf Basis von Waschmitteltabletten unterschiedlicher Zusammensetzung offenbart. Die unterschiedlichen Tabletten können je nach Bedarf zu einem den jeweiligen Bedürfnissen angepaßten Wasch- oder Reinigungsmittel kombiniert werden. Angaben über die Verpackung dieser Tabletten macht diese Schrift nicht.
Phosphat- und chlorfreie Waschmitteltabletten sind Gegenstand der WO95/04804 (La Marina). Die in dieser Schrift offenbarten Tabletten enthalten ebenso wenig Desintegrationshilfsmittel auf Cellulosebasis wie die in der WO97/35955 (Kärcher) beschriebenen Reinigungsmitteltabletten auf Basis von Brausesystemen.
Tabletten, in welchen mikrokristalline bis faserförmige Cellulose eingesetzt wird, offenbart schließlich die DE 2321693 (Henkel). Die faserförmige Cellulose wirkt in Abhängigkeit von der Faserlänge beispielsweise als Bindemittel und wird ohne vorherige Granulation in den Tabletten eingesetzt.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, die Vorteile des Einsatzes von Alkylbenzolsulfonaten auch in Wasch- und Reinigungsmitteltabletten zu nutzen, welche Desintegrationshilfsmittel auf Cellulosebasis enthalten und dabei Tabletten bereitzustellen, die sich durch hohe Härten bei gleichzeitig kurzen Zerfallszeiten auszeichnen. Neben der Überwindung dieser Dichotomie zwischen Härte und Zerfallszeit sollten die Tabletten derart kurze Zerfallszeiten aufweisen, daß eine Dosierung über die Einspülkammer haushaltsüblicher Waschmaschinen problemlos und rückstandsfrei möglich ist.
Überraschenderweise wurde nun gefunden, daß sich die oben genannten Aufgaben durch das Einpacken eines oder mehrerer Alkylbenzolsulfonat- und Cellulose-haltiger Waschmitteltabletten in spezielle Verpackungssysteme lösen lassen.
Gegenstand der vorliegenden Erfindung ist eine Kombination aus (einer) Waschmitteitablette(n); welche Alkylbenzolsulfonat(e) und Desintegrationshilfsmittel auf Cellulosebasis in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-% enthält/enthalten und einem die Waschmitteltablette(n) enthaltenden Verpackungssystem, dadurch gekennzeichnet, daß das Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
Das Verpackungssystem der Kombination aus Waschmitteltablette(n) und Verpackungssystem weist erfindungsgemäß eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag auf, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird. Die genannten Temperatur- und Feuchtigkeitsbedingungen sind die Prüfbedingungen, die in der DIN-Norm 53122 genannt werden, wobei laut DIN 53122 minimale Abweichungen zulässig sind (23 ± 1°C, 85 ± 2% rel. Feuchte). Die Feuchtigkeitsdampfdurchlässigkeitsrate eines gegebenen Verpackungssystems bzw. Materials läßt sich nach weiteren Standardmethoden bestimmen und ist beispielsweise auch im ASTM-Standard E-96-53T ("Test for measuring Water Vapor transmission of Materials in Sheet form") und im TAPPI Standard T464 m-45 ("Water Vapor Permeability of Sheet Materials at high temperature an Humidity") beschrieben. Das Meßprinzip gängiger Verfahren beruht dabei auf der Wasseraufnahme von wasserfreiem Calciumchlorid, welches in einem Behälter in der entsprechenden Atmosphäre gelagert wird, wobei der Behälter an der Oberseite mit dem zu testenden Material verschlossen ist. Aus der Oberfläche des Behälters, die mit dem zu testenden Material verschlossen ist (Permeationsfläche), der Gewichtszunahme des Calciumchlorids und der Expositionszeit läßt sich die Feuchtigkeitsdampfdurchlässigkeitsrate nach FDDR = 24·10000 A · x y [g/m 2/24h] berechnen, wobei A die Fläche des zu testenden Materials in cm2, x die Gewichtszunahme des Calciumchlorids in g und y die Expositionszeit in h bedeutet.
Die relative Gleichgewichtsfeuchtigkeit, oft als "relative Luftfeuchtigkeit" bezeichnet, beträgt bei der Messung der Feuchtigkeitsdampfdurchlässigkeitsrate im Rahmen der vorliegenden Erfindung 85% bei 23°C. Die Aufnahmefähigkeit von Luft für Wasserdampf steigt mit der Temperatur bis zu einem jeweiligen Höchstgehalt, dem sogenannten Sättigungsgehalt, an und wird in g/m3 angegeben. So ist beispielsweise 1 m3 Luft von 17° mit 14,4 g Wasserdampf gesättigt, bei einer Temperatur von 11° liegt eine Sättigung schon mit 10 g Wasserdampf vor. Die relative Luftfeuchtigkeit ist das in Prozent ausgedrückte Verhältnis des tatsächlich vorhandenen Wasserdampf-Gehalts zu dem der herrschenden Temperatur entsprechenden Sättigungs-Gehalt. Enthält beispielsweise Luft von 17° 12 g/m3 Wasserdampf, dann ist die relative Luftfeuchtigkeit = (12/14,4)·100 = 83%. Kühlt man diese Luft ab, dann wird die Sättigung (100% r. L.) beim sogenannten Taupunkt (im Beispiel: 14°) erreicht, d.h., bei weiterem Abkühlen bildet sich ein Niederschlag in Form von Nebel (Tau). Zur quantitativen Bestimmung der Feuchtigkeit benutzt man Hygrometer und Psychrometer.
Die relative Gleichgewichtsfeuchtigkeit von 85% bei 23°C läßt sich beispielsweise in Laborkammern mit Feuchtigkeitskontrolle je nach Gerätetyp auf +/- 2% r.L. genau einstellen. Auch über gesättigten Lösungen bestimmter Salze bilden sich in geschlossenen Systemen bei gegebener Temperatur konstante und wohldefinierte relative Luftfeuchtigkeiten aus, die auf dem Phasen-Gleichgewicht zwischen Partialdruck des Wassers, gesättigter Lösung und Bodenkörper beruhen.
Die erfindungsgemäßen Kombinationen aus Waschmitteltabletten und Verpackungssystem können selbstverständlich ihrerseits in Sekundärverpackungen, beispielsweise Kartonagen oder Trays, verpackt werden, wobei an die Sekundärverpackung keine weiteren Anforderungen gestellt werden müssen. Die Sekundärverpackung ist demnach möglich, aber nicht notwendig.
Im Rahmen der vorliegenden Erfindung bevorzugte Verpackungssysteme weisen eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,5 g/m2/Tag bis weniger als 15 g/m2/Tag auf.
Das Verpackungssystem der erfindungsgemäßen Kombination umschließt je nach Ausführungsform der Erfindung eine oder mehrere Waschmitteltabletten. Es ist dabei erfindungsgemäß bevorzugt, entweder eine Tablette derart zu gestalten, daß er eine Anwendungseinheit des Wasch- und Reinigungsmittels umfaßt, und diese Tablette einzeln zu verpacken, oder die Zahl an Tabletten in eine Verpackungseinheit einzupacken, die in Summe eine Anwendungseinheit umfaßt. Bei einer Solldosierung von 80 g Wasch- und Reinigungsmittel ist es also erfindungsgemäß möglich, eine 80 g schweren Tablette herzustellen und einzeln zu verpacken, es ist erfindungsgemäß aber auch möglich, zwei je 40 g schwere Waschmitteltabletten in eine Verpackung einzupacken, um zu einer erfindungsgemäßen Kombination zu gelangen. Dieses Prinzip läßt sich selbstverständlich erweitern, so daß erfindungsgemäß Kombinationen auch drei, vier, fünf oder noch mehr Waschmitteltabletten in einer Verpackungseinheit enthalten können. Selbstverständlich können zwei oder mehr Tabletten in einer Verpackung unterschiedliche Zusammensetzungen aufweisen. Auf diese Weise ist es möglich, bestimmte Komponenten räumlich voneinander zu trennen, um beispielsweise Stabilitätsprobleme zu vermeiden.
Das Verpackungssystem der erfindungsgemäßen Kombination kann aus den unterschiedlichsten Materialien bestehen und beliebige äußere Formen annehmen. Aus ökonomischen Gründen und aus Gründen der leichteren Verarbeitbarkeit sind allerdings Verpackungssysteme bevorzugt, bei denen das Verpackungsmaterial ein geringes Gewicht hat, leicht zu verarbeiten und kostengünstig ist. In erfindungsgemäß bevorzugten Kombinationen besteht das Verpackungssystem aus einem Sack oder Beutel aus. einschichtigem oder laminiertem Papier und/oder Kunststoffolie.
Dabei kann/können die Waschmitteltablette unsortiert, d.h. als lose Schüttung, in einen Beutel aus den genannten Materialien gefüllt werden. Es ist aber aus ästhetischen Gründen und zur Sortierung der Kombinationen in Sekundärverpackungen bevorzugt, die Waschmitteltablette einzeln oder zu mehreren sortiert in Säcke oder Beutel zu füllen. Für einzelne Anwendungseinheiten der Waschmitteltabletten, die sich in einem Sack oder Beutel befinden, hat sich in der Technik der Begriff "flow pack" eingebürgert. Solche "flow packs" können dann - wiederum vorzugsweise sortiert - optional in Umverpackungen verpackt werden, was die kompakte Angebotsform der Tablette unterstreicht.
Die bevorzugt als Verpackungssystem einzusetzenden Säcke bzw. Beutel aus einschichtigem oder laminiertem Papier bzw. Kunststoffolie können auf die unterschiedlichste Art und Weise gestaltet werden, beispielsweise als aufgeblähte Beutel ohne Mittelnaht oder als Beutel mit Mittelnaht, welche durch Hitze (Heißverschmelzen), Klebstoffe oder Klebebänder verschlossen werden. Einschichtige Beutel- bzw. Sackmaterialien sind die bekannten Papiere, die gegebenenfalls imprägniert sein können, sowie Kunststoffolien, welche gegebenenfalls coextrudiert sein können. Kunststoffolien, die im Rahmen der vorliegenden Erfindung als Verpackungssystem eingesetzt werden können, sind beispielsweise in Hans Domininghaus "Die Kunststoffe und ihre Eigenschaften", 3. Auflage, VDI Verlag, Düsseldorf, 1988, Seite 193, angegeben. Die dort gezeigte Abbildung 111 gibt gleichzeitig Anhaltspunkte zur Wasserdampfdurchlässigkeit der genannten Materialien.
Im Rahmen der vorliegenden Erfindung besonders bevorzugte Kombinationen enthalten als Verpackungssystem einen Sack oder Beutel aus einschichtiger oder laminierter Kunststoffolie mit einer Dicke von 10 bis 200 µm, vorzugsweise von 20 bis 100 µm und insbesondere von 25 bis 50 µm.
Obwohl es möglich ist, neben den genannten Folien bzw. Papieren auch wachsbeschichtete Papiere in Form von Kartonagen als Verpackungssystem für die Waschmitteltablette einzusetzen, ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das Verpackungssystem keine Kartons aus wachsbeschichtetem Papier umfaßt. Der Begriff "Verpackungssystem kennzeichnet dabei im Rahmen der vorliegenden Erfindung immer die Primärverpackung der Tabletten, d.h. die Verpackung, die an ihrer Innenseite direkt mit der Tablettenoberfläche in Kontakt ist. An eine optionale Sekundärverpackung werden keinerlei Anforderungen gestellt, so daß hier alle üblichen Materialien und Systeme eingesetzt werden können.
Wie bereits weiter oben erwähnt, enthalten die Waschmitteltabletten der erfindungsgemäßen Kombination je nach ihrem Verwendungszweck weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln in variierenden Mengen. Unabhängig vom Verwendungszweck der Tabletten ist es erfindungsgemäß bevorzugt, daß die Waschmitteltabletten eine relative Gleichgewichtsfeuchtigkeit von weniger als 30% bei 35°C aufweist/aufweisen.
Die relative Gleichgewichtsfeuchtigkeit der Waschmitteltablette kann dabei nach gängigen Methoden bestimmt werden, wobei im Rahmen der vorliegenden Untersuchungen folgende Vorgehensweise gewählt wurde: Ein wasserundurchlässiges 1-Liter-Gefäß mit einem Deckel, welcher eine verschließbare Öffnung für das Einbringen von Proben aufweist, wurde mit insgesamt 300 g Waschmitteltabletten befüllt und 24 h bei konstant 23°C gehalten, um eine gleichmäßige Temperatur von Gefäß und Substanz zu gewährleisten- Der Wasserdampfdruck im Raum über den Tabletten kann dann mit einem Hygrometer (Hygrotest 6100, Testoterm Ltd., England) bestimmt werden. Der Wasserdampfdruck wird nun alle 10 Minuten gemessen, bis zwei aufeinanderfolgende Werte keine Abweichung zeigen (Gleichgewichtsfeuchtigkeit). Das o.g. Hygrometer erlaubt eine direkte Anzeige der aufgenommenen Werte in % relativer Feuchtigkeit.
In im Rahmen der vorliegenden Erfindung bevorzugten Kombinationen enthält/enthalten die Waschmitteltablette(n) weitere(s) Tensid(e) und Gerüststoff(e).
Um den Zerfall der erfindungsgemäßen Waschmitteltabletten zu erleichtern, enthalten diese ein Desintegrationshilfsmittel auf Cellulosebasis. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Waschmitteltabletten, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in der deutschen Patentanmeldung DE 197 10 254 (Henkel) beschrieben. Solche Tabletten sind im Rahmen der vorliegenden Erfindung bevorzugt. Demnach ist erfindungsgemäß eine Kombination besonders bevorzugt, bei der die Waschmitteltablette(n) das Desintegrationshilfsmittel auf Cellulosebasis in granularer, cogranulierter oder kompaktierter Form, in Mengen von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Tablettengewicht, enthält/enthalten.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Als desintegrationsfördernde Systeme werden in Waschmitteltabletten oft auch sogenannte "Brausesysteme" eingesetzt. Üblicherweise werden in Brausesystemen oligomere Oligocarbonsäuren wie Bernsteinsäure, Maleinsäure und insbesondere Citronensäure in Kombination mit Carbonaten oder Hydrogencarbonaten eingesetzt. In bevorzugten Ausführungsformen der vorliegenden Erfindung ist die Waschmitteltablette allerdings keine "Brausetablette", d.h. bevorzugte Waschmitteltabletten sind frei von oligomeren Oligocarbonsäuren, insbesondere Citronensäure.
Technisch möglich ist auch die Beschichtung der Tablette, mit einem Coating, das die gesamte Tablette überzieht. Solche beschichteten Waschmitteltabletten können durch Aufsprühen einer Schmelze oder Lösung des Coatingmaterials auf den Tablettenkörper oder Eintauchen des Tablettenkörpers in die Schmelze oder Lösung hergestellt werden.
Durch den erfindungsgemäßen Einsatz des Desintegrationshilfsmittels auf Cellulosebasis und des Alkylbenzolsulfonats in Kombination mit dem Verpackungssystem und optional durch den Einsatz von weiteren Desintegrationshilfsmitteln unterstützt (siehe oben), lassen sich erfindungsgemäß Waschmitteltabletten herstellen, welche bei hohen Härten in Wasser äußerst schnell in ihre Bestandteile zerfallen.
Zur Entfaltung der Wasch- bzw. Reinigungsleistung enthalten die erfindungsgemäßen Kombinationen Alkylbenzolsulfonat(e). Alkylbenzolsulfonate als leistungsstarke anionische Tenside sind seit den dreißiger Jahren unseres Jahrhunderts bekannt. Damals wurden durch Monochlorierung von Kogasin-Fraktionen und subsequente Friedel-Crafts-Alkylierung Alkylbenzole hergestellt, die mit Oleum sulfoniert und mit Natronlauge neutralisiert wurden. Anfang der fünfziger Jahre wurde zur Herstellung von Alkylbenzolsulfonaten Propylen zu verzweigtem α-Dodecylen tetramerisiert und das Produkt über eine Friedel-Crafts-Reaktion unter Verwendung von Aluminiumtrichlorid oder Fluorwasserstoff zum Tetrapropylenbenzol umgesetzt, das nachfolgend sulfoniert und neutralisiert wurde. Diese ökonomische Möglichkeit der Herstellung von Tetrapropylenbenzolsulfonaten (TPS) führte zum Durchbruch dieser Tensidklasse, die nachfolgend die Seifen als Haupttensid in Wasch- und Reinigungsmitteln verdrängte.
Aufgrund der mangelnden biologischen Abbaubarkeit von TPS bestand die Notwendigkeit, neue Alkylbenzolsulfonate darzustellen, die sich durch ein verbessertes ökologische Verhalten auszeichnen. Diese Erfordernisse werden von linearen Alkylbenzolsulfonaten erfüllt, welche heute die fast ausschließlich hergestellten Alkylbenzolsulfonate sind und mit dem Kurzzeichen ABS belegt werden.
Lineare Alkylbenzolsulfonate werden aus linearen Alkylbenzolen hergestellt, welche wiederum aus linearen Olefinen zugänglich sind. Hierzu werden großtechnisch Petroleumfraktionen mit Molekularsieben in die n-Paraffine der gewünschten Reinheit aufgetrennt und zu den n-Olefinen dehydriert, wobei sowohl α- als auch i-Olefine resultieren. Die entstandenen Olefine werden dann in Gegenwart saurer Katalysatoren mit Benzol zu den Alkylbenzolen umgesetzt, wobei die Wahl des Friedel-Crafts-Katalysators einen Einfluß auf die Isomerenverteilung der entstehenden linearen Alkylbenzole hat: Bei Verwendung von Aluminiumtrichlorid liegt der Gehalt der 2-Phenyl-Isomere in der Mischung mit den 3-, 4-, 5- und anderen Isomeren bei ca. 30 Gew.-%, wird hingegen Fluorwasserstoff als Katalysator eingesetzt, läßt sich der Gehalt an 2-Phenyl-Isomer auf ca. 20 Gew.-% senken. Die Sulfonierung der linearen Alkylbenzole schließlich gelingt heute großtechnisch mit Oleum, Schwefelsäure oder gasförmigem Schwefeltrioxid, wobei letzteres die weitaus größte Bedeutung hat. Zur Sulfonierung werden spezielle Film- oder Rohrbündelreaktoren eingesetzt, die als Produkt eine 97 Gew.-%ige Alkylbenzolsulfonsäure (ABSS) liefern, die so vermarktet oder mit NaOH zu wäßrigen ABS-Pasten mit Aktivsubstanzgehalten um die 60 Gew.-% neutralisiert wird, welche dann in den Handel gelangen.
Durch Wahl des Neutralisationsmittels lassen sich aus den ABSS die unterschiedlichsten Salze, d.h. Alkylbenzolsulfonate, gewinnen. Aus Gründen der Ökonomie ist es hierbei bevorzugt, die Alkalimetallsalze und unter diesen bevorzugt die Natriumsalze der ABSS herzustellen und einzusetzen. Diese lassen sich durch die allgemeine Formel I beschreiben:
Figure 00110001
in der die Summe aus x und y üblicherweise zwischen 5 und 13 liegt. Im Rahmen der vorliegenden Erfindung sind Kombinationen bevorzugt, in denen die Waschmitteltabletten die Alkalimetall-, vorzugsweise Natriumsalze, von C8-16-, vorzugsweise C9-13-Alkybenzolsulfonsäuren enthalten, die sich von Alkylbenzolen ableiten, welche einen Tetralingehalt unter 5 Gew.-%, bezogen auf das Alkylbenzol, aufweisen.
Weiterhin bevorzugt ist es, in den erfindungsgemäßen Kombinationen Alkylbenzolsulfonate zu verwenden, deren Alkylbenzole nach dem HF-Verfahren hergestellt wurden, so daß Kombinationen bevorzugt sind, bei denen die Alkylbenzolsulfonat-Compounds die Alkalimetall-, vorzugsweise Natriumsalze, von C8-16-, vorzugsweise C9-13-Alkybenzolsulfonsäuren enthalten, welche einen Gehalt an 2-Phenyl-Isomer unter 22 Gew.-%, bezogen auf die Alkylbenzolsulfonsäure, aufweisen.
In den erfindungsgemäßen Kombinationen enthält/enthalten die Waschmitteltablette(n) die Alkylbenzolsulfonate in Mengen vorzugsweise von 0,5 bis 30 Gew.-%, sehr bevorzugt von 1 bis 25 Gew.-%, besonders bevorzugt von 2 bis 20 Gew.-% und insbesondere von 5 bis 15 Gew.-%, jeweils bezogen auf das Tablettengewicht.
Neben den Alkylbenzolsulfonaten können die Waschmitteltabletten in den erfindungsgemäßen Kombination weitere grenzflächenaktive Substanzen (Tenside) enthalten, die vorzugsweise aus den Gruppen der anionischen und/oder nichtionischen Tenside stammen. Der Gesamttensidgehalt der Tabletten liegt bei 5 bis 60 Gew.-%, bezogen auf das Tablettengewicht, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei beispielsweise auch Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkem- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestem sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkem- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfettoder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12- 18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),
Figure 00160001
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),
Figure 00160002
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Kombinationen bevorzugt, in denen die Waschmitteltabletten anionische(s) und nichtionische(s) Tensid(e) enthalten, wobei anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren können.
So sind beispielsweise Kombinationen besonders bevorzugt, bei denen in den Waschmitteltabletten das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt.
Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Waschmitteltabletten oder in der gesamten Tablette, d.h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Tablette frei von nichtionischen Tensiden ist.
Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder der gesamten Tablette, d.h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft erwiesen, so daß Waschmitteltabletten bevorzugt sind, in denen mindestens eine Phase der Tablette Alkylpolyglycoside enthält.
Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anionischen Tensiden aus einzelnen oder allen Phasen Waschmitteltabletten resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Waschmitteltabletten denkbar, bei denen mindestens eine Phase der Tablette frei von anionischen Tensiden ist.
In den Waschmitteltabletten der erfindungsgemäßen Kombination können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 ·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 · yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf>200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höbermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert: (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen Waschmitteltabletten insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwerinetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wiederum ist die Menge an eingesetzten Buildem abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischen 17,5 und 37,5 Gew.-%).
Außer dem/den Alkylbenzolsulfonat(en), dem/den Desintegrationshilfsmittel(n) auf Cellulosebasis und den optional einzusetzenden weiteren Tensiden und Gerüststoffen können die Waschmitteltabletten in den erfindungsgemäßen Kombinationen weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-antinopercapronsäue) können eingesetzt werden.
Als Bleichmittel in Zusammensetzungen für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
Im Rahmen der vorliegenden Erfindung bevorzugte Kombinationen sind verpackte Waschmitteltabletten, die sich für das Waschen farbiger Textilien eignen und kein Bleichmittel enthalten. Eine besonders bevorzugte Kombination ist daher dadurch gekennzeichnet, daß die Waschmitteltablette(n) frei von Bleichmittel(n) ist/sind.
Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Es ist - ähnlich wie bei den Bleichmitteln - bevorzugt, wenn die Tabletten in den erfindungsgemäßen Kombinationen frei von Bleichaktivator(en) sind. Im Rahmen der vorliegenden Erfindung bevorzugte Kombinationen sind dadurch gekennzeichnet, daß die Waschmitteltablette(n) frei von Bleichaktivator(en) ist/sind.
Um den ästhetischen Eindruck der erfindungsgemäßen Waschmitteltabletten zu verbessein, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Bevorzugt für den Einsatz in den Waschmitteltabletten der erfindungsgemäßen Kombination sind alle Färbemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönem. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (Cl 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Affinität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10-2 bis 10-3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z.B. den oben genannten Pigmosol®-Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-3 bis 10-4 Gew.-%.
Die Tabletten können optische Aufheller vom Typ der Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfoslyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Die optischen Aufheller werden in den erfindungsgemäßen Waschmitteltabletten in Konzentrationen zwischen 0,01 und 1 Gew.-%, vorzugsweise zwischen 0,05 und 0,5 Gew.-% und insbesondere zwischen 0,1 und 0,25 Gew.-%, jeweils bezogen auf die gesamte Tablette, eingesetzt, sofern ihr Einsatz gewünscht wird. In bevorzugten Kombinationen sind die verpackten Waschmitteltabletten allerdings frei von optischen Aufhellern, so daß bevorzugte Kombinationen dadurch gekennzeichnet sind, daß die Waschmitteltablette(n) frei von optischen Aufhellern ist/sind.
Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der Waschmitteltabletten in den erfindungsgemäßen Kombinationen an Duftstoffen bis zu 2 Gew.-% der gesamten Formulierung. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den Tabletten der erfindungsgemäßen Kombinationen kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Waschmitteltabletten auch Komponenten enthalten, welche die Ölund Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Der Einsatz von Farbübertragungsinhibitoren ist in den verpackten Waschmitteltabletten der vorliegenden Erfindung bevorzugt. Farbübertragungsinhibitoren haben die Aufgabe, eventuell aus farbigen Textilien herausgelöste Farbstoffe aus der Waschflotte aufzufiltern bzw. sie in der Flotte suspendiert zu halten und so ein Wiederaufziehen auf die Faser zu verhindern. Als Farbübertragungsinhibitoren haben sich insbesondere Polymere bewährt, wobei dem Polyvinylpyrrolidon (PVP) eine herausragende Bedeutung zukommt. Im Rahmen der vorliegenden Erfindung bevorzugte Kombinationen sind dadurch gekennzeichnet, daß der oder die Waschmitteltabletten zusätzlich Farbübertragungsinhibitoren, vorzugsweise Polyvinylpyrrolidon, in Mengen von 0,1 bis 2,0 Gew.-%, vorzugsweise von 0,2 bis 1,5 Gew.-% und insbesondere von 0,5 bis 1,0 Gew.-%, jeweils bezogen auf das Tablettengewicht, enthalten.
Die Herstellung wasch- und reinigungsaktiver Tabletten geschieht durch Anwendung von Druck auf ein zu verpressendes Gemisch, das sich im Hohlraum einer Presse befindet. Im einfachsten Fall der Tablettenherstellung, die nachfolgend vereinfacht Tablettierung genannt wird, wird die zu tablettierende Mischung direkt, d.h. ohne vorhergehende Granulation verpreßt. Die Vorteile dieser sogenannten Direkttablettierung sind ihre einfache und kostengünstige Anwendung, da keine weiteren Verfahrensschritte und demzufolge auch keine weiteren Anlagen benötigt werden. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So muß eine Pulvermischung, die direkt tablettiert werden soll, eine ausreichende plastische Verformbarkeit besitzen und gute Fließeigenschaften aufweisen, weiterhin darf sie während der Lagerung, des Transports und der Befüllung der Matrize keinerlei Entmischungstendenzen zeigen. Diese drei Voraussetzungen sind bei vielen Substanzgemischen nur außerordentlich schwierig zu beherrschen, so daß die Direkttablettierung insbesondere bei der Herstellung von Wasch- und Reinigungsmittel-tabletten nicht oft angewendet wird. Der übliche Weg zur Herstellung von Wasch- und Reinigungsmitteltabletten geht daher von pulverförmigen Komponenten ("Primärteilchen") aus, die durch geeignete Verfahren zu Sekundärpartikeln mit höherem Teilchendurchmesser agglomeriert bzw. granuliert werden. Diese Granulate oder Gemische unterschiedlicher Granulate werden dann mit einzelnen pulverförmigen Zuschlagstoffen vermischt und der Tablettierung zugeführt.
Im Rahmen der vorliegenden Erfindung bevorzugte Waschmitteltabletten werden durch Verpressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente erhalten. Die tensidhaltigen Granulate können dabei über übliche Granulierverfahren wie Mischer- und Tellergranulation, Wirbelschichtgranulation, Extrusion, Pelletierung oder Kompaktierung hergestellt werden. Es ist dabei für die späteren Waschmitteltabletten von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere oberhalb von 700 g/l, aufweist. Ein weiterer Vorteil kann aus einer engeren Teilchengrößenverteilung der eingesetzten Tensidgranulate resultieren. Im Rahmen der vorliegenden Erfindung sind Waschmitteltabletten bevorzugt, bei denen die Granulate Teilchengrößen zwischen 10 und 4000 µm, vorzugsweise zwischen 100 und 2000 µm und insbesondere zwischen 600 und 1400 µm aufweisen.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Waschmitteltabletten kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Waschmitteltabletten von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpuderungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpuderungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen.
Im Rahmen der vorliegenden Erfindung sind Waschmitteltabletten bevorzugt, die aus einem teilchenförmigen Vorgemisch bestehen, das granulare Komponenten und nachträglich zugemischte pulverförmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100µm, vorzugsweise unterhalb 10µm und insbesondere unterhalb 5µm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Die feinteiligen Aufbereitungskomponenten mit den obengenannten Teilchengrößen können dabei dem zu verpressenden Vorgemisch trocken zugemischt werden. Es ist aber auch möglich und bevorzugt, sie durch Zugabe geringer Mengen flüssiger Stoffe an die Oberfläche der gröberen Teilchen "anzukleben". Diese Abpuderungsverfahren sind im Stand der Technik breit beschrieben und dem Fachmann geläufig. Als flüssige Komponenten, die sich zur Haftvermittlung der Abpuderungsmittel eignen, können beispielsweise nichtionischen Tenside oder wäßrige Lösungen von Tensiden oder anderen Wasch- und Reinigungsmittelinhaltsstoffen eingesetzt werden. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, als flüssigen Haftvermittler zwischen feinteiligem Abpuderungsmittel und den grobkörnigen Teilchen Parfüm einzusetzen.
Zur Herstellung der erfindungsgemäßen Tabletten werden die Vorgemische in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Tabletten werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kemschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Tabletten pro Stunde.
Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
  • Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
  • Geringe Umdrehungszahl des Rotors
  • Große Füllschuhe
  • Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
  • Füllschuh mit konstanter Pulverhöhe
  • Entkopplung von Füllschuh und Pulvervorlage
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgerührt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMA Verpackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Mediopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
Die Tabletten können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden, wobei sie immer aus mehreren Phasen, d.h. Schichten, Einschlüssen oder Kernen und Ringen bestehen. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Tabletten ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Tabletten ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmitteltabletten über eine Dosierhilfe problemlos möglich.
Ein weiterer bevorzugter mehrphasiger Tabletten, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Mehrphasen-Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Tablettenwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden. Hier bietet es sich aus optischen Gründen an, die Dreiecksbasis, die die einzelnen Segmente miteinander verbindet, als eine Phase auszubilden, während die Dreiecksspitze die zweite Phase bildet. Eine unterschiedliche Anfärbung beider Phasen ist in dieser Ausführungsform besonders reizvoll.
Neben dem Schichtaufbau können mehrphasige Tabletten auch in Form von Ringkemtabletten, Kernmanteltabletten oder sogenannten "bulleye"-Tabletten hergestellt werden. Eine Übersicht über solche Ausführungsformen mehrphasiger Tabletten ist in der EP 055 100 (Jeyes Group) beschrieben. Diese Schrift offenbart Toilettenreinigungsmittelblöcke, die einen geformten Körper aus einer langsam löslichen Reinigungsmittelzusammensetzung umfassen, in den eine Bleichmitteltablette eingebettet ist. Diese Schrift offenbart gleichzeitig die unterschiedlichsten Ausgestaltungsformen mehrphasiger Tabletten von der einfachen Mehrphasentablette bis hin zu komplizierten mehrschichtigen Systemen mit Einlagen.
Nach dem Verpressen weisen die Waschmitteltabletten eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Tabletten kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach σ = 2P πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Tabletten ausgeübten Druck führt, der den Bruch der Tablette verursacht, D ist der Tablettendurchmesser in Meter und t ist die Höhe der Tablette.
Beispiele:
Zur Herstellung Alkylbenzolsulfonat- und Cellulose-haltiger Waschmittel tabletten wurde ein Tensidgranulat mit weiteren Aufbereitungskomponenten vermischt und auf einer Exzenter-Tablettenpresse zu Tabletten verpreßt. Die Zusammensetzung des Tensidgranulats ist in der folgenden Tabelle 1 angegeben, die Zusammensetzung des zu verpressenden Vorgemischs (und damit die Zusammensetzung der Tabletten) findet sich in Tabelle 2.
Tensidgranulat [Gew.-%]
C9-13-Alkylbenzolsulfonat 19,4
C12-18-Fettalkoholsulfat 5,2
C12-18-Fettalkohol mit 7 EO 4,8
C12-16-Alkyl-1,4-glycosid 1,0
Seife 1,6
Natriumcarbonat 17,2
Natriumsilikat 5,6
Zeolith A (wasserfreie Aktivsubstanz) 28,5
Na-Hydroxyethan-1,1-diphosphonat 0,8
Acrylsäure-Maleinsäure-Copolymer 5,6
Wasser, Salze Rest
Vorgemisch [Gew.-%]
Tensidgranulat 87,3
Schauminhibitor 3,5
Enzyme 1,7
Parfüm 0,5
Zeolith A (Wessalith® P, Degussa) 1,0
Cellulose 5,0
Die tablettierfähigen Vorgemische wurden in einer Korsch-Exzenterpresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) verpreßt. Dabei wurde der Preßdruck so eingestellt, daß jeweils drei Serien von Tabletten erhalten wurden (E, E', E" und V, V', V "), die sich in ihrer Härte unterscheiden. Die erfindungsgemäßen Waschmitteltabletten E wurden nach der Herstellung zu einer erfindungsgemäßen Kombination verpackt, indem je zwei Tabletten in ein flow pack aus Laminatfolie (aluminiumbedampfte Folie, Dicke: 35 µm, Wasserdampfdurchlässigkeit 1 g/m2/24 h) eingepackt wurden; die Vergleichsbeispiele V wurden offen gelagert. Von allen Tablettenserien wurde vor dem Verpacken die Härte und die Zerfallszeit gemessen. Beide Tabletten (erfindungsgemäße Kombination E und Vergleichs-Tablette V wurden 14 Tage in einer Klimazelle bei 23°C und 85% relativer Luftfeuchtigkeit (Prüfbedingungen nach DIN 53122) gelagert, wonach erneut die Härten und Zerfallszeiten bestimmt wurden. Die Härte der Tabletten wurde durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Zur Bestimmung der Einspülbarkeit wurden 3 Tabletten in die Einspülkammer einer haushaltsüblichen Waschmaschine gelegt (AEG Öko Lavärnat) und ein 40°C-Programm ohne Vorwäsche gestartet. Nach Beendigung des Einspülvorgangs wurden die in der Einspülkammer befindlichen Reste getrocknet und gewogen. Die experimentellen Daten der einzelnen Tablettenserien zeigt Tabelle 3:
Waschmitteltabletten [physikalische Daten]
Tablette E E' E" V V' V"
vor Lagerung Tablettenhärte [N] 39 49 62 39 49 62
Tablettenzerfall [s] 14 26 49 14 26 58
Einspülbarkeit
(Rest) [g]
6 4 8 6 4 8
nach Lagerung Tablettenhärte [N] 45 54 62 35 46 53
Tablettenzerfall [s] 14 30 59 > 60 > 60 > 60
Einspülbarkeit
(Rest) [g]
6 6 5 58 92 105
Tabelle 3 zeigt eindrucksvoll, daß sich die Härten und Zerfallszeiten der Waschmitteltabletten in den erfindungsgemäßen Kombinationen nur geringfügig ändern, während die Tabletten des Vergleichsbeispiels V unakzeptabel nachhärten und äußerst schlecht bzw. nicht mehr zerfallen.

Claims (15)

  1. Kombination aus (einer) Waschmitteltablette(n); welche Alkylbenzolsulfonat(e) und Desintegrationshilfsmittel auf Cellulosebasis in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-% enthält/enthalten und einem die Waschmitteltablette(n) enthaltenden Verpackungssystem, dadurch gekennzeichnet, daß das Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
  2. Kombination nach Anspruch 1, dadurch gekennzeichnet, daß das Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,5 g/m2/Tag bis weniger als 15 g/m2/Tag aufweist.
  3. Kombination nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Waschmitteltablette(n) eine relative Gleichgewichtsfeuchtigkeit von weniger als 30% bei 35°C aufweist/aufweisen.
  4. Kombination nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Verpackungssystem aus einem Sack oder Beutel aus einschichtigem oder laminiertem Papier und/oder Kunststoffolie besteht.
  5. Kombination nach Anspruch 4, dadurch gekennzeichnet, daß das Verpackungssystem aus einem Sack oder Beutel aus einschichtiger oder laminierter Kunststoffolie mit einer Dicke von 10 bis 200 µm, vorzugsweise von 20 bis 100 µm und insbesondere von 25 bis 50 µm besteht.
  6. Kombination nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Verpackungssystem keine Kartons aus wachsbeschichtetem Papier umfaßt.
  7. Kombination nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Waschmitteltablette(n) weitere(s) Tensid(e) und Gerüststoff(e) enthält/enthalten.
  8. Kombination nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Waschmitteltablette(n) das Desintegrationshilfsmittel auf Cellulosebasis in granularer, cogranulierter oder kompaktierter Form, in Mengen von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Tablettengewicht enthält/enthalten.
  9. Kombination nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Waschmitteltablette(n) frei von Bleichmittel(n) ist/sind.
  10. Kombination nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Waschmitteltablette(n) frei von Bleichaktivator(en) ist/sind.
  11. Kombination nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Waschmitteltablette(n) frei von optischen Aufhellern ist/sind.
  12. Kombination nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Waschmitteltablette(n) zusätzlich Farbübetragungsinhibitoren, vorzugsweise Polyvinylpyrrolidon, in Mengen von 0,1 bis 2,0 Gew.-%, vorzugsweise von 0,2 bis 1,5 Gew.-% und insbesondere von 0,5 bis 1,0 Gew.-%, jeweils bezogen auf das Tablettengewicht, enthält/enthalten.
  13. Kombination nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Waschmitteltablette(n) die Alkalimetall-, vorzugsweise Natriumsalze, von C8-16-, vorzugsweise C9-13-Alkybenzolsulfonsäuren enthält/enthalten, die sich von Alkylbenzolen ableiten, welche einen Tetralingehalt unter 5 Gew.-%, bezogen auf das Alkylbenzol, aufweisen.
  14. Kombination nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Waschmitteltablette(n) die Alkalimetall-, vorzugsweise Natriumsalze, von C8-16-, vorzugsweise C9-13-Alkybenzolsulfonsäuren enthält/enthalten, welche einen Gehalt an 2-Phenyl-Isomer unter 22 Gew.-%, bezogen auf die Alkylbenzolsulfonsäure, aufweisen.
  15. Kombination nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Waschmitteltablette(n) die Alkylbenzolsulfonate in Mengen von 0,5 bis 30 Gew.-%, vorzugsweise von 1 bis 25 Gew.-%, besonders bevorzugt von 2 bis 20 Gew.-% und insbesondere von 5 bis 15 Gew.-%, jeweils bezogen auf das Tablettengewicht, enthält/enthalten.
EP99950709A 1998-10-21 1999-10-12 Wasch- und reinigungsmittelformkörper/verpackung-kombination Expired - Lifetime EP1123381B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19848458 1998-10-21
DE19848458A DE19848458A1 (de) 1998-10-21 1998-10-21 Wasch- und Reinigungsmittelformkörper/Verpackung-Kombination
PCT/EP1999/007656 WO2000023559A1 (de) 1998-10-21 1999-10-12 Wasch- und reinigungsmittelformkörper/verpackung-kombination

Publications (2)

Publication Number Publication Date
EP1123381A1 EP1123381A1 (de) 2001-08-16
EP1123381B1 true EP1123381B1 (de) 2004-02-04

Family

ID=7885140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99950709A Expired - Lifetime EP1123381B1 (de) 1998-10-21 1999-10-12 Wasch- und reinigungsmittelformkörper/verpackung-kombination

Country Status (5)

Country Link
EP (1) EP1123381B1 (de)
AT (1) ATE258977T1 (de)
DE (2) DE19848458A1 (de)
ES (1) ES2216572T3 (de)
WO (1) WO2000023559A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2352725A (en) * 1999-07-30 2001-02-07 Mcbride Robert Ltd Detergent packaging
DE10027672A1 (de) * 2000-06-03 2001-12-13 Henkel Kgaa Wasch- und Reinigungsmittelformkörper/Verpackung-Kombination
ES2530061T3 (es) 2008-04-15 2015-02-26 Takasago International Corporation Composición reductora del mal olor y usos de la misma
CN103383351A (zh) * 2013-07-22 2013-11-06 上海嘉麟杰纺织品股份有限公司 一种助剂对分散染料增容量的测试方法
WO2018030431A1 (en) 2016-08-09 2018-02-15 Takasago International Corporation Solid composition comprising free and encapsulated fragrances

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2321693C2 (de) * 1972-12-29 1982-07-01 Henkel KGaA, 4000 Düsseldorf Zur Anwendung mit Textilwaschmitteln geeignete Aufheller-Tablette
ZA752732B (en) * 1974-05-15 1976-12-29 Colgate Palmolive Co Unitary detergent compositions and washing methods
US5431841A (en) * 1993-06-23 1995-07-11 Lockhart; Ronald R. Golf equipment cleaner formulation
DK0634484T3 (da) * 1993-07-14 1999-05-10 Procter & Gamble Detergentemballeringskombination
CH686002A5 (de) * 1993-08-06 1995-11-30 Marina Patent Holding Sa Phosphatfreies Waschmittel.
ES2151154T3 (es) * 1996-03-22 2000-12-16 Kaercher Gmbh & Co Alfred Concentrado detergente.
GB9704776D0 (en) * 1997-03-07 1997-04-23 Unilever Plc Detergent - packaging combination

Also Published As

Publication number Publication date
EP1123381A1 (de) 2001-08-16
WO2000023559A1 (de) 2000-04-27
ES2216572T3 (es) 2004-10-16
DE19848458A1 (de) 2000-04-27
ATE258977T1 (de) 2004-02-15
DE59908481D1 (de) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1123381B1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
EP1138756B1 (de) Wasch-und Reinigungsmittelformkörper mit speziellem Tensidgranulat
DE10120441C2 (de) Waschmittelformkörper mit viskoelastischer Phase
EP1123380B1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
DE10027672A1 (de) Wasch- und Reinigungsmittelformkörper/Verpackung-Kombination
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
WO2001029162A1 (de) Abriebverbesserte wasch- oder reinigungsmittelformkörper
EP1159392B2 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
EP1155111B1 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
DE19818965A1 (de) Wasch- und Reinigungsmittelformkörper mit verbesserten Zerfallseigenschaften
DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
WO2000050559A1 (de) Abriebstabile wasch- und reinigungsmittelformkörper mit festen additiven
WO2000053716A1 (de) Wasch- und reinigungsmittelformkörper mit tensid-builderkombination
DE19915321A1 (de) Wasch- und Reinigungsmittelformkörper mit Desintegrationshilfsmittel
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
WO2000015753A1 (de) Abs-haltige wasch- und reinigungsmittelformkörper
WO2000022086A1 (de) Bleichaktivator-haltige wasch- und reiningungsmittelformkörper
WO2000024862A1 (de) Fas-haltige wasch- und reinigungsmittelformkörper
DE19919445A1 (de) Wasch- und Reinigungsmittelformkörper mit festen Bindemitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030516

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040204

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59908481

Country of ref document: DE

Date of ref document: 20040311

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040504

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040527

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2216572

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041031

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAZ Examination of admissibility of opposition: despatch of communication + time limit

Free format text: ORIGINAL CODE: EPIDOSNOPE2

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBA Examination of admissibility of opposition: reply received

Free format text: ORIGINAL CODE: EPIDOSNOPE4

26 Opposition filed

Opponent name: RECKITT BENCKISER PLC

Effective date: 20041104

NLR1 Nl: opposition has been filed with the epo

Opponent name: RECKITT BENCKISER PLC THE PATENT DEPARTM

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040704

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HENKEL AG & CO. KGAA

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HENKEL AG & CO. KGAA

Effective date: 20080611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20091013

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20091004

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091019

Year of fee payment: 11

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20101031

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101012

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110501

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20080404

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161011

Year of fee payment: 18

Ref country code: IT

Payment date: 20161024

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181019

Year of fee payment: 20

Ref country code: FR

Payment date: 20181022

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59908481

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20191011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20191011