EP1121561B1 - Systeme d'injection de carburant pour une chambre de combustion radiale d'une petite turbine a gaz - Google Patents

Systeme d'injection de carburant pour une chambre de combustion radiale d'une petite turbine a gaz Download PDF

Info

Publication number
EP1121561B1
EP1121561B1 EP99946177A EP99946177A EP1121561B1 EP 1121561 B1 EP1121561 B1 EP 1121561B1 EP 99946177 A EP99946177 A EP 99946177A EP 99946177 A EP99946177 A EP 99946177A EP 1121561 B1 EP1121561 B1 EP 1121561B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
compressor
rotor shaft
gas turbine
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99946177A
Other languages
German (de)
English (en)
Other versions
EP1121561A1 (fr
Inventor
Alexander Böck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP1121561A1 publication Critical patent/EP1121561A1/fr
Application granted granted Critical
Publication of EP1121561B1 publication Critical patent/EP1121561B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means

Definitions

  • the invention relates to a fuel injection system for a radial or Slinger combustion chamber of a small gas turbine with one of the radial or Slinger combustion chambers upstream radial compressor or diagonal compressor and one connected to it via an axial rotor shaft Turbine part, wherein the fuel through in the impeller of the radial compressor / Diagonal compressor delivery pipe in a near the compressor Crossing part of the rotor shaft located in the combustion chamber arrives and in this essentially in the radial direction Supply holes are fed to the combustion chamber.
  • the environment is referred to US 5,526,640.
  • the Slinger combustion chamber is also called the fuel through a concentric to the axis of rotation of the radial compressor (under this term is also used to refer to the so-called diagonal compressors) or the bore in the compressor impeller or through the rotor shaft a delivery pipe provided therein is directed to the combustion chamber. It flows due to the rotary movement of the rotor shaft or the compressor impeller due to the resulting centrifugal forces, the fuel as a thin film along the wall of the bore or the delivery pipe to just below the Primary zone of the combustion chamber. There he is in the known state of the art by a suitable tear-off edge or by individual radially arranged Sprayed nozzles into the primary zone of the combustion chamber.
  • the ventilation can also be carried out at least in sections hollow rotor shaft, so to speak, to the rear, and for example through a central outlet opening in the turbine disk the back and from there into the thrust nozzle of the small gas turbine.
  • this combustion chamber leak air advantageously as cooling air for the Back of the turbine disc can be used and also generated Thrust through the admixture into the exhaust gas jet of the small gas turbine.
  • a fuel injection system for a gas turbine is previously known from US Pat. No. 3,018,625.
  • the gas turbine is equipped with a radial compressor or diagonal compressor, through the impeller a delivery pipe extends through which fuel into an intersection part of the combustion chamber located in the vicinity of the compressor Rotor shaft arrives.
  • the fuel is supplied through the radial boreholes Combustion chamber fed. Leakage air is provided in the intersection Vent holes drilled from the back of the compressor to the environment.
  • the invention has for its object a gas turbine fuel injection system to create the type mentioned, in which a uniform circumferential Fuel injection is guaranteed.
  • Reference number 1 denotes a Slinger combustion chamber of a small gas turbine, which - as shown in particular in FIG. 1 - has a radial compressor 2 upstream.
  • the so-called turbine part 5 of the small gas turbine or more precisely the turbine disk 5a of the turbine part 5 is connected to the compressor impeller 2a of this radial compressor 2 via a rotor shaft 4 running in the axial direction 3.
  • the compressor impeller 2a, the rotor shaft 4 and the turbine disk 5a rotate about the so-called central axis 19 of the small gas turbine.
  • the radial compressor 2 promotes an air flow to be fed to the combustion chamber 1 in the direction of the arrow 6, which is required within the latter for the combustion of the fuel also fed to the combustion chamber 1.
  • Part of this air flow also designated with reference number 6 for the sake of simplicity, does not, however, enter the combustion chamber 1 due to the different pressure conditions present in the different zones of the small gas turbine, but rather does not enter the combustion chamber 1 or its radial compressor 2 in FIG.
  • the compressor back space located on the back of the compressor impeller 2a 8 must therefore be ventilated, i.e. the combustion chamber leak air 6a must also be removed from the compressor rear space 8 again.
  • the front end of the rotor shaft facing the compressor impeller 2a 4 flange-shaped and thereby represents a so-called crossing part 4b
  • This flange-like crossing part 4b Through this flange-like crossing part 4b, several (preferred here evenly distributed over the circumference of the intersection part 4b three) Vent holes 9 through, which thus a connection between the Rotor shaft interior 4a and ultimately the compressor rear space 8 produce. Otherwise, the rotor shaft is via this flange-like crossing part 4b 4 rotatably connected to the compressor impeller 2a.
  • the fuel introduced in this way thus passes through the delivery pipe 12 (and in the exemplary embodiment according to FIGS. 1, 2 via a centrifugal force siphon 14, which will be explained in more detail later) into a distribution chamber which is preferably provided centrally in the intersection part 4b of the rotor shaft 4, but away from the ventilation bores 9 15, from which a plurality of supply bores 17 extending in the radial direction 16 branch off.
  • a distribution chamber which is preferably provided centrally in the intersection part 4b of the rotor shaft 4, but away from the ventilation bores 9 15, from which a plurality of supply bores 17 extending in the radial direction 16 branch off.
  • these supply bores 17, which are also provided in the intersection part 4b and which are arranged offset to the ventilation bores 9, so that the supply bores 17 and the ventilation bores 9 do not intersect, the fuel can therefore ultimately get into the combustion chamber 1.
  • Three such supply bores 17 are preferably provided distributed uniformly over the circumference of the intersection part 4b.
  • the rotor shaft 4 completely in the area of the intersection part 4b by a so-called splash ring 18 surrounded, the at least in the mouth area of the supply holes 17 slightly is spaced from the rotor shaft 4, and together with the Rotor shaft 4 rotates about the central axis 19 of the small gas turbine.
  • the one from the Supply holes 17 emerging fuel can thus be within the Thrower 18 over its entire circumference (and thus also over the Distribute the circumference of the rotor shaft 4) before it is better distributed and thus atomizes into the actual combustion chamber 1 or into the primary zone thereof arrives.
  • the spray ring 18 is essentially trough-shaped on its side facing the supply bores 17, that is to say it forms a collar 18a which is delimited by its collar 18a, which is on the right here and is exposed to the combustion chamber 1, and which faces the rotor shaft 4 with its top side with respect to the rotor shaft 4, so-called splash ring trough 18b, within which the fuel emerging from the supply bores 17 can initially be distributed evenly over the inner circumference of the spray ring 18 due to centrifugal force before it actually reaches the primary zone of the combustion chamber 1.
  • centrifugal siphon 14 provided between the delivery pipe 12 and the distribution chamber 15 in the first exemplary embodiment according to FIG. 1, reference being made in particular to the enlarged illustration according to FIG. 2 for the sake of clarity.
  • the purpose of this centrifugal siphon 14 is to seal the initial area of the fuel injection system, namely the fuel injection tube 13 and the delivery pipe 12, from the combustion chamber 1, in particular in order to ensure excellent controllability of the entire fuel injection system of the small gas turbine, even at low speeds, and beyond Ensure the possibility of a windmill start often desired in small gas turbines as best as possible.
  • the fuel brought in via the injection tube 13 exits the delivery pipe 12 again under the influence of centrifugal force onto the inner surface of a so-called distributor cone 20 and over this due to a baffle plate 21 provided in the intersection part 4b along the same via one between the free end of the distributor cone 20 as well as the baffle plate 21 not specified in the radial direction 16 to the outside into an annular gap 22 surrounding the baffle plate 21 on the outside. From there, the fuel then moves inwards along the side of the baffle plate 21 facing away from the distributor cone 20 in the radial direction 16 , ie in the direction of the central axis 19 into the distribution chamber 15 already described.
  • FIG. 2 a screw connection designated by reference numeral 23, via which the compressor impeller 2a is flanged to the rotor shaft 4 or to the crossing part 4b thereof. Furthermore, the flow path of the combustion chamber leakage air 6a already explained in detail at the beginning is also shown in more detail in this FIG. 2 than in FIG .
  • this combustion chamber leakage air 6a comes from the annulus designated by the reference number 24, that of the combustion chamber end wall 25, from a partition wall designated by the reference number 26 (this is the non-rotating part already mentioned several times) the small gas turbine) and the flange-like crossing part 4b of the rotor shaft 4 is limited, via the gap 27 between the partition wall 26 and the crossing part 4b, which is sealed by the seal 7 provided there as a labyrinth seal, which, however, does not allow complete sealing, in the Compressor rear space 8.
  • the combustion chamber leakage air 6a mixes with another air stream that enters here due to the different pressure conditions and can then enter the transfer bores 29 into the transition bores 29 provided in the flange-shaped section 28 of the compressor impeller 2a, which interacts with the flange-like crossing part 4b explained vent holes 9, which in turn (in the embodiment according to Fig. 1, 2 inclined with respect to the axial direction 3) open into the rotor shaft interior 4a.
  • no centrifugal siphon described in connection with FIG . 2 is provided, so that the delivery pipe 12, which is preferably soldered into a suitable receptacle in the crossing part 4b, opens directly into the distribution chamber 15.
  • the compressor impeller 2a is designed slightly differently, so that the ventilation bores 9, which branch off from a chamber designated by the reference number 30 through which the delivery pipe 12 passes, run at least essentially in the axial direction 3.
  • the combustion chamber leakage air 6a which is to be removed from the compressor rear space 8 and possibly mixed with a further air flow, also enters this chamber 30 via a transition bore, again designated by the reference number 29.
  • 3 also shows a compression spring-loaded mechanical seal 31 provided at the upstream end of the delivery pipe 12 and surrounding the fuel injection pipe 13, by means of which the interior of the delivery pipe 12 is sealed from the surroundings.
  • a throttle point 32 is used in the supply bore (s) 17 for the fuel which is led through the supply bore 17 in the radial direction 16, here in the form of a suitably designed screwed-in throttle element.
  • a pressure gradient builds up in the fuel injection system under the influence of centrifugal force, which prevents combustion chamber air from pressing back into the delivery pipe 12.
  • the mechanical seal 31 shown in FIG . 3 is therefore not necessary here.
  • the splash ring 18 is shaped somewhat differently than in the exemplary embodiment according to FIGS. 1, 2.
  • This different shape is also related to the different design of the compressor impeller 2a or the flange-like section 28 of the same , as can be seen in the exemplary embodiments according to FIGS. 3, 4, the screw connection designated by the reference number 23 in FIG. 2 has been replaced by a welded connection, however this and a large number of further details, in particular of a constructive nature, can be designed quite differently from the exemplary embodiments shown, without leaving the content of the claims.
  • With the measures described one always obtains both a uniform fuel injection into the combustion chamber 1 and an optimal ventilation of the compressor rear space 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Claims (3)

  1. Système d'injection de carburant de turbine à gaz pour une chambre de combustion radiale ou oblique, d'une petite turbine à gaz comprenant un compresseur radial (2) ou un compresseur diagonal, placé en amont de la chambre de combustion (1) radiale ou oblique, et une partie de turbine (5) reliée à ce compresseur au moyen d'un arbre de rotor (4) qui s'étend dans la direction axiale (3), dans laquelle
    le carburant parvient, à travers un tube de transport (12) prévu dans la roue mobile (2a) du compresseur radial/diagonal, dans une partie de croisement (4b) de l'arbre de rotor (4) située dans la région de la chambre de combustion (1) proche du compresseur et est envoyé à la chambre de combustion (1) par l'intermédiaire de perçages d'alimentation (17) qui s'étendent dans cette partie de croisement, sensiblement dans la direction radiale (16), et
    il est prévu dans la partie de croisement (4b) des perçages d'évacuation d'air (9) disposés de façon décalée par rapport aux perçages d'alimentation (17) et par l'intermédiaire desquels l'air de fuite de chambre de combustion (6a) qui parvient dans l'espace arrière (8) du compresseur parvient dans l'espace intérieur (4a) de l'arbre de rotor (4) qui est creux, au moins par segments, pour être rejeté dans l'environnement en passant par cet arbre et à travers une ouverture de sortie (10), en particulier centrale, ménagée dans le disque de turbine (5a),
    caractérisé par
    un anneau d'injection (18) qui entoure entièrement l'arbre de rotor (4) dans la région de la partie de croisement (4b) qui est légèrement espacée de l'arbre de rotor (4), du moins dans la région de débouché des perçages d'alimentation (17) et qui tourne conjointement avec cet arbre autour de l'axe central (19) de la petite turbine à gaz, un siphon centrifuge (14) placé en amont des perçages d'alimentation (17) étant prévu dans la partie de croisement (4b) ou en amont de cette dernière.
  2. Système d'injection de carburant de turbine à gaz selon la revendication 1,
    dans lequel
    l'anneau d'injection (18) est en forme de cuvette sur le côté dirigé vers les perçages d'alimentation (17), et est muni d'une arête de décollement (18c) en direction de la chambre de combustion (1).
  3. Système d'injection de carburant de turbine à gaz selon une des revendications précédentes,
    dans lequel
    les perçages d'alimentation (17), en particulier au nombre de trois, répartis uniformément sur la circonférence de la partie de croisement (4b) sont munis chacun d'une zone d'étranglement (32).
EP99946177A 1998-10-12 1999-09-15 Systeme d'injection de carburant pour une chambre de combustion radiale d'une petite turbine a gaz Expired - Lifetime EP1121561B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19846976A DE19846976A1 (de) 1998-10-12 1998-10-12 Brennstoffeinspritzsystem für eine Radial- oder Slinger-Brennkammer einer Kleingasturbine
DE19846976 1998-10-12
PCT/EP1999/006838 WO2000022350A1 (fr) 1998-10-12 1999-09-15 Systeme d'injection de carburant pour une chambre de combustion radiale d'une petite turbine a gaz

Publications (2)

Publication Number Publication Date
EP1121561A1 EP1121561A1 (fr) 2001-08-08
EP1121561B1 true EP1121561B1 (fr) 2003-10-22

Family

ID=7884197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99946177A Expired - Lifetime EP1121561B1 (fr) 1998-10-12 1999-09-15 Systeme d'injection de carburant pour une chambre de combustion radiale d'une petite turbine a gaz

Country Status (3)

Country Link
EP (1) EP1121561B1 (fr)
DE (2) DE19846976A1 (fr)
WO (1) WO2000022350A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005006522U1 (de) * 2005-04-23 2006-06-01 Priebe, Klaus-Peter Dichtspaltregelung
RU2487258C1 (ru) * 2012-03-01 2013-07-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Газогенератор гтд

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852768A1 (de) 1998-11-16 2000-05-18 Bmw Rolls Royce Gmbh Kleingasturbine mit einer Radial- oder Slinger-Brennkammer
US7762072B2 (en) 2007-01-16 2010-07-27 Honeywell International Inc. Combustion systems with rotary fuel slingers
US7942006B2 (en) 2007-03-26 2011-05-17 Honeywell International Inc. Combustors and combustion systems for gas turbine engines
ES2322317B1 (es) * 2007-06-20 2010-03-31 Futur Investment Partners, S.A. Turbopropulsor aeronautico.
GB201509458D0 (en) 2015-06-01 2015-07-15 Samad Power Ltd Micro-CHP gas fired boiler with gas turbine assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1011066A (fr) * 1948-11-30 1952-06-18 Chambre de combustion
DE1152850B (de) * 1960-04-30 1963-08-14 Bmw Triebwerkbau Ges M B H Gasturbine, insbesondere Kleingasturbine
US3018625A (en) * 1960-06-27 1962-01-30 Continental Aviat & Eng Corp Internal combustion turbine engine
US3983694A (en) * 1974-10-29 1976-10-05 Eaton Corporation Cup-shaped fuel slinger
US4232526A (en) * 1978-12-26 1980-11-11 Teledyne Industries, Inc. High intensity slinger type combustor for turbine engines
US4429527A (en) * 1981-06-19 1984-02-07 Teets J Michael Turbine engine with combustor premix system
DE3585231D1 (de) * 1984-10-10 1992-02-27 Marius A Paul Gasturbinenmotor.
US5042256A (en) * 1986-07-28 1991-08-27 Teledyne Industries, Inc. Turbine shaft fuel pump
US5022228A (en) * 1988-12-22 1991-06-11 Allied-Signal Inc. Over the shaft fuel pumping system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005006522U1 (de) * 2005-04-23 2006-06-01 Priebe, Klaus-Peter Dichtspaltregelung
RU2487258C1 (ru) * 2012-03-01 2013-07-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Газогенератор гтд

Also Published As

Publication number Publication date
DE59907475D1 (de) 2003-11-27
EP1121561A1 (fr) 2001-08-08
WO2000022350A1 (fr) 2000-04-20
DE19846976A1 (de) 2000-04-13

Similar Documents

Publication Publication Date Title
DE69029521T2 (de) Ventil zur aufbereitung von dampf
DE3889539T2 (de) Gasturbinenbrennkammer mit tangentialer brennstoffeinspritzung und zusätzlichen treibstrahlen.
DE2408839C2 (de) Zweiwellen-Gasturbinentriebwerk
DE2131490A1 (de) Luftmischduese
CH672941A5 (fr)
DE3520781A1 (de) Verfahren und vorrichtung zum verbrennen fluessiger und/oder fester brennstoffe in pulverisierter form
DE2143012B2 (de) Brenneranordnung bei einer Gasturbinen-Brennkammer
DE102007007090A1 (de) Gasturbine mit Kühlluft-Übertragungssystem
EP1121561B1 (fr) Systeme d'injection de carburant pour une chambre de combustion radiale d'une petite turbine a gaz
DE2157181B2 (de) Brennkammer für eine Gasturbine
DE3839542A1 (de) Kleinturbinentriebwerk
EP1259298B1 (fr) Procede et dispositif pour epandre des milieux liquides
WO1999014464A1 (fr) Groupe motopropulseur a turbosoufflante
CH705324A1 (de) Axialverdichter mit einer Einspritzvorrichtung zum Eindüsen einer Flüssigkeit.
EP2409087A2 (fr) Procédé pour faire fonctionner un brûleur et brûleur correspondant, en particulier brûleur destiné à une turbine à gaz
DE2511171C2 (de) Filmverdampfungs-Brennkammer
WO1983004282A1 (fr) Dispositif d'injection centrale pour moteurs a combustion interne
EP1001223B1 (fr) Turbine à gaz avec injection du carburant rotatif
DE102020213695A1 (de) Bündeldüse zum Versprühen eines Fluids, Anordnung mit einer Bündeldüse und Verfahren zum Herstellen einer Bündeldüse
WO1990011877A1 (fr) Convertisseur de jets de beton
EP3831498A1 (fr) Buse à faisceaux destinée à la pulvérisation d'un fluide, agencement doté d'une buse à faisceaux et procédé de fabrication d'une buse à faisceaux
DE1162135B (de) Brennkammer fuer Gasturbinenanlagen
DE2012941A1 (de) Einspritzdüse für flüssigen Kraftstoff
DE2414102A1 (de) Einrichtung zur zerstaeubung einer fluessigen oder pastoesen substanz
DE2160675C3 (de) Brennereinrichtung für eine Gasturbinenbrennkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021010

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907475

Country of ref document: DE

Date of ref document: 20031127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040723

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090929

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090929

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100915

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907475

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091006

Year of fee payment: 11