EP1118248B1 - Prothese auditive et procede de traitement de signaux de microphone dans une prothese auditive - Google Patents

Prothese auditive et procede de traitement de signaux de microphone dans une prothese auditive Download PDF

Info

Publication number
EP1118248B1
EP1118248B1 EP99948785A EP99948785A EP1118248B1 EP 1118248 B1 EP1118248 B1 EP 1118248B1 EP 99948785 A EP99948785 A EP 99948785A EP 99948785 A EP99948785 A EP 99948785A EP 1118248 B1 EP1118248 B1 EP 1118248B1
Authority
EP
European Patent Office
Prior art keywords
signal
mic1
mic2
microphone signals
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99948785A
Other languages
German (de)
English (en)
Other versions
EP1118248A1 (fr
Inventor
Eghart Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Priority to DK99948785T priority Critical patent/DK1118248T3/da
Publication of EP1118248A1 publication Critical patent/EP1118248A1/fr
Application granted granted Critical
Publication of EP1118248B1 publication Critical patent/EP1118248B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing

Definitions

  • the invention relates to a hearing aid with the features of The preamble of claim 1 and a method having the features of the preamble of claim 7.
  • the invention is for Use intended for all types of hearing aids. Especially However, the invention is suitable for sophisticated hearing aids, for example, digital signal processing components exhibit.
  • a generic hearing aid is known from DE 43 27 901 C1.
  • a signal processing unit to, by a suitable mix of signals from multiple microphones to achieve predetermined directivity.
  • This directivity are fixed. It will always attenuates signal components of lateral signal sources and signal portions disposed in front of or behind the hearing aid wearer Amplified signal sources.
  • the invention accordingly has the object of the problems mentioned to avoid and a hearing aid and a method of processing of microphone signals in a hearing aid with high Transmission quality and noise reduction in one To provide variety of listening situations.
  • the invention is based on the basic idea, the properties an existing directional gain / attenuation according to the result of an additional signal analysis vary. This can be a particularly good adaptation of the Hearing aid according to the invention to different hearing situations realize. For example, the direction of a Noise source in the direction-dependent gain / attenuation be taken into account to get a good troubleshooting to offer. If there is no appreciable background noise, On the other hand, the interference damping can be switched off to Minimize distortions.
  • the strengths of signal components of the microphone signals in several predetermined direction classes certainly. This allows the rough direction of the main part an interference sound source can be determined. alternative can be provided, the direction of one or more signal source (s) to determine more precisely.
  • an adaptive LMS filter can be used in particular signal delays by integer Multiples of a sample period.
  • the coefficients of the LMS filter determined by the adaptation process can affect the result of directional analysis or (completely) determine or even present this result.
  • Directional characteristic of a (virtual, by superposition of the Microphone signals formed) Directional microphones suitably changed become.
  • Such a change can in particular be an alignment of the directional microphone pole.
  • Alternative and / or additional a suitable noise removal method can be selected become.
  • weighting signals are preferred which determines with what weighting factors the results of different filter, noise immunity and / or straightening process in the output signal.
  • the microphones for generating the microphone signals are in preferred Embodiments at a relatively small distance of not more than 5 cm or more than 2.5 cm or approximately 1.6 cm from each other, with the connecting line between the microphones with a maximum angle of 45 ° or extend at most 30 ° to the viewing direction of the hearing aid wearer may or may be in this line of sight can.
  • a common housing for both microphones be provided.
  • the hearing device circuit shown in Fig. 1 has a known microphone unit 10, the two omnidirectional Microphones 12, 12 'and a two-channel, equalizing Pre-amplifier 14 contains.
  • the microphone unit 10 generates a first and a second microphone signal MIC1, MIC2 coming from the first or the second microphone 12, 12 'come.
  • the two microphone signals MIC1 and MIC2 become a signal analysis unit 16 and a signal processing unit 18 is supplied.
  • the signal analysis unit 16 evaluates the microphone signals MIC1, MIC2 and generates three weighting signals G1, G2, G3 and a total weighting signal GG.
  • the Signal processing unit 18 is described here Embodiment of a side signal reduction unit 20, a return signal reduction unit 22 and a mixing unit 24.
  • An output signal OUT of the signal processing unit 18 abuts on a display unit 26 and is there via an output amplifier 28 a preferably electro-acoustic Converter 30, for example a loudspeaker, fed.
  • the side signal reduction unit 20 receives the microphone signals MIC1, MIC2 and generates a first noise-reduced Signal R1, at the signal components of the two microphone signals MIC1, MIC2 from one side to the hearing aid user Sound source come, are largely suppressed.
  • the side signal reduction unit 20 has a Subtractor 32, which is the difference between the two Microphone signals MIC1, MIC2 forms.
  • the difference signal and the second microphone signal MIC2 become a compensation unit 34 for generating the first noise reduced signal R1 forwarded.
  • the compensation unit 34 merely routes the difference signal obtained from the subtractor 32 as the first noise-reduced signal R1 continues, with the second microphone signal MIC2 is not taken into account.
  • the compensation unit 34 designed as a predictor, by suitable mixing of the difference signal and the second microphone signal MIC2 a better damping effect to achieve signal components of lateral signal sources.
  • a side signal reduction unit 20 having such a Compensation unit 34 is in the application of the same inventor entitled “Method of Providing a Directional microphone characteristic and hearing aid ".
  • the return signal reduction unit 22 has similar to the Side signal reduction unit 20, a subtractor 36 and a compensation unit 38, which is a second noise reduced Signal R2 generated.
  • the second noise reduced Signal R2 are those portions of the microphone signals MIC1, MIC2 is suppressed by signal sources behind the hearing aid wearer come.
  • the positive input of the subtracter 36 is connected to the first microphone signal MIC1 while the negative (to be subtracted) input via a delay element 40, which causes a delay of one sampling period, is connected to the microphone signal MIC2.
  • the compensation unit 38 in In the simplest case, the difference signal of the subtractor 36 as forward second noise-reduced signal R2 unchanged.
  • the return signal reduction unit 22 with a designed as a predictor compensation unit 38 is provided be as mentioned in the previous paragraph Registration is described in detail.
  • the mixing unit 24 has three weighting amplifiers 42, 44, 46, the first of which is the first microphone signal MIC1 with the weighting signal G3 multiplied, the second the first noise-reduced signal R1 with the weighting signal G2, and the third, the second noise-reduced signal R2 with the weighting signal G1.
  • the weighting signals G1, G2, G3 are thus used as gain values (gain values).
  • the output signals of the weighting amplifiers 42, 44, 46 become added by a summer 48.
  • the output signal of the Summer 48 is from another weighting amplifier 50 multiplied by the total weight signal GG to the Output signal OUT of the mixing unit 24 (and the entire signal processing unit 18).
  • the more detailed structure of the signal analysis unit 16 is shown in FIG.
  • LMS least mean square
  • the filtered output signal Y of the LMS filter 52 is connected to the negative input of a subtractor 54.
  • the microphone signal MIC2 is applied to the positive input of the subtractor 54 via a delay element 56 which provides a delay of three sampling periods, and the difference signal formed by the subtracter 54 is supplied to the LMS filter 52 as an error signal E.
  • e (t) mic2 (t-3) -y (t), where e (t) is the error value of the error signal E at time t, y (t) is the output value of the LMS filter 52 at time t, and mic2 (t-3) is the value of the second microphone signal MIC2 at time t-3 (three clocks before time t).
  • a coefficient vector signal W of the LMS filter 52 is applied to a demultiplexer 58.
  • the coefficient vector signal W transmits a coefficient vector for each sampling time t w (t) containing five values k0 (t), k1 (t), k2 (t), k3 (t), k4 (t) for the filter coefficients (Taps).
  • this means: w (t) (k0 (t), k1 (t), k2 (t), k3 (t), k4 (t)).
  • the demultiplexer 58 determines from the coefficient vector signal W five coefficient signals K0, K1, K2, K3, K4, which indicate the value course of the respectively corresponding coefficient.
  • the three "mean" coefficient signals K1, K2, K3 contain, as will be described in more detail below, information about the spatial arrangement of the signal sources relative to the hearing device wearer. This allocation of the filter coefficients is the result of the delay of the second microphone signal MIC2 by three time units by the delay element 56.
  • the transmission of the coefficient vectors and the filter coefficients in the coefficient vector signal W takes place in the embodiment described here serially by means of a suitable protocol to which the demultiplexer 58 is tuned. In embodiments, the coefficients are transmitted in a different way, in particular in parallel or partly in parallel and partly in series.
  • a normalization unit 60 normalizes the three coefficient signals K1, K2, K3 and generates the weighting signals G1, G2, G3 and the total weighting signal GG.
  • Fig. 3 illustrates the internal structure of the LMS filter 52.
  • the input signal X is applied to a buffer 62, which is an input vector signal U generated.
  • U an input vector signal
  • the input vectors u (t) are generated by a vector multiplier 64 in a matrix operation with the respective current coefficient vector w (t) of the coefficient vector signal W multiplied to obtain the (scalar) output value y (t) of the output signal Y at the clock time t.
  • y (t) w (T) ⁇ u T (T), where _ T represents the transposition operator.
  • _ T represents the transposition operator.
  • y (t) k0 (t) * x (t-1) + k1 (t) * x (t-2) + k2 (t) * x (t-3) + k3 (t) * x (t-4) + k4 (t) * x (t-5).
  • An element squarer 66 generates the element-by-element square of the signal vectors u (t), and an element summer 68 serves to sum up the squared elements.
  • an adder 70 a small positive constant C (order of magnitude 10 -10 ) originating from a constant generator 72.
  • C order of magnitude 10 -10
  • the result is applied as a (scalar) divisor to a scalar divider 74.
  • the dividend is the scalar product of the current error value e (t) of the error signal E and an output vector of a Skalarmultiplizierers 76. This output vector is obtained by scalar multiplication of the input vector ü (t) with an adaptation constant ⁇ .
  • w (t + 1) w (t) + ( ⁇ * e (t) * u (t) / (C + u (T) ⁇ u T (T)))
  • the circuit shown in FIG. 3 becomes an LMS algorithm implemented by a stochastic gradient method the filter coefficients k0 (t) - k4 (t) approximates (adapted) that the error signal E as much as possible is minimized.
  • This algorithm is in chapter 9 (pages 365-372) of the book "Adaptive Filter Theory "by Simon Haykin, 3rd edition, Prentice-Hall, 1996, included.
  • the first microphone 12 When operating the hearing aid is, as already mentioned, the first microphone 12 by about 1.6 cm in the direction of view of the hearing aid wearer in front of the second microphone 12 '.
  • Sampling frequency of 20 kHz this corresponds approximately to the distance the sound travels in one sampling period (50 ⁇ s).
  • a signal S0 from a useful sound source which is located in the viewing direction of the hearing aid wearer (angle 0 °), will arrive at the front microphone 12 and at the sampling time t + 1 at the rear microphone 12 'because of the microphone distance, for example at the sampling time t.
  • a signal S2 from an interfering sound source which is located behind the hearing aid wearer (angle 180 °)
  • a signal S1 from a lateral noise source arrives approximately simultaneously at both microphones 12, 12 'and therefore also simultaneously affects the microphone signals MIC1, MIC2.
  • mic1 (t) s0 (t) + s1 (t) + s2 (t-1)
  • mic2 (t) s0 (t-1) + s1 (t) + s2 (t).
  • mic1 (t) denotes the value of the signal MIC1 at the sampling time t.
  • the value e (t) minimized.
  • k3 (t) whose Term is the only one has the summand s0 (t-4), with increasing Intensity of signal S0 (angle 0 °).
  • the amount of the filter coefficient k2 (t) is an indicator for the proportion of signal S1 (angle 90 °) in the microphone signals MIC1, MIC2, and the amount of the filter coefficient k1 (t) indicates the signal component of S2 (angle 180 °).
  • the values of all other filter coefficients are aimed at Zero.
  • the weighting signals G1, G2, G3 always the coefficient signals K1, K2, K3.
  • differences of the Weighting signals G1, G2, G3 are enlarged ("spread").
  • the coefficient signals serve K1, K2, K3 directly as weighting factors.
  • the normalization unit 60 and the weighting amplifier 50 can then be omitted.
  • a large weighting factor G1 has the consequence that the second noise-reduced signal R2, in which a noise component from 180 ° is largely reduced, a large proportion of the Output signal OUT is received. Affected accordingly at one large weighting factor G2 the first noise-reduced signal R1 largely the output signal OUT. At a big one Weighting factor G3 finally affects the first microphone signal MIC1 to a large extent on the output signal OUT.
  • the signal analysis unit determines the intensities or strengths of signal components of the microphone signals MIC1, MIC2 in the angular regions in the direction of the hearing device wearer, across the viewing direction and behind the hearing aid wearer.
  • the weighting factors G1, G2, G3 correspond to the determined intensity values. In dependence of these Values are either signals from 90 ° or 180 ° as interference signals classified and largely suppressed, or that first microphone signal MIC1 is "switched through" when through the directional analysis was determined that neither 90 ° nor from 180 ° significant (interference) signal components are present.
  • the first microphone signal MIC1 and the output signal OUT for the signal example used in this experiment is in Fig. 5 is shown. Especially in the period between 7.3 up to 8.1 seconds, the microphone signal MIC1 contains mainly Interference signal. It can be seen that these proportions are largely suppressed in the output signal OUT.
  • FIGS. 1 to 3 While hitherto the function of the hearing aid according to the invention and method by way of example in FIGS. 1 to 3 have been described, are in alternative embodiments other implementations possible. Especially can the functions of the circuit in whole or in part through program modules of a digital processor, for example a digital signal processor can be realized.
  • the circuit may also be implemented as a digital or analog circuit or in different hybrid forms between these extremes be constructed.
  • the result of the Directional analysis evaluated in another way for signal processing evaluated in another way for signal processing.
  • the coefficient signals K1, K2, K3 also for time-variant control of example three fixed directional microphone characteristics with Poland at 90 °, 135 ° and 180 °.
  • embodiments are provided in which a "intelligent" determination of interfering and useful signal components is made (for example by means of the normalization unit 60). While in the embodiment described above, the signal component in the direction of view (0 °) always regarded as Nutzsignalanteil could, for example, in the presence of the signal S1 from 90 ° and simultaneous absence of the Signal S0 from 0 ° the signal S1 is now regarded as a useful signal and no longer be suppressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (11)

  1. Prothèse auditive avec :
    une unité à microphones (10), qui comporte au moins deux microphones (12, 12') pour produire au moins deux signaux de microphones (MIC1 MIC2),
    une unité de traitement de signal (18) pour produire au moins un signal de sortie (OUT) dans lequel des composantes des signaux de microphones (MIC1, MIC2) sont amplifiées et/ou affaiblies en fonction de la direction,
    une unité de reproduction (26) pour délivrer le ou les signaux de sortie (OUT),
    une unité d'analyse de signal (16) pour effectuer une analyse de direction des signaux de microphones (MIC1, MIC2) et pour déterminer la direction d'une source de son parasite,
       caractérisée par le fait que l'unité de traitement de signal (18) est conçue pour obtenir une suppression de bruit parasite en prenant au moins l'une des mesures suivantes :
    modification de la caractéristique directive,
    sélection d'un procédé de filtrage,
    sélection d'un procédé d'élimination de parasite,
    en fonction d e l'analyse de direction effectuée par l'unité d'analyse de signal (16) et de la détermination de la direction d'une source de son parasite.
  2. Prothèse auditive selon la revendication 1, dans laquelle l'unité d'analyse de signal (16) est conçue pour déterminer lors de l'analyse de direction des signaux de microphones (MIC1, MIC2) les intensités de composantes des signaux de microphones (MIC1, MIC2) dans plusieurs classes de directions (0°, 90°, 180°).
  3. Prothèse auditive selon la revendication 1 ou la revendication 2, dans laquelle l'unité d'analyse de signal (16) comporte un filtre adaptatif, notamment un filtre LMS (52), dont les coefficients de filtre (k0 (t), k1 (t), k2 (t), k3 (t), k4 (t)) influencent au moins le résultat de l'analyse de direction.
  4. Prothèse auditive selon l'une des revendications 1 à 3, dans laquelle l'unité de traitement de s ignal ( 18) c omporte au moins une unité de réduction (20, 22) pour déterminer à partir des signaux de microphones (MIC1, MIC2) à chaque fois un signal à bruit réduit (R1, R2) dans lequel des composantes de signal à chaque fois d'une direction prédéterminée sont affaiblies.
  5. Prothèse auditive selon la revendication 4, dans laquelle l'unité de traitement de signal (18) comporte une unité de mélange (24) pour mélanger le ou les signaux à bruit réduit (R1, R2) et éventuellement au moins un autre signal (MIC1) en fonction de signaux de pondération (G1, G2, G3, GG) prescrits par l'unité d'analyse de signal (16).
  6. Prothèse auditive selon l'une des revendications 1 à 5, dans laquelle l'unité à microphones (10) comporte deux microphones (12, 12') distants de 5 cm au maximum et de préférence de 2,5 cm au maximum.
  7. Procédé de traitement de signaux de microphones (MIC1, MIC2) de plusieurs microphones (12, 12') dans une prothèse auditive, comprenant les étapes suivantes :
    traitement des signaux de microphones (MIC1, MIC2), des composantes des signaux de microphones (MIC1, MIC2) étant amplifiées et/ou affaiblies en fonction de la direction pour produire au moins un signal de sortie (OUT),
    délivrance du ou des signaux de sortie (OUT),
    exécution d'une analyse de direction des signaux de microphones (MIC1, MIC2), la direction d'une source de son parasite étant déterminée lors de l'analyse de direction des signaux de microphones (MIC1, MIC2),
       caractérisé par le fait qu'on exécute aussi pour la suppression de bruit parasite au moins l'une des étapes suivantes :
    modification de la caractéristique directive,
    sélection d'un procédé de filtrage,
    sélection d'un procédé d'élimination de parasite,
    en fonction de l'analyse de direction effectuée par l'unité d'analyse de signal (16) et de la détermination de la direction d'une source de son parasite.
  8. Procédé selon la revendication 7, dans lequel on détermine lors de l'analyse de direction des signaux de microphones (MIC1, MIC2) les intensités de composantes des signaux de microphones (MIC1, MIC2) dans plusieurs classes de directions (0°, 90°, 180°).
  9. Procédé selon la revendication 7 ou la revendication 8, dans lequel on utilise pour l'analyse de direction des signaux de microphones (MIC1, MIC2) un filtre adaptatif (52), notamment un filtre LMS, et dans lequel les coefficients d e filtre (k0 (t), k1 (t), k2 (t), k3 (t), k4 (t)) influencent au moins le résultat de l'analyse de direction.
  10. Procédé selon l'une des revendications 7 à 9, dans lequel l'étape du traitement des signaux de microphones (MIC1, MIC2) comporte l'étape partielle suivante :
    détermination au moins d'un signal à bruit réduit (R1, R2), dans lequel des composantes de signal à chaque fois d'une direction prédéterminée sont affaiblies, à partir des signaux de microphones (MIC1, MIC2).
  11. Procédé selon la revendication 10, dans lequel l'étape du traitement d es s ignaux d e microphones (MIC1, MIC2) comporte l'autre étape partielle suivante :
    mélange du ou des signaux à bruit réduit (R1, R2) et éventuellement au moins d'un autre signal (MIC1) en fonction de signaux de pondération (G1, G2, G3, GG) déterminés lors de l'analyse de direction des signaux de microphones (MIC1, MIC2).
EP99948785A 1998-09-29 1999-09-17 Prothese auditive et procede de traitement de signaux de microphone dans une prothese auditive Expired - Lifetime EP1118248B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK99948785T DK1118248T3 (da) 1998-09-29 1999-09-17 Höreapparat og fremgangsmåde til bearbejdning af mikrofonsignaler i et höreapparat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19844761 1998-09-29
DE19844761 1998-09-29
PCT/EP1999/006916 WO2000019770A1 (fr) 1998-09-29 1999-09-17 Prothese auditive et procede de traitement de signaux de microphone dans une prothese auditive

Publications (2)

Publication Number Publication Date
EP1118248A1 EP1118248A1 (fr) 2001-07-25
EP1118248B1 true EP1118248B1 (fr) 2005-03-23

Family

ID=7882730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99948785A Expired - Lifetime EP1118248B1 (fr) 1998-09-29 1999-09-17 Prothese auditive et procede de traitement de signaux de microphone dans une prothese auditive

Country Status (4)

Country Link
US (1) US6751325B1 (fr)
EP (1) EP1118248B1 (fr)
DE (1) DE59911808D1 (fr)
WO (1) WO2000019770A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957548B2 (en) 2006-05-16 2011-06-07 Phonak Ag Hearing device with transfer function adjusted according to predetermined acoustic environments

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778966B2 (en) * 1999-11-29 2004-08-17 Syfx Segmented mapping converter system and method
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
US7409068B2 (en) * 2002-03-08 2008-08-05 Sound Design Technologies, Ltd. Low-noise directional microphone system
EP1547239A1 (fr) * 2002-09-16 2005-06-29 Nokia Corporation Recepteur a conversion directe et procede de reception
DE10313330B4 (de) * 2003-03-25 2005-04-14 Siemens Audiologische Technik Gmbh Verfahren zur Unterdrückung mindestens eines akustischen Störsignals und Vorrichtung zur Durchführung des Verfahrens
US7076072B2 (en) * 2003-04-09 2006-07-11 Board Of Trustees For The University Of Illinois Systems and methods for interference-suppression with directional sensing patterns
DK1695590T3 (da) * 2003-12-01 2014-06-02 Wolfson Dynamic Hearing Pty Ltd Fremgangsmåde og apparat til fremstilling af adaptive, retningsbestemte signaler
DE10356093B3 (de) * 2003-12-01 2005-06-02 Siemens Audiologische Technik Gmbh Hörervorrichtung mit richtungsabhängiger Signalverarbeitung und entsprechendes Verfahren
US7280943B2 (en) * 2004-03-24 2007-10-09 National University Of Ireland Maynooth Systems and methods for separating multiple sources using directional filtering
DE102005008316B4 (de) * 2005-02-23 2008-11-13 Siemens Audiologische Technik Gmbh Hörvorrichtung und Verfahren zum Überwachen des Hörvermögens eines Minderhörenden
DE102005009892B3 (de) * 2005-03-01 2006-10-26 Siemens Audiologische Technik Gmbh Messverfahren sowie Messanordnung für adaptive Richtmikrofone
US7706549B2 (en) * 2006-09-14 2010-04-27 Fortemedia, Inc. Broadside small array microphone beamforming apparatus
DE102006047983A1 (de) 2006-10-10 2008-04-24 Siemens Audiologische Technik Gmbh Verarbeitung eines Eingangssignals in einem Hörgerät
DE102008046040B4 (de) * 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
JP2009288555A (ja) * 2008-05-29 2009-12-10 Toshiba Corp 音響特性測定装置、音響特性補正装置および音響特性測定方法
JP5845090B2 (ja) * 2009-02-09 2016-01-20 ウェーブス・オーディオ・リミテッド 複数マイクロフォンベースの方向性音フィルタ
DE102009012166B4 (de) 2009-03-06 2010-12-16 Siemens Medical Instruments Pte. Ltd. Hörvorrichtung und Verfahren zum Reduzieren eines Störgeräuschs für eine Hörvorrichtung
DE102009051200B4 (de) * 2009-10-29 2014-06-18 Siemens Medical Instruments Pte. Ltd. Hörgerät und Verfahren zur Rückkopplungsunterdrückung mit einem Richtmikrofon
DE102009060094B4 (de) 2009-12-22 2013-03-14 Siemens Medical Instruments Pte. Ltd. Verfahren und Hörgerät zur Rückkopplungserkennung und -unterdrückung mit einem Richtmikrofon
DK2360943T3 (da) 2009-12-29 2013-07-01 Gn Resound As Beamforming i høreapparater
DE102013207161B4 (de) * 2013-04-19 2019-03-21 Sivantos Pte. Ltd. Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
DE102013219636A1 (de) * 2013-09-27 2015-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und verfahren zur überlagerung eines schallsignals
WO2015179914A1 (fr) 2014-05-29 2015-12-03 Wolfson Dynamic Hearing Pty Ltd Mélange de signaux microphoniques pour réduire le bruit du vent
DE102018207346B4 (de) 2018-05-11 2019-11-21 Sivantos Pte. Ltd. Verfahren zum Betrieb eines Hörgeräts sowie Hörgerät

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134740A (en) 1981-02-13 1982-08-20 Toshiba Corp Keyboard input device
US4622440A (en) 1984-04-11 1986-11-11 In Tech Systems Corp. Differential hearing aid with programmable frequency response
US4751738A (en) 1984-11-29 1988-06-14 The Board Of Trustees Of The Leland Stanford Junior University Directional hearing aid
DE8529437U1 (de) * 1985-10-16 1987-06-11 Siemens AG, 1000 Berlin und 8000 München Richtmikrofon
US4956867A (en) * 1989-04-20 1990-09-11 Massachusetts Institute Of Technology Adaptive beamforming for noise reduction
DK164349C (da) 1989-08-22 1992-11-02 Oticon As Hoereapparat med tilbagekoblingskompensation
AT407815B (de) 1990-07-13 2001-06-25 Viennatone Gmbh Hörgerät
CH681411A5 (fr) 1991-02-20 1993-03-15 Phonak Ag
US5402496A (en) 1992-07-13 1995-03-28 Minnesota Mining And Manufacturing Company Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering
GB2274372A (en) * 1992-12-02 1994-07-20 Ibm Adaptive noise cancellation device
US5524056A (en) 1993-04-13 1996-06-04 Etymotic Research, Inc. Hearing aid having plural microphones and a microphone switching system
US5852667A (en) * 1995-07-03 1998-12-22 Pan; Jianhua Digital feed-forward active noise control system
JPH0993088A (ja) * 1995-09-26 1997-04-04 Fujitsu Ltd 適応フィルタ係数の推定制御方法および装置
DE19635229C2 (de) * 1996-08-30 2001-04-26 Siemens Audiologische Technik Richtungsempfindliche Hörhilfe
US5757933A (en) 1996-12-11 1998-05-26 Micro Ear Technology, Inc. In-the-ear hearing aid with directional microphone system
EP0802699A3 (fr) 1997-07-16 1998-02-25 Phonak Ag Méthode pour éligir électroniquement la distance entre deux transducteurs acoustiques/électroniques et un appareil de prothèse auditive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957548B2 (en) 2006-05-16 2011-06-07 Phonak Ag Hearing device with transfer function adjusted according to predetermined acoustic environments

Also Published As

Publication number Publication date
US6751325B1 (en) 2004-06-15
DE59911808D1 (de) 2005-04-28
EP1118248A1 (fr) 2001-07-25
WO2000019770A1 (fr) 2000-04-06

Similar Documents

Publication Publication Date Title
EP1118248B1 (fr) Prothese auditive et procede de traitement de signaux de microphone dans une prothese auditive
DE102012204877B3 (de) Hörvorrichtung für eine binaurale Versorgung und Verfahren zum Bereitstellen einer binauralen Versorgung
DE102006027673A1 (de) Signaltrenner, Verfahren zum Bestimmen von Ausgangssignalen basierend auf Mikrophonsignalen und Computerprogramm
EP1771034A2 (fr) Calibration d'un microphone dans un formeur de faisceaux-RGSC
DE102017215823B3 (de) Verfahren zum Betrieb eines Hörgerätes
EP2226795B1 (fr) Dispositif auditif et procédé de réduction d'un bruit parasite pour un dispositif auditif
DE102006047986A1 (de) Verarbeitung eines Eingangssignals in einer Hörhilfe
DE10327890A1 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
DE60004863T2 (de) EINE METHODE ZUR REGELUNG DER RICHTWIRKUNG DER SCHALLEMPFANGSCHARAkTERISTIK EINES HÖRGERÄTES UND EIN HÖRGERÄT ZUR AUSFÜHRUNG DER METHODE
DE3040896A1 (de) Signalumsetzungs- und -verarbeitungsschaltungsanordnung
DE102013207403B3 (de) Verfahren zur Steuerung einer Adaptionsschrittweite und Hörvorrichtung
DE102009036610B4 (de) Filterbankanordnung für eine Hörvorrichtung
DE102013201043B4 (de) Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts
EP2503795A2 (fr) Appareil auditif avec dispositif de suppression de l'effet Larsen et procédé de fonctionnement de l'appareil auditif
DE102020207579A1 (de) Verfahren zur richtungsabhängigen Rauschunterdrückung für ein Hörsystem, welches eine Hörvorrichtung umfasst
DE10334396B3 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
DE102018117557B4 (de) Adaptives nachfiltern
EP2200341B1 (fr) Procédé de fonctionnement d'un appareil d'aide auditive et appareil d'aide auditive doté d'un dispositif de séparation de sources
DE102008046040B4 (de) Verfahren zum Betrieb einer Hörvorrichtung mit Richtwirkung und zugehörige Hörvorrichtung
EP2124482B1 (fr) Dispositif auditif avec filtre égaliseur dans un système de banc de filtres
DE102010006154B4 (de) Hörgerät mit Frequenzverschiebung und zugehöriges Verfahren
DE102018117558A1 (de) Adaptives nachfiltern
EP1945000B1 (fr) Procédé destiné à la réduction de puissances d'interférence et système acoustique correspondant
DE102014218672B3 (de) Verfahren und Vorrichtung zur Rückkopplungsunterdrückung
EP1718113B1 (fr) Dispositif de prothèse auditive avec compensation du signal de rétroaction acoustique et électromagnetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040202

RBV Designated contracting states (corrected)

Designated state(s): CH DE DK FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050323

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59911808

Country of ref document: DE

Date of ref document: 20050428

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59911808

Country of ref document: DE

Representative=s name: MAIER, DANIEL OLIVER, DIPL.-ING. UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59911808

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150922

Year of fee payment: 17

Ref country code: DE

Payment date: 20150923

Year of fee payment: 17

Ref country code: GB

Payment date: 20150922

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150923

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20150923

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911808

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160917

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160917

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930