EP1112439B1 - Turbinenschaufel - Google Patents
Turbinenschaufel Download PDFInfo
- Publication number
- EP1112439B1 EP1112439B1 EP99952439A EP99952439A EP1112439B1 EP 1112439 B1 EP1112439 B1 EP 1112439B1 EP 99952439 A EP99952439 A EP 99952439A EP 99952439 A EP99952439 A EP 99952439A EP 1112439 B1 EP1112439 B1 EP 1112439B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine blade
- coolant
- cooling
- vane according
- screen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 239000002826 coolant Substances 0.000 claims 17
- 239000012530 fluid Substances 0.000 claims 6
- 230000000717 retained effect Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 description 44
- 239000012809 cooling fluid Substances 0.000 description 35
- 238000009413 insulation Methods 0.000 description 31
- 230000008646 thermal stress Effects 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 8
- 230000007704 transition Effects 0.000 description 3
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
- F01D5/188—Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
Definitions
- the invention relates to a turbine blade, in particular a gas turbine blade, with a surrounding an interior External wall through which interior cooling fluid can be passed is.
- a gas turbine vane with a guide from Cooling air for cooling it is described, for example, in US Pat. No. 5,419,039 or FR 57426.
- the guide vane is designed as a casting or composed of two castings. She points in her Inside a supply of cooling air from the compressor assigned gas turbine system. In their the hot gas flow exposed to the gas turbine, enclosing the cooling air supply Wall structures are cast in, open on one side Cooling bags provided.
- the object of the invention is to provide a turbine blade with an internal cooling structure.
- this object is achieved by a turbine blade with an interior for guiding a cooling fluid enclosing outer wall, the outer wall in the interior supported by a support rib with a side surface is, and being at least in front of a part of the side surface thermally insulating cooling insulation shield is arranged so that the side surface at least in part by the cooling insulation shield can be shielded from the cooling fluid.
- a support rib or several support ribs are arranged in the interior of the gas turbine blade. On the one hand, these serve a stiffening and support of the outer wall and can on the other hand to form two or more subspaces of the interior be provided.
- the cooling fluid runs along the length the turbine blade from a foot area through the subspaces led through to a head area and exits there. This corresponds to an open cooling fluid guide. It can also there is a closed cooling fluid guide, i.e. the cooling fluid becomes like a snake through the subspaces and led out of the foot area again.
- the cooling fluid not only cools the outer wall, but also that Support rib or the support ribs.
- the support rib In the transition area to the outer wall is the support rib when the turbine blade is applied very hot with hot gas.
- the support rib very much on their side surface or on their side surfaces intensively cooled by the cooling fluid flowing past. It Temperature gradients thus occur within the support rib on too high thermal stresses, especially in Transitional area between the support rib and the outer wall being able to lead. Such thermal stresses can cause material fatigue and a shortened lifespan of the turbine blade to lead.
- the invention provides a Measure ready to reduce cooling of the support rib becomes. Thanks to the thermally insulating cooling insulation shield the side faces of the support rib or at least one Part of it before direct contact with the cooling fluid shielded. The heat transfer between the cooling fluid and the support rib is thus significantly reduced. In order to the support rib is no longer cooled so intensely and the The temperature gradient within the support rib is reduced. This also causes the thermal stresses that occur reduced within the turbine blade.
- the cooling insulation shield is preferably a coating of the Side surface. This coating is advantageously made of a thermally well insulating material.
- the cooling insulation shield is preferably through from the side surface spaced a gap with a gap width.
- the cooling fluid due to a high flow resistance much slower than inside. This reduces the convective cooling of the side surface. It can also be expedient, the gap completely against a cooling fluid entry seal.
- Openings for one or more are preferred in the cooling insulation shield Outlet of cooling fluid is provided in the gap. With help such openings can allow a controlled flow of cooling fluid can be set in the gap. Depending on the size of this river there is a higher or lower heat transfer between the support rib and the cooling fluid. It can therefore be easier Way, a value for heat transfer can be set at the support rib is sufficient, but at least not so is strongly cooled that thermal stresses become too high.
- a spacer for adjusting the gap width is arranged.
- the spacer is more preferably a part of the cooling insulation shield.
- the spacer is preferred formed by a bulge in the cooling insulation shield.
- spacers can also be an independent, between Cooling insulation shield and side surface arranged component.
- the spacer can also be part of the support rib the side surface.
- the spacer is a bulge in the cooling insulation shield provided with the cooling insulation plate on the side surface rests.
- the cooling insulation shield is preferably a sheet metal.
- the cooling insulation shield with the aid of a projection is preferred the outer wall held on the outer wall. More preferred the lead is a turbulator to generate a turbulent Flow in the cooling fluid.
- the lead is a turbulator to generate a turbulent Flow in the cooling fluid.
- On the one facing the interior Side of the outer wall can e.g. B. rib-like turbulators be provided which the generation of a turbulent Serve flow in the cooling fluid. By such a turbulent The convective cooling of the outer wall is caused by the flow Cooling fluid improved.
- the cooling insulation shield can be done in simpler Way between the support rib and one or more such Turbulators are clamped.
- the one facing the interior Side of the outer wall can also be used specifically for mounting the cooling insulation shield manufactured, for. B. co-cast, Contain a projection that holds the cooling insulation shield serves.
- the turbine blade has a cooling fluid supply area , via which the turbine blade is supplied with the cooling fluid becomes.
- the cooling insulation shield is preferably in the cooling fluid supply area soldered or welded on. Through the attachment the cooling insulation shield in the cooling fluid supply area, in particular by means of soldering or welding, this can Cooling insulation shield can be fixed in a simple manner without it additional thermal stresses occur because the location of the Fixation, i.e. the cooling fluid supply area, thermally is lightly loaded.
- the turbine blade is preferably a gas turbine blade, especially for a stationary gas turbine.
- Gas turbine blades become particularly high temperatures through them flowing working medium, a hot gas, exposed. to The efficiency will be increased in the turbine entering hot gas aimed at higher gas inlet temperatures. These higher gas entry temperatures require one ever better and more efficient cooling of the gas turbine blades.
- thermal Tensions in the area of the support rib are impermissibly high Accept values. A reduction in these thermal stresses So there is a rising for a gas turbine blade Meaning too.
- FIG. 1 shows a cross section through a gas turbine blade.
- a double-walled outer wall 3 with a suction side 4 and a pressure side 6 encloses an interior 5.
- three support ribs 7 are arranged.
- each Support rib 7 connects the suction side 4 of the outer wall 3 with the pressure side 6.
- the gas turbine blade 1 is z. B. in one piece cast.
- Each support rib 7 has two towards the interior 5 directed side surfaces 9.
- a cooling insulation shield 11 This is in the example shown as a coating or a covering made of a thermally insulating material executed.
- the outside of the A hot gas flows around the outer wall 3.
- a cooling fluid 12 which is perpendicular to the Drawing plane flows through the interior 5.
- the cooling fluid 12 penetrates one after the other these subspaces 5a, 5b, 5c, 5d. It also cools everyone Support rib 7. Since the support rib 7 is connected to the outer wall 3 it warms up. Especially in a transition area 7a to the outer wall 3, very high temperatures occur.
- each support rib 7 becomes efficient due to the cooling fluid 5 cooled, primarily via a convective Heat exchange via the side surfaces 9. Due to a high temperature gradients between the relatively cool side walls 9 and the hot transition areas 7a to the outer wall 3 occur in the support rib 7 large thermal stresses on. This serves to reduce these thermal stresses Cooling insulation plate 11. Through the cooling insulation plate 11 is the heat transfer reduced between the support rib 7 and the cooling fluid 5. The side walls 9 are thus no longer as strong cooled and the temperature gradient to the hot outer wall 3 decreases.
- FIG 2 shows a section of a cross section through a Gas turbine blade. It is a support rib 7 accordingly the embodiment of FIG 1 shown.
- a cooling insulation shield 11 is arranged in front of one of the side walls 9 . This is as one Sheet metal executed. Bulges are made in the sheet, which serve as spacers 17. Through the spacers 17 is a gap 18 with a defined Gap width d between the cooling insulation plate 11 and the support rib 7 formed. The gap width is preferably between 0.2 mm and 3 mm.
- the cooling insulation shield 11 is on the interior 5 facing side of the pressure side 6 of the outer wall 3 supported by a rib-like turbulator 15. On the Interior 5 facing side of the suction side 4 of the outer wall 3 is a projection 13 cast into the outer wall 3, the also serves to hold the cooling insulation plate 11.
- the cooling fluid 12 only flows to a small extent in the gap 18. As a result, the convective cooling of the side wall 9 is considerable reduced. This in turn leads to a reduced temperature gradient within the support rib 7 and thus reduced thermal stresses.
- FIG. 3 shows a longitudinal section of the detail from FIG. 2.
- the cooling fluid 12 flows over a cooling fluid supply area 19 in the interior 5.
- the cooling insulation plate 11 is in the cooling fluid supply area 19 at a welding point 21 welded to the support rib 7.
- At an opening 23A the cooling fluid 12 enters the gap 18.
- At an opening 23B the cooling fluid 12 exits the gap 18.
- Cooling fluid flow in the gap 18 can be adjusted so that Adequate cooling of the support rib 7 results, but at the same time the cooling remains so low that none impermissibly high thermal stresses in the turbine blade 1 occur.
- FIG. 4 shows a partially broken gas turbine blade 1.
- the gas turbine blade 1 points along a blade axis 29 a foot region 30, an airfoil 31 and one Head area 32.
- Inside the gas turbine blade 1 there is an interior space 5 which has support ribs 7 with side surfaces 9 into subspaces directed along the blade axis 29 5a, 5b, 5c, 5d, 5e is divided.
- a cooling insulation shield 11 arranged in front of one of the side walls 9 a cooling insulation shield 11 arranged.
- 9 are preferably in front of all side walls Support ribs 7 cooling insulation 11 arranged. Execution of the cooling insulation shield 11 and its advantages result accordingly the explanations of the other figures.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
- FIG 1
- einen Querschnitt durch eine Gasturbinenschaufel,
- FIG 2
- einen Ausschnitt eines Querschnittes durch eine Gasturbinenschaufel,
- FIG 3
- einen Ausschnitt durch einen Längsschnitt durch eine Gasturbinenschaufel und
- FIG 4
- einen Längsschnitt durch eine Gasturbinenschaufel
Claims (12)
- Turbinenschaufel mit einer einen Innenraum (5) zur Führung eines Kühlfluides (12) umschließenden Außenwand (3), wobei die Außenwand (3) im Innenraum (5) von einer Stützrippe (7) gestützt ist und wobei die Stützrippe (7) eine Seitenfläche aufweist,
dadurch gekennzeichnet, daß zumindest vor einem Teil der Seitenfläche (9) ein thermisch isolierendes Kühldämmschild (11) so angeordnet ist, daß die Seitenfläche (9) zumindest zum Teil von dem Kühlfluid (12) durch das Kühldämmschild (11) abschirmbar ist. - Turbinenschaufel nach Anspruch 1,
dadurch gekennzeichnet, daß das Kühldämmschild (11) eine Beschichtung der Seitenfläche (9) ist. - Turbinenschaufel nach Anspruch 1,
dadurch gekennzeichnet, daß das Kühldämmschild (11) von der Seitenfläche (9) durch einen Spalt (18) mit einer Spaltbreite (d) beabstandet ist. - Turbinenschaufel nach Anspruch 3,
dadurch gekennzeichnet, daß im Kühldämmschild (11) Öffnungen (23A, 23B) für einen Ein- oder Auslaß von Kühlfluid (12) in den Spalt (18) vorgesehen sind - Turbinenschaufel nach Anspruch 3 oder 4,
dadurch gekennzeichnet, daß zwischen dem Kühldämmschild (11) und der Seitenfläche (9) ein Abstandshalter (17) zur Einstellung der Spaltbreite angeordnet ist. - Turbinenschaufel nach Anspruch 5,
dadurch gekennzeichnet, daß der Abstandshalter (17) Teil des Kühldämmschildes (11) ist. - Turbinenschaufel nach Anspruch 6,
dadurch gekennzeichnet, daß der Abstandshalter (17) durch eine Ausbuchtung des Kühldämmschildes (11) gebildet ist. - Turbinenschaufel nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß das Kühldämmschild (11) ein Blech ist. - Turbinenschaufel nach einem der Ansprüche 3 bis 8,
dadurch gekennzeichnet, daß das Kühldämmschild (11) mit Hilfe eines Vorsprungs (13) der Außenwand (3) gehaltert ist. - Turbinenschaufel nach Anspruch 9,
dadurch gekennzeichnet, daß der Vorsprung ein Turbulator (15) zur Erzeugung einer turbulenten Strömung im Kühlfluid (12) ist. - Turbinenschaufel nach einem der Ansprüche 3 bis 10, mit einem Kühlfluidzuführungsbereich (19),
dadurch gekennzeichnet, daß das Kühldämmschild (11) im Kühlfluidzuführungsbereich (19) angelötet oder angeschweißt ist. - Turbinenschaufel nach einem der vorhergehenden Ansprüche,
gekennzeichnet durch eine Ausführung als Gasturbinenschaufel (1), insbesondere für eine stationäre Gasturbine.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19839624 | 1998-08-31 | ||
DE19839624 | 1998-08-31 | ||
PCT/DE1999/002596 WO2000012868A1 (de) | 1998-08-31 | 1999-08-18 | Turbinenschaufel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1112439A1 EP1112439A1 (de) | 2001-07-04 |
EP1112439B1 true EP1112439B1 (de) | 2003-06-11 |
Family
ID=7879308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99952439A Expired - Lifetime EP1112439B1 (de) | 1998-08-31 | 1999-08-18 | Turbinenschaufel |
Country Status (5)
Country | Link |
---|---|
US (1) | US6533547B2 (de) |
EP (1) | EP1112439B1 (de) |
JP (1) | JP4315599B2 (de) |
DE (1) | DE59905944D1 (de) |
WO (1) | WO2000012868A1 (de) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1099825A1 (de) * | 1999-11-12 | 2001-05-16 | Siemens Aktiengesellschaft | Turbinenschaufel und Verfahren zur Herstellung einer Turbinenschaufel |
EP1167689A1 (de) * | 2000-06-21 | 2002-01-02 | Siemens Aktiengesellschaft | Konfiguration einer kühlbaren Turbinenschaufel |
FR2858352B1 (fr) * | 2003-08-01 | 2006-01-20 | Snecma Moteurs | Circuit de refroidissement pour aube de turbine |
US7216694B2 (en) * | 2004-01-23 | 2007-05-15 | United Technologies Corporation | Apparatus and method for reducing operating stress in a turbine blade and the like |
US7018176B2 (en) * | 2004-05-06 | 2006-03-28 | United Technologies Corporation | Cooled turbine airfoil |
US7118326B2 (en) * | 2004-06-17 | 2006-10-10 | Siemens Power Generation, Inc. | Cooled gas turbine vane |
US7534089B2 (en) * | 2006-07-18 | 2009-05-19 | Siemens Energy, Inc. | Turbine airfoil with near wall multi-serpentine cooling channels |
US7780413B2 (en) * | 2006-08-01 | 2010-08-24 | Siemens Energy, Inc. | Turbine airfoil with near wall inflow chambers |
US7520725B1 (en) | 2006-08-11 | 2009-04-21 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall leading edge multi-holes cooling |
DE502006003548D1 (de) | 2006-08-23 | 2009-06-04 | Siemens Ag | Beschichtete Turbinenschaufel |
US7625179B2 (en) * | 2006-09-13 | 2009-12-01 | United Technologies Corporation | Airfoil thermal management with microcircuit cooling |
US8197184B2 (en) * | 2006-10-18 | 2012-06-12 | United Technologies Corporation | Vane with enhanced heat transfer |
US7625180B1 (en) * | 2006-11-16 | 2009-12-01 | Florida Turbine Technologies, Inc. | Turbine blade with near-wall multi-metering and diffusion cooling circuit |
US7556476B1 (en) | 2006-11-16 | 2009-07-07 | Florida Turbine Technologies, Inc. | Turbine airfoil with multiple near wall compartment cooling |
US7704048B2 (en) * | 2006-12-15 | 2010-04-27 | Siemens Energy, Inc. | Turbine airfoil with controlled area cooling arrangement |
US7753650B1 (en) | 2006-12-20 | 2010-07-13 | Florida Turbine Technologies, Inc. | Thin turbine rotor blade with sinusoidal flow cooling channels |
US7871246B2 (en) * | 2007-02-15 | 2011-01-18 | Siemens Energy, Inc. | Airfoil for a gas turbine |
US7857589B1 (en) | 2007-09-21 | 2010-12-28 | Florida Turbine Technologies, Inc. | Turbine airfoil with near-wall cooling |
DE102007054782A1 (de) * | 2007-11-16 | 2009-05-20 | Mtu Aero Engines Gmbh | Induktionsspule, Verfahren und Vorrichtung zur induktiven Erwärmung von metallischen Bauelementen |
US8042268B2 (en) * | 2008-03-21 | 2011-10-25 | Siemens Energy, Inc. | Method of producing a turbine component with multiple interconnected layers of cooling channels |
US20090324841A1 (en) * | 2008-05-09 | 2009-12-31 | Siemens Power Generation, Inc. | Method of restoring near-wall cooled turbine components |
US8167558B2 (en) * | 2009-01-19 | 2012-05-01 | Siemens Energy, Inc. | Modular serpentine cooling systems for turbine engine components |
US8007242B1 (en) * | 2009-03-16 | 2011-08-30 | Florida Turbine Technologies, Inc. | High temperature turbine rotor blade |
US8052391B1 (en) * | 2009-03-25 | 2011-11-08 | Florida Turbine Technologies, Inc. | High temperature turbine rotor blade |
US8070450B1 (en) * | 2009-04-20 | 2011-12-06 | Florida Turbine Technologies, Inc. | High temperature turbine rotor blade |
US8079821B2 (en) * | 2009-05-05 | 2011-12-20 | Siemens Energy, Inc. | Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure |
US8147196B2 (en) * | 2009-05-05 | 2012-04-03 | Siemens Energy, Inc. | Turbine airfoil with a compliant outer wall |
US8894367B2 (en) | 2009-08-06 | 2014-11-25 | Siemens Energy, Inc. | Compound cooling flow turbulator for turbine component |
US20110146075A1 (en) * | 2009-12-18 | 2011-06-23 | Brian Thomas Hazel | Methods for making a turbine blade |
US8506242B2 (en) * | 2010-05-04 | 2013-08-13 | Brayton Energy Canada, Inc. | Method of making a heat exchange component using wire mesh screens |
US9011077B2 (en) * | 2011-04-20 | 2015-04-21 | Siemens Energy, Inc. | Cooled airfoil in a turbine engine |
EP2828484B2 (de) | 2012-03-22 | 2024-10-09 | Ansaldo Energia IP UK Limited | Turbinenschaufel |
US20130280081A1 (en) * | 2012-04-24 | 2013-10-24 | Mark F. Zelesky | Gas turbine engine airfoil geometries and cores for manufacturing process |
US9115590B2 (en) * | 2012-09-26 | 2015-08-25 | United Technologies Corporation | Gas turbine engine airfoil cooling circuit |
EP2959111B1 (de) | 2013-02-23 | 2019-06-12 | Rolls-Royce North American Technologies, Inc. | Isolierende beschichtung zur ermöglichung höherer betriebstemperaturen |
FR3021697B1 (fr) * | 2014-05-28 | 2021-09-17 | Snecma | Aube de turbine a refroidissement optimise |
US10012090B2 (en) * | 2014-07-25 | 2018-07-03 | United Technologies Corporation | Airfoil cooling apparatus |
US10156157B2 (en) * | 2015-02-13 | 2018-12-18 | United Technologies Corporation | S-shaped trip strips in internally cooled components |
US20190055849A1 (en) * | 2015-11-10 | 2019-02-21 | Siemens Aktiengesellschaft | Laminated airfoil for a gas turbine |
PL232314B1 (pl) | 2016-05-06 | 2019-06-28 | Gen Electric | Maszyna przepływowa zawierająca system regulacji luzu |
US10309246B2 (en) | 2016-06-07 | 2019-06-04 | General Electric Company | Passive clearance control system for gas turbomachine |
US10605093B2 (en) | 2016-07-12 | 2020-03-31 | General Electric Company | Heat transfer device and related turbine airfoil |
US10392944B2 (en) * | 2016-07-12 | 2019-08-27 | General Electric Company | Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium |
US10422229B2 (en) * | 2017-03-21 | 2019-09-24 | United Technologies Corporation | Airfoil cooling |
US10487672B2 (en) * | 2017-11-20 | 2019-11-26 | Rolls-Royce Corporation | Airfoil for a gas turbine engine having insulating materials |
FR3096074B1 (fr) * | 2019-05-17 | 2021-06-11 | Safran Aircraft Engines | Aube de turbomachine à bord de fuite ayant un refroidissement amélioré |
US11333022B2 (en) * | 2019-08-06 | 2022-05-17 | General Electric Company | Airfoil with thermally conductive pins |
US11773723B2 (en) | 2019-11-15 | 2023-10-03 | Rtx Corporation | Airfoil rib with thermal conductance element |
CN111677557B (zh) * | 2020-06-08 | 2021-10-26 | 清华大学 | 涡轮导向叶片及具有其的涡轮机械 |
CN112160796B (zh) * | 2020-09-03 | 2022-09-09 | 哈尔滨工业大学 | 燃气轮机发动机的涡轮叶片及其控制方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR999820A (fr) | 1946-01-11 | 1952-02-05 | Perfectionnements aux turbines à gaz | |
US4519745A (en) * | 1980-09-19 | 1985-05-28 | Rockwell International Corporation | Rotor blade and stator vane using ceramic shell |
DE3615226A1 (de) | 1986-05-06 | 1987-11-12 | Mtu Muenchen Gmbh | Heissgasueberhitzungsschutzeinrichtung fuer gasturbinentriebwerke |
JP3142850B2 (ja) * | 1989-03-13 | 2001-03-07 | 株式会社東芝 | タービンの冷却翼および複合発電プラント |
US5383766A (en) * | 1990-07-09 | 1995-01-24 | United Technologies Corporation | Cooled vane |
US5405242A (en) | 1990-07-09 | 1995-04-11 | United Technologies Corporation | Cooled vane |
US5203873A (en) * | 1991-08-29 | 1993-04-20 | General Electric Company | Turbine blade impingement baffle |
US6095755A (en) * | 1996-11-26 | 2000-08-01 | United Technologies Corporation | Gas turbine engine airfoils having increased fatigue strength |
-
1999
- 1999-08-18 DE DE59905944T patent/DE59905944D1/de not_active Expired - Lifetime
- 1999-08-18 JP JP2000567826A patent/JP4315599B2/ja not_active Expired - Fee Related
- 1999-08-18 EP EP99952439A patent/EP1112439B1/de not_active Expired - Lifetime
- 1999-08-18 WO PCT/DE1999/002596 patent/WO2000012868A1/de active IP Right Grant
-
2001
- 2001-02-28 US US09/796,309 patent/US6533547B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59905944D1 (de) | 2003-07-17 |
US6533547B2 (en) | 2003-03-18 |
JP2002523675A (ja) | 2002-07-30 |
JP4315599B2 (ja) | 2009-08-19 |
US20010018021A1 (en) | 2001-08-30 |
EP1112439A1 (de) | 2001-07-04 |
WO2000012868A1 (de) | 2000-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1112439B1 (de) | Turbinenschaufel | |
EP1320661B1 (de) | Gasturbinenschaufel | |
EP1032791B1 (de) | Brennkammer sowie verfahren zur dampfkühlung einer brennkammer | |
DE69006433T3 (de) | Turbinenschaufel. | |
DE69816532T2 (de) | Wärmeübergangsstruktur | |
DE60031185T2 (de) | Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel | |
DE3789514T2 (de) | Gekühlte Gasturbinenschaufel. | |
DE69500735T2 (de) | Gasturbinenschaufel | |
EP1899582B1 (de) | Hitzeschild und turbinenleitschaufel für eine gasturbine | |
DE2630629A1 (de) | Schichtkoerper, insbesondere fuer gasturbinentriebwerke | |
DE4441507A1 (de) | Turbinenkühlschaufel | |
EP0031174B1 (de) | Gekühlte Gasturbinenschaufel | |
DE10001109A1 (de) | Gekühlte Schaufel für eine Gasturbine | |
DE1476804A1 (de) | Turbinenschaufel mit Tragflaechenprofil | |
EP1247602B1 (de) | Verfahren zur Herstellung einer Turbinenschaufel | |
EP1836442A1 (de) | Hitzeschildelement | |
EP1073827B1 (de) | Turbinenschaufel | |
EP1112440A1 (de) | Turbinenleitschaufel | |
DE102005055482A1 (de) | Wärmetauscher für einen Verbrennungsmotor | |
DE19963716A1 (de) | Gekühlte Strömungsumlenkvorrichtung für eine bei hohen Temperaturen arbeitende Strömungsmaschine | |
EP2747218B1 (de) | Kühlanordnung für laseraktive Festkörpermaterialien, Laseranordnung und Verfahren zur Kühlung eines laseraktiven Festkörpermaterials | |
EP1028228A1 (de) | Kühlvorrichtung für Turbinenlaufschaufelplattform | |
DE102017216819B4 (de) | Abgaskühler und Abgasrückführsystem mit einem Abgaskühler | |
DE2065334A1 (de) | Schaufelanordnung mit kuehlvorrichtung | |
DE102021210826A1 (de) | Kühler mit zwei weitgehend parallelen Strömungsräumen und drei weitgehend parallelen Platten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010122 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: TIEMANN, PETER Inventor name: SCHULENBERG, THOMAS Inventor name: SCHEURLEN, MICHAEL Inventor name: BOLMS, HANS-THOMAS Inventor name: BISCHOFF-BEIERMANN, BURKHARD Inventor name: ANDING, DIRK |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59905944 Country of ref document: DE Date of ref document: 20030717 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040312 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150812 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150818 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150825 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20151016 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59905944 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160818 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160818 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160818 |