EP1105647B1 - Dispositif compresseur d'agent frigorifique - Google Patents

Dispositif compresseur d'agent frigorifique Download PDF

Info

Publication number
EP1105647B1
EP1105647B1 EP00927008A EP00927008A EP1105647B1 EP 1105647 B1 EP1105647 B1 EP 1105647B1 EP 00927008 A EP00927008 A EP 00927008A EP 00927008 A EP00927008 A EP 00927008A EP 1105647 B1 EP1105647 B1 EP 1105647B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
refrigerant compressor
drive motor
compressor apparatus
pressure stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00927008A
Other languages
German (de)
English (en)
Other versions
EP1105647B9 (fr
EP1105647A2 (fr
Inventor
Volker Pollrich
Günter DITTRICH
Helmut Barowsky
Wolfgang SANDKÖTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bitzer Kuehlmaschinenbau GmbH and Co KG
Original Assignee
Bitzer Kuehlmaschinenbau GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bitzer Kuehlmaschinenbau GmbH and Co KG filed Critical Bitzer Kuehlmaschinenbau GmbH and Co KG
Publication of EP1105647A2 publication Critical patent/EP1105647A2/fr
Application granted granted Critical
Publication of EP1105647B1 publication Critical patent/EP1105647B1/fr
Publication of EP1105647B9 publication Critical patent/EP1105647B9/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/04Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B27/0404Details, component parts specially adapted for such pumps
    • F04B27/0414Cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the invention relates to a refrigerant compressor plant comprising a drive motor, one of the drive motor driven compressor with several, V-shaped arranged Cylinders and eccentric bearing compressor shaft to drive working in the respective cylinders Piston.
  • Such refrigerant compressor systems are known from the prior Technique known (see US 2 454 600) These are usually the eccentric designed so that an eccentric to drive multiple cylinders serves, on the one hand compact and cost-effective Get solution.
  • the invention is based on the object, a refrigerant compressor plant of the generic type to improve such that the greatest possible smoothness in each desired V-angle is reached.
  • the advantage of the solution according to the invention is that by the single arrangement of the eccentric whose rotational position relative to each other is arbitrarily adjustable and that thus regardless of the desired V-angle a great smoothness by free selectability of the angular position of the individual Eccentric relative to each other is achievable.
  • the compressor shaft between two successive eccentrics intermediate pieces having a cross-sectional shape extending in radial Direction to the axis of rotation maximum to the nearest two Lateral surfaces extends, one of which is the lateral surface one eccentric and the other the outer surface of the another eccentric of the two successive eccentric is.
  • the compressor shaft to the axis of rotation having coaxial lubricant channel, wherein preferably of the lubricant channel in the region of each eccentric transverse channels for lubrication of running surfaces of the eccentric branch.
  • the lubricant bore is also formed, that of these cross channels for lubrication of the bearing sections branch off the same.
  • V-shaped arranged Cylinders include a V angle of less than 70 ° with each other.
  • V-angle of about 60 ° or less.
  • a particularly favorable solution provides that the Eccentric in the direction of the axis of rotation of the compressor shaft in succession arranged pairs form, whereby the one pair forming eccentric by an angle of 360 ° divided by the Number of cylinders plus the V-angle rotated against each other and in particular each of the eccentric of a couple one of two arranged in the V-angle to each other Cylinders is assigned.
  • first eccentric each of the pairs and the second eccentric of each of the pairs are mutually rotated by 180 °, so that they work in opposite directions.
  • a particularly advantageous solution provides that the Compressor comprises at least four cylinders and that the compressor shaft at least four spaced apart includes single eccentric.
  • the high pressure stage and the low pressure stage divided so that a number of V-shaped arranged Cylinder the low pressure stage and the other series of Cylinder forms the high-pressure stage.
  • the cylinder volumes of the low pressure stage and the high-pressure stage have so far given no information.
  • the cylinder volumes could be the same size and there is a possibility, due to the different Eccentricity the volumes of high pressure stage and low pressure stage.
  • a particularly favorable embodiment of the invention Solution provides that the low-pressure stage can be reduced in power, in particular with regard to their compressor action can be switched off. This is especially true advantageous if a power control of the invention Refrigerant compressor system is desired and in particular at low cooling capacity, which is not necessary per se Low pressure stage either reduced in their performance or be switched off with regard to their compressor action can reduce the power consumption of the compressor.
  • Another possibility would be to make a detour to Low pressure stage to open.
  • a particularly favorable solution provides that the suction side of the Low pressure stage, a power control valve is arranged and that between a low-pressure connection of the compressor and a suction side of the high-pressure stage is arranged a valve, which opens when the power control valve is active.
  • Such a valve can for example be activated actively become.
  • Valve between the low pressure connection of the compressor and the suction side of the high pressure stage is a check valve, which depends on the active power control valve occurring pressure difference opens automatically, so that a targeted control of this valve between the low pressure side the compressor and the suction side of the high-pressure stage is not necessary and can be omitted.
  • a check valve has the advantage that this automatically opens when the pressure on the suction side of the High pressure level is equal to or lower than the pressure at Low pressure exclusion, so that no additional measures for exact control of this valve under such pressure conditions is required.
  • a particularly advantageous embodiment provides that the drive motor of the compressor from that of the low-pressure stage flows through the high-pressure stage refrigerant flowing and thereby cooled.
  • a particularly favorable solution which in any case a sufficient Cooling the drive motor ensures provides that the drive motor of the compressor of the in the High-pressure stage entering refrigerant is flowed through, the means that essentially the refrigerant that enters the high-pressure stage enters, also flows through the drive motor and thus always a sufficient cooling of the drive motor ensures.
  • the on the drive motor Inverter is arranged, wherein preferably the inverter so is arranged on the drive motor that its power components thermally with a housing of the drive motor are coupled.
  • Such a coupling with the housing of the drive motor can be achieved in a simple manner that the Power components coupled either with an intermediate piece or arranged directly on the housing of the drive motor are.
  • a particularly advantageous arrangement of the inverter in particular with regard to a compact and narrow design of Refrigerant compressor system according to the invention provides that the inverter on a compressor opposite Side of the housing of the drive motor is arranged.
  • an invention working refrigerant compressor system in particular with regard to on the energy consumption, then operate when the Drive motor is speed controlled, preferably a Speed control of the drive motor under consideration the required cooling capacity takes place.
  • a controller which controls the rotational speed of the drive motor controls according to the required cooling capacity.
  • Control which controls the speed of the drive motor, to Control of the temperature of a with the inventive Use refrigerant compressor system for cooling medium, wherein the controller is the temperature of the medium to be cooled detected and controls the speed accordingly.
  • a particularly precise control of the temperature of the Cooling medium then takes place when the controller Drive motor runs without interruption and the entire Temperature control exclusively on the speed and optionally switching off the low-pressure stage takes place.
  • a Control is provided, which falls below a definable cooling capacity shuts off the low-pressure stage. This is especially in a simple way the possibility created by the drive motor for the operation of the compressor additional to be provided in cases too reduce, where such a low cooling capacity required will be that alone with the high-pressure stage of the compressor can be provided.
  • this also takes place as a function of the Ambient temperature.
  • the control for the speed of the drive motor and turning off the low pressure stage is the same.
  • an advantageous embodiment provides that the refrigerant compressor plant a liquid subcooler assigned.
  • the liquid subcooler on a drive motor is arranged opposite side of the compressor.
  • the liquid subcooler is preferably designed that he liquid refrigerant for liquid supercooling evaporates and this vaporized refrigerant in the high-pressure stage flowing refrigerant enters.
  • the vaporized refrigerant is the Medium pressure channel supplied before flowing through the drive motor.
  • the Liquid subcooler according to a temperature of Drive motor is controllable.
  • the Detecting the temperature of the drive motor via a Detecting the temperature of the housing of the drive motor.
  • a particularly favorable solution, especially for efficient Cooling the inverter provides that the liquid subcooler according to the temperature of the inverter carrying Part of the housing of the drive motor is controllable.
  • the liquid subcooler is controlled so that it has a minimum temperature of the inverter bearing part of the inverter Housing maintains, the minimum temperature of the to select the inverter-carrying part of the housing so that no condensation of moisture from the ambient air can be done.
  • the control of Liquid subcooler takes place in such a way that the Inverter carrying part of the housing at a temperature of at least 10 ° Celsius, preferably at least 20 ° Celsius remains.
  • the liquid subcooler is controlled so that the maximum temperature of the the inverter carrying part of the housing a fixed Temperature does not exceed.
  • This set temperature is about 60 ° Celsius, preferably about 50 ° Celsius.
  • An embodiment of a refrigerant compressor system according to the invention shown in Fig. 1, comprises as Whole with 10 designated plant housing, which is located in a longitudinal direction 12 extends and at a first, transversely to the longitudinal direction 12 extending end face 14 an inverter 16 carries, while at one of the front side 14 opposite End face 18 as a whole denoted by 20 Liquid subcooler is arranged.
  • the rotor 28 sits on one Shaft portion 32 of a designated as a whole with 34 compressor shaft.
  • the plant housing 10 still includes a compressor housing section 38 of a designated as a whole with 40 compressor for the refrigerant.
  • the compressor housing section 38 extends from the end face 18 of the plant housing 10 to a partition 42, which the compressor housing portion 38 of the Motor housing section 22 separates.
  • the partition 42 is a designated as a whole 44 Compressor shaft bearing arranged, which the shaft 34 in a first bearing portion 46 stores, which on a the Compressor 40 facing side bearing the rotor 28 Shaft portion 32 is arranged.
  • a second compressor shaft bearing 50 arranged in which the shaft 34 with a second bearing portion 52 is rotatably mounted.
  • the compressor shaft 34 carries the rotor 28 on her over the first bearing portion 46 on one second Bearing portion 52 opposite side freely projecting Shaft portion 32, so that the compressor shaft 34 in simpler Way with only two bearing portions 46, 52 stored is.
  • first bearing portion 46 and the second bearing portion 52 is a designated as a whole with 54 eccentric portion of the compressor shaft 34 which extends through the compressor housing portion 38 and four eccentric 60 1 , 60 2 , 60 3 and 60 4 carries, starting from the second Bearing portion 52 in the direction of the first bearing portion 46 along the axis of rotation 30 are arranged successively and at intervals to each other.
  • the eccentric 60 1 to 60 4 are formed as approximately disc-shaped body with a circular cylindrical surface 62 1 to 62 4 , which are arranged eccentrically to the axis of rotation 30 of the compressor shaft and each form the tread for this enclosing connecting rod 64 1 to 64 4 .
  • the cylinder jacket surfaces 62 1 to 62 4 of the eccentric 60 1 to 60 4 are arranged so that a central axis 66 1 of the cylinder jacket surface 62 1 in a plane 68 1 , which extends through the central axis 66 1 and the axis of rotation 30.
  • a plane 68 2 in which a central axis 66 2 of the cylinder jacket surface 62 2 lies and which also extends through the axis of rotation 30, is rotated relative to the plane 68 1 at an angle of 150 °.
  • the central axis 66 3 of the cylinder jacket surface 62 3 of the eccentric 60 3 in a plane 68 3 which is rotated relative to the plane 68 1 by 180 °, that is, the central axes 66 1 and 68 3 of the eccentric 60 1 and 60 3rd are arranged on exactly opposite sides of the axis of rotation 30.
  • a central axis 66 4 of the cylinder jacket surface 62 4 of the eccentric 60 4 lies in a plane 68 4 , which is rotated relative to the plane 68 1 by 330 °, that is to the plane 68 2 by 180 ° and with respect to the plane 68 3 by 150 ° is turned.
  • center axes 66 4 and 66 2 are exactly opposite each other with respect to the rotation axis 30.
  • the eccentric 60 1 and 60 2 and the eccentric 60 3 and 60 4 are each a pair in which the two eccentrics are arranged relative to each other rotated by an angle of 150 ° with respect to the axis of rotation 30 and also the respective first eccentric 60 first and 60 3 of the two pairs and the respective second eccentric 60 2 and 60 4 of the two pairs each arranged opposite each other with respect to the axis of rotation 30.
  • the compressor shaft 34 also includes, as shown in Fig. 2 and Fig. 4, a passing through this lubricant passage 70 which extends from one of the end face 18 facing inlet opening 72 coaxial with the axis of rotation 30 through the entire compressor shaft 34 and is completed in the region of the first bearing portion 46 , Furthermore, a transverse channel 74 branches off from this lubricant channel in the area of the first bearing section 52, which exits in the region of the first bearing section 52 in order to lubricate it.
  • transverse channels 76 1 to 76 4 are provided, which open respectively in the corresponding lateral surface 62 1 to 62 4 in one of the axis of rotation closest area 78 1 to 78 4 and lube oil leak.
  • an intermediate region 90 is provided between the bearing section 52 and the eccentric 60 1 , which, as shown in FIG. 5, has a cross section. having a first outer contour portion 92 1 extending up to the cylindrical outer surface 96 of the second bearing portion 52 in the radial direction to the rotational axis 30 a maximum, while a second outer contour portion 94 1 of the cross section is up to a maximum of the cylinder surface 62 1 of the first in the radial direction of the rotational axis 30 of the eccentric 60 1 extends.
  • the intermediate piece 98 (FIGS. 4 and 6) which extends in the direction of the axis of rotation 30 over a length which corresponds to at least one width of the connecting rod 64 in this direction. Furthermore, the intermediate piece 98 has a cross section whose first outer contour region 92 2 extends in the radial direction to the axis of rotation 30 maximum to the cylinder surface 62 1 of the first eccentric 60 1 and the second outer contour region 94 2 in the radial direction to the axis of rotation 30 maximum up to the cylinder surface 62 2 of the second eccentric 60 2 extends.
  • an intermediate piece 100 is provided between the second eccentric 60 2 and the third eccentric 60 3 (FIGS. 4 and 7) whose first outer contour region 92 3 extends in the radial direction to the axis of rotation 30 up to the cylinder jacket surface 62 2 of the second eccentric 60 2 extends and the second outer contour portion 94 3 extends in the radial direction to the axis of rotation 30 maximum to the cylinder surface 62 3 of the third eccentric. Furthermore, the intermediate piece 100 still has a third outer contour region 95 3 , which has, for example, a radial extent to the axis of rotation 30 to the lateral surface 96.
  • a further intermediate piece 102 is provided (FIG. 4 and 8), which has a first outer contour region 92 4 , which in the radial direction to the axis of rotation 30 maximum to the cylinder surface 62 3 of the third eccentric 60 3 extends and a second outer contour region 94 4 , which extends in the radial direction to the axis of rotation 30 a maximum to the cylindrical surface 62 4 of the fourth eccentric 60 4 .
  • an intermediate portion 104 is provided which extends in the radial direction to the axis of rotation 30 in a first outer contour region 92 5 maximum to the cylinder jacket surface 60 4 and with a second outer contour portion 94 5 up to a maximum of a cylinder outer surface 106 of the first bearing portion 46th
  • the first row 110 forms with the cylinders 112 and 114, a high pressure stage of the multi-stage compressor 40 and the second row 120 with the cylinders 122 and 124, a low pressure stage of the multi-stage Compressor 40.
  • the cylinders 112 and 114 of the high pressure stage have a smaller cross section than the cylinders 122 and 124 of the low pressure stage, while the stroke is the same due to the use of identical shaped eccentrics 60 1 to 60 4 in all cylinders 112 and 114 and 122 and 124.
  • the first row is 110 of the cylinder 112 and 114 symmetrical to one through the Rotary axis 30 arranged through plane 130, while the second row 120 with the cylinders 122 and 124 symmetrical to a passing through the axis of rotation 30
  • Level 132 and both levels 130 and 132 a Include V-angles a of 60 ° with each other.
  • the eccentric 60 1 and 60 3 are arranged so that the pistons 116 and 118 with an angular displacement of exactly 180 move each other and also the eccentric 60 2 and 60 4 are arranged that the piston 126 and 128 are also offset by an angle of 180 ° to each other, wherein in Fig. 11, the piston 126 is at bottom dead center and in Fig. 13, the piston 128 at top dead center, while on the other hand, the two pistons 116 and 118th exactly between the top dead center and the bottom dead center. That is, the pistons 116 and 118 of the row 110 move at exactly 90 ° angularly offset from the pistons 126 and 128 of the row 120.
  • the plant housing 10 is configured to that at this refrigerant inlet as a low-pressure connection 140 is arranged, by which refrigerant in a low-pressure channel provided in the plant housing 142 flows to the two cylinders 122 and 124 of the the low pressure stage forming row 120 performs, with over a common cylinder head cover shown in Fig. 11 and 13 144 the low pressure refrigerant in the cylinders 122 and 124 can enter.
  • the cylinders 122 and 124 are at medium pressure compressed refrigerant into a medium-pressure channel 146, from the cylinder head cover 144 into the plant housing 10 passes in the area near the partition wall 42, wherein of the medium-pressure channel 146 then compressed to medium pressure Refrigerant flows into an interior 148 of the drive motor 24 and there is a front wall 14 forming end wall 150th flows and these tempered.
  • the end wall 150 is in thermal contact with the inverter 16 and thus serves for Cooling of the inverter 16, in particular of electrical Power shares of the same.
  • From the end wall 150 flows At medium pressure located refrigerant further into an inflow 152, which to the cylinders 112 and 114 of the High-pressure stage forming row 110 leads. In this takes place a compression of the refrigerant to high pressure, which then enters a high pressure passage 154 of the plant housing 10 and flows through this to a high pressure port 160.
  • the inventive refrigerant compressor plant in a refrigeration system constructed in a known manner used, as shown in Fig. 15. It leads from the high pressure connection 160 a line 162 to one as a whole with 164 designated capacitor. From this flows liquid Refrigerant in a line 176 to a collector 168 for the liquid refrigerant. From the collector 168 flowing liquid Refrigerant via a line 170 to the liquid cooler 120, wherein the main part of the liquid refrigerant the Liquid subcooler 20 flows through and via a line 172 to an expansion valve 174 for an evaporator 176 flows. After flowing through the evaporator 176 flows the vaporized Refrigerant via a line 178 to the low pressure port 140 of the refrigerant compressor plant according to the invention.
  • liquid subcooler 20 Before the liquid subcooler 20 is from the line 170th a small part of the liquid refrigerant branched off and via a line 180 to an injection valve 182, wherein before the injection valve 182 one of a controller 186th controllable solenoid valve 184 is arranged.
  • the injection valve 182 constitutes an expansion valve for the Liquid cooler 120, which via a line 188 supplying liquid refrigerant to the liquid subcooler 20, which evaporates in this and the flow of liquid refrigerant from the line 170 in the line 172 supercooled, so that in the line 172 supercooled liquid refrigerant for Expansion valve 174 flows.
  • the evaporated refrigerant off the liquid subcooler 20 is via a line 190 to a medium pressure port 192 shown in FIGS. 14 and 15 guided, via which it enters the medium-pressure channel 146 and with the coming from the low-pressure stage 120 and on Medium pressure compressed refrigerant together through the Interior 148 of the drive motor 24 flows and then into the High-pressure stage 110 occurs.
  • the controller 186 further detects via one on the motor housing section 22 of the plant housing 10 arranged Temperature sensor 194 whose temperature and controls the Solenoid valve 184 so that the motor housing portion 22, in particular the end wall 150, for example at a temperature around the range of about 30 ° to about 50 ° Celsius is held and thus prevents humidity condensed in the range of the inverter 16.
  • This temperature range is also chosen so that the respective refrigerant a suitable overheating before entering the high-pressure stage 110 has.
  • a controller 200 is still provided, which via the inverter 16, the drive motor 24 in terms its speed controls and the performance of the drive motor 24 according to a measured by a temperature sensor Temperature at the evaporator 176 controls so that the evaporator 176 the desired cooling capacity is available.
  • the temperature is measured at the evaporator 176 by temperature sensors 202a and 202b, which in one the evaporator 176 passing through a fan 204 circulated Air flow 206 are arranged to the temperature of the Air flow 206 in front of the evaporator 176 - temperature sensor 202a - and behind the evaporator 176 - temperature sensor 202b - capture.
  • a particularly advantageous embodiment of the controller 200 provides that this serves to the temperature of the air flow 206, which, for example, in a room to be cooled forcibly circulated by means of the blower 204, very precisely to regulate to a certain temperature, for example with a control accuracy of 0.5 °.
  • This is the possibility created within a control range of 20: 1 only by speed variation, the temperature of the air flow 206 exactly, with the desired temperature, which is regulated, is freely selectable.
  • the controller 200 is still with the controller 186 additionally coupled.
  • the possibility of shutdown the low pressure stage 120 with the cylinders 122 and 124 in terms provided their compressor action.
  • a branch 210 in the low pressure channel 142 provided with the branch 210 a Check valve 212 is connected, which is able to Low pressure channel 142 to connect to the medium pressure channel 146, when the pressure in the medium pressure channel 146 under the Pressure in the low pressure channel 142 is located.
  • a power control valve 214 provided which is capable of the influx of gaseous Refrigerant through the low pressure passage 142 in the low pressure stage 120 to throttle or block.
  • the compressor capacity of the low-pressure stage 120 so low that the pressure in the medium pressure channel 146 drops so far that refrigerant over the Branch 210 from the low pressure passage 142 via the check valve 112 flows into the medium-pressure channel 146, the Interior 148 of the drive motor 24 flows through and then in the high-pressure stage 110 enters with the cylinders 112 and 114, in order to be compressed in this at high pressure, wherein the high pressure refrigerant via the high pressure channel 154 flows to the high pressure port 160.
  • the controller 200 by switching off the Low pressure 120 required by the drive motor 24 Reduce power consumption by only having the High-pressure stage 110 works and the refrigerant to one compressed lower pressure, which is necessary for the case in this case Cooling capacity is sufficient. This will be simultaneous the drive motor 24 less loaded and thus decreases also less power.
  • the shutdown of the low pressure stage 120 by the controller 186 in communication with the controller 200 allows a Particularly advantageous exact control of the temperature of the Air flow 206, as in the case of a reduction in cooling capacity initially at working low pressure stage 120, the speed of the drive motor 24 is reduced by the controller 200.
  • Switching off the low-pressure stage 120 now has the advantage that the speed of the drive motor 24 by the controller 200 does not have to be driven arbitrarily low, but that after switching off the low-pressure stage 120 of the drive motor 24 can be operated again at a higher speed to the entering by switching off the low-pressure stage 120 Compensation of compressor output drop. At a further reduction can then be the speed of the drive motor 24 are lowered again from the higher level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressor (AREA)

Claims (34)

  1. Installation de compresseur frigorifique comprenant un moteur d'entraínement (24), un compresseur entraíné par le moteur d'entraínement (24) avec plusieurs cylindres (112, 114, 122; 124) disposés en V, les cylindres (112, 114, 122, 124) étant disposés dans un angle en V inférieur à 90°, et avec un arbre de compresseur (34) portant des excentriques (60), qui est logé avec seulement deux parties de palier (46, 52) de cet arbre dans des paliers appropriés d'arbre de compresseur (44, 50), les excentriques (60) étant disposés entre les parties de palier (46, 52), pour l'entraínement des pistons (116, 118, 126, 128) travaillant dans les cylindres respectifs, caractérisée en ce que pour chaque piston (116, 118, 126, 128) il est prévu un excentrique (60) individuel qui est disposé à distance des autres excentriques (60) individuels pour les autres pistons (118, 126, 128, 116) respectifs.
  2. Installation de compresseur frigorifique selon la revendication 1, caractérisée en ce que les excentriques (60) individuels sont séparés les uns des autres par des pièces intermédiaires (98, 100, 102), qui présentent en direction d'un axe de rotation (30) une longueur correspondant au moins à une largeur d'une bielle (64).
  3. Installation de compresseur frigorifique selon la revendication 2, caractérisée en ce que l'arbre de compresseur présente entre deux excentriques (60) successifs des pièces intermédiaires (98, 100, 102) avec une forme de section qui s'étend dans le sens radial à l'axe de rotation (30) au maximum jusqu'à la prochaine surface d'enveloppe de deux surfaces d'enveloppe (62), dont l'une est la surface d'enveloppe (62) d'un excentrique (60) et l'autre la surface d'enveloppe (62) de l'autre excentrique (60) des deux excentriques (60) successifs.
  4. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que l'arbre de compresseur (34) présente un conduit à lubrifiant (70) coaxial par rapport à l'axe de rotation (30).
  5. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que les cylindres (112, 114, 122, 124) disposés en V forment entre eux un angle en V inférieur à 70°.
  6. Installation de compresseur frigorifique selon la revendication 5, caractérisée en ce que les cylindres (112, 114, 122, 124) disposés en V forment entre eux un angle en V d'environ 60°.
  7. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que chacun des excentriques (60) est disposé en face des autres excentriques (60) tournés d'un angle par rapport à un axe de rotation (30) de l'arbre de compresseur (34).
  8. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que les excentriques (60) forment des paires (601, 602 ; 603, 604) disposés de façon successive en direction de l'axe de rotation (30) de l'arbre de compresseur (34), les excentriques (60) formant respectivement une paire étant disposés tournés les uns par rapport aux autres d'un angle de 360° divisé par le nombre de cylindres plus l'angle en V.
  9. Installation de compresseur frigorifique selon la revendication 8, caractérisée en ce que les premiers excentriques (601 ; 603) de chacune des paires et les seconds excentriques (602, 604) de chacune des paires sont disposés tournés respectivement de 180° les uns par rapport aux autres.
  10. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que le compresseur (40) comprend au moins quatre cylindres (112, 114, 122, 124) et en ce que l'arbre de compresseur (34) comprend au moins quatre excentriques (60) individuels disposés à distance les uns des autres.
  11. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que le compresseur (40) présente un étage de basse pression (120) comprenant au moins un cylindre (122, 124) et un étage de haute pression (110) comprenant au moins un cylindre (112, 114).
  12. Installation de compresseur frigorifique selon la revendication 11, caractérisée en ce qu'une rangée (120) des cylindres (112, 114, 122, 124) disposés en V forme l'étage de basse pression (120) et l'autre rangée (110) des cylindres (112, 114, 122, 124) l'étage de haute pression (110).
  13. Installation de compresseur frigorifique selon l'une quelconque des revendications 11 ou 12, caractérisée en ce que la somme des volumes des cylindres (122, 124) de l'étage de basse pression (120) est supérieure à la somme des volumes des cylindres (112, 114) de l'étage de haute pression (110).
  14. Installation de compresseur frigorifique selon l'une quelconque des revendications 11 à 13, caractérisée en ce que l'étage de basse pression (120) peut être réduit au niveau de la puissance.
  15. Installation de compresseur frigorifique selon l'une quelconque des revendications 11 à 14, caractérisée en ce qu'une vanne de commande de puissance (214) est disposée côté aspiration de l'étage de basse pression (120) et en ce qu'une vanne (212), qui s'ouvre lorsque la vanne de commande de puissance (214) est active, est disposée entre un raccordement de basse pression (140) du compresseur (40) et un côté aspiration (152) de l'étage de haute pression (110).
  16. Installation de compresseur frigorifique selon la revendication 15, caractérisée en ce que la vanne est une vanne anti-retour (212) qui s'ouvre automatiquement dans le cas d'une vanne de commande de puissance (214) active en fonction de la différence de pression qui apparaít.
  17. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que le moteur d'entraínement (24) du compresseur (40) est traversé par le réfrigérant circulant de l'étage de basse pression (120) à l'étage de haute pression (110).
  18. Installation de compresseur frigorifique selon la revendication 17, caractérisée en ce que le moteur d'entraínement (24) du compresseur (40) est traversé par le réfrigérant entrant dans l'étage de haute pression (110).
  19. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que sur le moteur d'entraínement (24) est disposé un convertisseur (16), dont les composants de puissance électriques sont couplés thermiquement avec un boítier (22) du moteur d'entraínement (24).
  20. Installation de compresseur frigorifique selon la revendication 19, caractérisée en ce qu'une partie de boítier (150) couplée thermiquement avec les composants de puissance du convertisseur (16) est en contact thermique avec le réfrigérant.
  21. Installation de compresseur frigorifique selon la revendication 19 ou 20, caractérisée en ce que le convertisseur (16) est disposé sur un côté du boítier (22) du moteur d'entraínement (24), le côté faisant face au compresseur (40).
  22. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que le moteur d'entraínement (24) est régulé par la vitesse de rotation.
  23. Installation de compresseur frigorifique selon la revendication 22, caractérisée en ce qu'il est prévu une commande (200), qui commande la vitesse de rotation du moteur d'entraínement (24) en fonction de la puissance frigorifique nécessaire.
  24. Installation de compresseur frigorifique selon la revendication 23, caractérisée en ce que la commande (200) régule une température d'un fluide (206) à refroidir.
  25. Installation de compresseur frigorifique selon la revendication 24, caractérisée en ce que la commande (200) régule, dans une plage située au-dessus d'une puissance frigorifique minimale, la température du fluide (206) à refroidir par l'exploitation commandée par la vitesse de rotation sans interruption de fonctionnement du moteur d'entraínement (24).
  26. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce que la commande (200) commande la vitesse de rotation du moteur d'entraínement (24) en fonction d'une température ambiante.
  27. Installation de compresseur frigorifique selon l'une quelconque des revendications 14 à 26, caractérisée en ce qu'il est prévu une commande (200) qui déconnecte l'étage de basse pression (120) en cas de dépassement d'une puissance frigorifique définissable.
  28. Installation de compresseur frigorifique selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un surrefroidisseur de liquide (20) est attribué à cette installation.
  29. Installation de compresseur frigorifique selon la revendication 28, caractérisée en ce que le surrefroidisseur de liquide (20) est disposé sur un côté du compresseur (40), le côté faisant face au moteur d'entraínement (24).
  30. Installation de compresseur frigorifique selon la revendication 28 ou 29, caractérisée en ce que le surrefroidisseur de liquide (20) volatilise du réfrigérant liquide et en ce que ce réfrigérant volatilisé entre dans le réfrigérant circulant vers l'étage de haute pression (110).
  31. Installation de compresseur frigorifique selon la revendication 30, caractérisée en ce que le réfrigérant volatilisé traverse le moteur d'entraínement (24) sur son chemin vers l'étage de haute pression (110).
  32. Installation de compresseur frigorifique selon la revendication 31, caractérisée en ce que le surrefroidisseur de liquide (20) peut être commandé en fonction d'une température du moteur d'entraínement (24).
  33. Installation de compresseur frigorifique selon la revendication 31 ou 32, caractérisée en ce que le surrefroidisseur de liquide (20) peut être commandé en fonction de la température de la partie du boítier (22) du moteur d'entraínement (24), la partie portant le convertisseur (16).
  34. Installation de compresseur frigorifique selon la revendication 32 ou 33, caractérisée en ce que le surrefroidisseur de liquide (20) est commandé de telle sorte qu'il maintient une température minimale de la partie du boítier (22), la partie portant le convertisseur (16).
EP00927008A 1999-04-22 2000-04-20 Dispositif compresseur d'agent frigorifique Expired - Lifetime EP1105647B9 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19918161 1999-04-22
DE19918161A DE19918161A1 (de) 1999-04-22 1999-04-22 Kältemittelverdichteranlage
PCT/EP2000/003606 WO2000065232A2 (fr) 1999-04-22 2000-04-20 Dispositif compresseur d'agent frigorifique

Publications (3)

Publication Number Publication Date
EP1105647A2 EP1105647A2 (fr) 2001-06-13
EP1105647B1 true EP1105647B1 (fr) 2005-10-19
EP1105647B9 EP1105647B9 (fr) 2006-03-15

Family

ID=7905406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927008A Expired - Lifetime EP1105647B9 (fr) 1999-04-22 2000-04-20 Dispositif compresseur d'agent frigorifique

Country Status (7)

Country Link
US (1) US6401472B2 (fr)
EP (1) EP1105647B9 (fr)
AT (1) ATE307290T1 (fr)
DE (2) DE19918161A1 (fr)
DK (1) DK1105647T3 (fr)
ES (1) ES2250129T3 (fr)
WO (1) WO2000065232A2 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047557A (en) * 1995-06-07 2000-04-11 Copeland Corporation Adaptive control for a refrigeration system using pulse width modulated duty cycle scroll compressor
US6206652B1 (en) 1998-08-25 2001-03-27 Copeland Corporation Compressor capacity modulation
DE10333402A1 (de) * 2003-07-16 2005-02-10 Bitzer Kühlmaschinenbau Gmbh Kompressor
DE10358471A1 (de) * 2003-11-17 2005-06-23 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichter für Kraftfahrzeuge
US20060144408A1 (en) * 2004-07-23 2006-07-06 Ferry Steven J Micro-catheter device and method of using same
DE102005016433A1 (de) * 2005-04-05 2006-10-12 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichter
DE102005029481B4 (de) 2005-06-24 2008-04-10 Bran + Luebbe Gmbh Pumpengetriebe
DE102005038273A1 (de) * 2005-08-02 2007-02-08 Linde Ag Maschine mit einem drehbaren Rotor
DE102006017301B4 (de) * 2006-04-12 2008-03-06 Siemens Ag Pumpe
DE102006039782B4 (de) * 2006-08-24 2009-04-09 Continental Automotive Gmbh Fluidpumpe, umfassend einen Kurbeltrieb mit ungeteilten Pleueln
KR100718567B1 (ko) * 2006-11-27 2007-05-15 성주환 공기압축기용 바로크랭크축
US8549868B2 (en) * 2007-06-22 2013-10-08 Panasonic Corporation Refrigeration cycle apparatus
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
DE102008045103A1 (de) 2008-08-29 2010-03-11 TEKO Gesellschaft für Kältetechnik mbH Hubkolbenverdichter für Kältemittel
US20100158712A1 (en) * 2008-12-23 2010-06-24 New York Air Brake Corporation Compressor with dual outboard support bearings
US8308455B2 (en) * 2009-01-27 2012-11-13 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
SG177507A1 (en) * 2009-07-06 2012-02-28 Carrier Corp Bypass unloader valve for compressor capacity control
WO2011011221A2 (fr) * 2009-07-20 2011-01-27 Carrier Corporation Soupape de décompression à coupure d'aspiration pour commande de capacité de compresseur
DE102011121926B4 (de) 2011-12-22 2013-07-18 Robert Bosch Gmbh Gerätegehäuse mit Kühlvorrichtung für einströmende Luft
CN102606436A (zh) * 2012-04-09 2012-07-25 胡传术 柱塞泵
ES2929924T3 (es) * 2012-09-04 2022-12-02 Carrier Corp Montaje de pies de compresor de refrigeración
ITMI20130583A1 (it) * 2013-04-11 2014-10-12 Frascold S P A Compressore per un impianto frigorifero e impianto frigorifero comprendente detto compressore
WO2017157415A1 (fr) * 2016-03-14 2017-09-21 Bitzer Kühlmaschinenbau Gmbh Système de mise en service d'une unité de compression de réfrigérant et procédé de mise en service d'une unité de compression de réfrigérant
USD828402S1 (en) * 2016-08-09 2018-09-11 Gea Refrigeration Germany Gmbh Compressor
USD828403S1 (en) * 2016-08-09 2018-09-11 Gea Refrigeration Germany Gmbh Compressor
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
USD868841S1 (en) * 2017-06-27 2019-12-03 Gea Refrigeration Germany Gmbh Compressor
USD865818S1 (en) * 2017-09-20 2019-11-05 Ateliers Francois, Societe Anonyme Compressor part
CN111801536B (zh) * 2018-03-27 2023-04-28 比泽尔制冷设备有限公司 制冷设备
EP3587037B1 (fr) 2018-06-22 2023-08-16 Andreas Stihl AG & Co. KG Tête d'outil pour un appareil de travail portatif et appareil de travail pourvu d'une tête d'outil
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US12065968B2 (en) 2019-09-13 2024-08-20 BJ Energy Solutions, Inc. Systems and methods for hydraulic fracturing
CA3092829C (fr) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methodes et systemes d`alimentation de turbines a gaz en carburant
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092865C (fr) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Sources d`alimentation et reseaux de transmission pour du materiel auxiliaire a bord d`unites de fracturation hydraulique et methodes connexes
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
CA3092868A1 (fr) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Systemes de gaine d`echappement de turbine et methodes d`insonorisation et d`attenuation du bruit
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
DE102020103975A1 (de) * 2020-02-14 2021-08-19 Bitzer Kühlmaschinenbau Gmbh Kältemittelverdichter
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) * 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1716049A (en) * 1921-01-03 1929-06-04 Cleveland Pneumatic Tool Co Air tool
US2178662A (en) * 1937-07-24 1939-11-07 Carrier Corp Fluid compressor
US2427638A (en) * 1944-08-16 1947-09-16 Vilter Mfg Co Compressor
US2454600A (en) * 1944-10-04 1948-11-23 Air Flo Compressor Company Compressor
US2572711A (en) * 1945-03-27 1951-10-23 Ruth M Fischer Air compressor
US3663127A (en) * 1970-11-30 1972-05-16 Tecumseh Products Co Hermetic compressor oil cooling system
US4743176A (en) * 1986-06-18 1988-05-10 Tecumseh Products Company Gas flow system for a compressor
US5271238A (en) * 1990-09-14 1993-12-21 Nartron Corporation Environmental control system
JP2875087B2 (ja) * 1992-01-09 1999-03-24 株式会社日立製作所 冷蔵庫
DE4212162C2 (de) * 1992-04-10 1994-02-17 Ilka Maschinenfabrik Halle Gmb Einrichtung zur Kühlung des Elektromotors eines halbhermetischen Kältemittelverdichters
DK172128B1 (da) * 1995-07-06 1997-11-17 Danfoss As Kompressor med styreelektronik
DE19726943C2 (de) * 1997-06-25 2000-03-23 Bitzer Kuehlmaschinenbau Gmbh Kältemittelkompressor

Also Published As

Publication number Publication date
EP1105647B9 (fr) 2006-03-15
DE50011365D1 (de) 2005-11-24
WO2000065232A2 (fr) 2000-11-02
WO2000065232A3 (fr) 2001-03-22
US20010011463A1 (en) 2001-08-09
ES2250129T3 (es) 2006-04-16
ATE307290T1 (de) 2005-11-15
EP1105647A2 (fr) 2001-06-13
US6401472B2 (en) 2002-06-11
DE19918161A1 (de) 2000-11-02
DK1105647T3 (da) 2006-02-13

Similar Documents

Publication Publication Date Title
EP1105647B1 (fr) Dispositif compresseur d'agent frigorifique
EP1036276B1 (fr) Compresseur a vis
DE2508417C2 (de) Kälteerzeugungssystem
EP1886075B1 (fr) Appareil frigorifique
DE3641226C2 (fr)
DE19781873B4 (de) Kühlkreislauf mit in Reihe geschalteten Verdampfern und einem verstellbaren Kompressor
DE4229069C2 (de) Taumelscheiben-Kältemittelkompressor für ein Kühlsystem
EP1912031B1 (fr) Système de refroidissement
DE2028842A1 (fr)
DE60123321T2 (de) Verdichteranlage mit einem gesteuerten Kühlventilator
EP3601797B1 (fr) Compresseur à piston avec une zone de reglage étendu
EP2185819B1 (fr) Compresseur d'agent de refroidissement
DE3127323A1 (de) Schraubenkompressor mit geschlossenem druckgassystem mit oelnebelschmierung
WO2018065071A1 (fr) Compresseur frigorifique semi-hermétique
DE69514936T2 (de) Kühlsystem und verfahren
EP0180904B1 (fr) Dispositif de refroidissement
EP3071834A1 (fr) Circuit de refroidissement
DE19708428C2 (de) Kälteanlage
DE2852896A1 (de) Kompressor-expander-einheit
DE3426190A1 (de) Anordnung zum beeinflussen der drehzahl eines kompressors einer kaelteanlage
EP2022990B1 (fr) Machine outil et unité d'alimentation
AT510459B1 (de) Wärmemotor sowie eine anlage, in welcher der erfindungsgemässe wärmemotor betrieben wird
DE102021119660A1 (de) Verdichter für einen Kältekreislauf
DE2626860A1 (de) Kolbenverdichter fuer eine anlage zur kaelteerzeugung
DE102022203525A1 (de) Wärmepumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20040830

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50011365

Country of ref document: DE

Date of ref document: 20051124

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060125

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050403893

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2250129

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20080115

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080429

Year of fee payment: 9

Ref country code: LU

Payment date: 20080414

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080208

Year of fee payment: 9

Ref country code: BE

Payment date: 20080205

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080411

Year of fee payment: 9

Ref country code: CY

Payment date: 20080121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080430

Year of fee payment: 9

Ref country code: SE

Payment date: 20080414

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20080118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090415

Year of fee payment: 10

Ref country code: IE

Payment date: 20090428

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20091020

BERE Be: lapsed

Owner name: *BITZER KUHLMASCHINENBAU G.M.B.H.

Effective date: 20090430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090420

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090420

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091104

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090420

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50011365

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50011365

Country of ref document: DE

Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190419

Year of fee payment: 20

Ref country code: ES

Payment date: 20190524

Year of fee payment: 20

Ref country code: DE

Payment date: 20190621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190426

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190429

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50011365

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200419

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200421