EP1100915A2 - Faserproteine und ihre herstellung - Google Patents

Faserproteine und ihre herstellung

Info

Publication number
EP1100915A2
EP1100915A2 EP99950481A EP99950481A EP1100915A2 EP 1100915 A2 EP1100915 A2 EP 1100915A2 EP 99950481 A EP99950481 A EP 99950481A EP 99950481 A EP99950481 A EP 99950481A EP 1100915 A2 EP1100915 A2 EP 1100915A2
Authority
EP
European Patent Office
Prior art keywords
protein
fiber protein
plant cell
plant
precursor fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99950481A
Other languages
English (en)
French (fr)
Inventor
Klaus Düring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MPB Cologne GmbH Molecular Plant und Protein Biotechnology
Original Assignee
MPB Cologne GmbH Molecular Plant und Protein Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MPB Cologne GmbH Molecular Plant und Protein Biotechnology filed Critical MPB Cologne GmbH Molecular Plant und Protein Biotechnology
Publication of EP1100915A2 publication Critical patent/EP1100915A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Definitions

  • the present invention relates to a process for the production of fiber proteins in plant cells, plant cells which can be used for this purpose and fiber proteins obtained by the process.
  • Fiber proteins are proteins that have mechanical stability, e.g. Elasticity. They arise from precursor fiber proteins that undergo polymerization or cross-linking. This requires the presence of repetitive amino acid sequences in the precursor fiber proteins and the action of proteins which process the precursor fiber proteins. Fiber proteins are found in animal and human cells. Examples of fiber proteins are collagen and elastin. Both are components of connective tissue, e.g. Skin, tendons, ligaments and blood vessels. Collagen is created through cross-linking of tropocollagen molecules, while elastin is formed through cross-linking of tropoelastin molecules.
  • Fiber proteins are used for medical and cosmetic purposes. For this purpose, they are often isolated from animal cells. This poses a great risk, since diseases of the animals, e.g. BSE to which people can be transmitted.
  • the present invention is based on the applicant's knowledge that precursor fiber proteins can be produced in plant cells, which can then be treated with them.
  • processing proteins can be converted into the corresponding fiber proteins.
  • the production of precursor fiber proteins can take place in individual plant cells as well as in plants.
  • the conversion of precursor fiber proteins into the corresponding fiber proteins can take place in vitro as well as in vivo. In the latter case, this can be done, for example, by expressing the precursor fiber protein together with the protein processing it in a plant cell.
  • the applicant has made his findings on individual plant cells as well as on plants, in particular the potato plant.
  • fiber protein encompasses a fiber protein of any kind and origin. It can have a two- or three-dimensionally networked structure. It can also be an animal or human fiber protein. It can also be in wild type or modified form. The latter comprises a fiber protein whose amino acid sequence has been changed at one or more locations compared to the wild-type sequence. Such changes can be additions, substitutions, deletions and / or inversions of one or more amino acids. In particular, amino acids can be present, which are preferably expressed in plant cells. Furthermore, the fiber protein can be a fusion protein, the fusion partner being, for example, oleosin. This protein then enables the localization of the fiber protein in the oil phase of plant propagation material.
  • Fiber proteins that are in a modified form have a mechanical stability, for example elasticity, that at least matches that of the wild-type form is comparable.
  • Preferred fiber proteins are collagen and elastin and derivatives or fragments thereof. The above explanations apply accordingly to a changed form.
  • the expression “expression of a precursor fiber protein” encompasses any expression of a gene coding for a precursor fiber protein in a plant cell, the precursor fiber protein being able to be converted into the corresponding fiber protein in a customary manner, for example by crosslinking or polymerization.
  • the above statements regarding the expression “fiber protein” apply accordingly.
  • the precursor fiber protein can be present with or without a signal peptide.
  • the former can be the natural or a foreign signal peptide, for example, whereby an extracellular localization of the precursor fiber protein is achieved. In the latter, on the other hand, the precursor fiber protein is localized in the cytoplasm.
  • the precursor fiber protein can have a control peptide, as a result of which localization of the precursor fiber protein in certain compartments of the plant cell, for example ER, chloroplasts or vacuoles, is achieved.
  • Preferred precursor fiber proteins are tropocollagen and tropoelastin and derivatives or fragments thereof.
  • Conventional plant cell expression vectors can be used to express a gene encoding a precursor fiber protein. Such include regulatory elements, such as enhancer, promoter and termination sequences, which are recognized in plant cells. Examples of this are CaMV 35S promoter and termination sequences (cf. Odell, JT et al., Nature 313 (1985), 810-812).
  • the expression vectors can also contain selection markers, for example a neomycin or kanamycin resistance gene.
  • the expression vectors can contain sequences which promote their introduction into plant cells.
  • the expression vectors T-DNA can contain binary vectors such as pSR 8-30 or pSR 8-35 / 1 if they are to be introduced into plants via Agrobacterium tumefaciens (cf. Düring, K. et al., Plant Journal 3 ( 1993), 587-598; Porsch, P. et al., Plant Molecular Biology 37 (581-585, 1998).
  • the expression vectors can also be generated by methods . are introduced into plant cells for which they do not require any special sequences. Such methods are, for example, microinjection, electroporation, DNA transfer using polyethylene glycol, liposome fusion or particle gun.
  • plant cell includes plant cells of any kind and lineage. It can be single plant cells, freshly isolated or established as a cell line, or those that are present in a bandage. The latter is e.g. a plant or part of it. Examples of plants are monocotyledonous plants, such as corn, rice, wheat, barley and sugar cane, and dicotyledonous plants, such as potato, tobacco, tomato, tea, coffee, Brassicaceaen, in particular rapeseed and cabbage, and legumes, in particular pea, phaseolus, vicia and Soybean.
  • monocotyledonous plants such as corn, rice, wheat, barley and sugar cane
  • dicotyledonous plants such as potato, tobacco, tomato, tea, coffee, Brassicaceaen, in particular rapeseed and cabbage, and legumes, in particular pea, phaseolus, vicia and Soybean.
  • precursor fiber protein processing protein includes any protein that a precursor fiber protein can convert to the corresponding fiber protein.
  • the transfer can be carried out in the usual manner, e.g. B. by crosslinking or polymerization.
  • a protein examples of such a protein are lysine oxidases. It can also be proteinases that e.g. have been described in the case of collagen. The lysine oxidases or proteinases can be present as such or as derivatives or fragments thereof. The above explanations apply accordingly to a modified form of a fiber protein.
  • the expression "incubation of a precursor fiber protein with a protein processing it” includes any incubation of these proteins by means of which the precursor fiber protein can be converted into the corresponding fiber protein.
  • the incubation can take place, for example, in vitro.
  • Incubation can also take place in vivo.
  • the expression of both proteins can take place in different plant cells, which are then combined, whereby the precursor fiber protein is incubated with the protein processing it.
  • the expression of the precursor fiber protein and the protein processing it can also take place in the same plant cell.
  • the incubation of both proteins inevitably takes place in this plant cell.
  • Another object of the present invention is a plant cell that expresses a precursor fiber protein and a protein processing it.
  • a plant cell is also preferred which only expresses the latter of these proteins.
  • plant cell precursor fiber protein” and “precursor fiber protein processing protein”
  • the plant cell can also be in the form of a propagation material.
  • a plant according to the invention which expresses a precursor fiber protein, for example tropoelastin, and a protein which processes it, for example lysine oxidase.
  • a precursor fiber protein for example tropoelastin
  • a protein which processes it for example lysine oxidase.
  • the same can be done with a cDNA coding for a lysine oxidase.
  • the DNA molecules obtained are used to transform bacteria, for example E.
  • coli S17-1 which are suitable for transferring the DNA molecules into Agrobacterium tumefaciens, for example GV 3101.
  • Agrobacterium tumefaciens for example GV 3101.
  • E.coli ⁇ 17-1 and Agrobacterium tumefaciens GV 3101 are mixed together and incubated overnight.
  • Agrobacteria which ingested the DNA molecules are selected by growth on medium containing carbenicillin. These are then applied to the leaves of potato plants that have been cut off and carved several times on the midrib, and incubated for two days in the dark.
  • the agrobacteria are then removed and growth substances are added to the potato plants, so that shoots form. These are cut off and used to cultivate new potato plants.
  • the detection of the expression products tropoelastin and lysine oxidase or the elastin obtained is carried out by means of specific antibodies against these proteins. Reference is made to the examples below.
  • the present invention it is possible to produce fiber proteins in plant cells, in particular plants, in high purity.
  • the fiber proteins are therefore suitable for a wide variety of applications. Such are found e.g. in agriculture, chemistry, cosmetics manufacturing and medicine. In the latter case e.g. the use of fiber proteins for grafts and wound closures.
  • the fiber proteins are characterized in that they are free from animal or human viruses or pathogens.
  • the fiber proteins can be produced in huge quantities. This is particularly true when they are isolated from crops grown in fields. The present invention thus makes a great contribution to providing medicines safely and in large quantities.
  • Example 1 Production of elastin in potato plants
  • a cDNA for human elastin is used (see Fazio, MJ, Journal of Investigative Dermatology 91 (1988), 458-464).
  • This cDNA is provided with a PCR at the 5 'end with an Ncol and at the 3' end with an Xbal restriction site.
  • the cDNA fragment obtained is converted into the vector pRT 100, which contains an expression cassette with CaMV 35S promoter and termination sequences (cf. Töpfer, R. et al., Nucleic Acids Research 15 (1987), 5890; Odell, JT et al., Supra).
  • the expression cassette containing the elastin cDNA is isolated and inserted into the binary vector pSR 8-30 (cf. Düring, K. et al.; Porsch, P. et al., Above).
  • the expression vector pSR 8-30 elastin is obtained.
  • a cDNA for human lysine oxidase is also used (cf. Häffleläinen, E.R., Genomics 11 (1991), 508-516). This is treated as above and inserted into the binary vector pSR 8-30. The expression vector pSR 8-30-lysine oxidase is obtained.
  • the expression vectors pSR 8-30-elastin and pSR 8-30-lysine oxidase are used to transform E. coli S17-1. Transformants are mixed with Agrobacterium tumefaciens GV 3101 and incubated overnight at 27 ° C (see Koncz, C, Shell, J., Molecular and General Genetics 204 (1986), 383-396; Koncz, C. et al., Proc Natl. Acad. Sci. USA 84 (1987), 131-135). It is selected for carbenicillin, the bla gene required for this being present in the above expression vectors.
  • Be ect i ons clones of Agrobacterium tumefaciens are cut on leaves of the potato plant cv that have been cut off and scratched several times on the midrib. Desiree applied and the plant is incubated for 2 days at 20 ° C in the dark. The agrobacteria are then separated off and plant growth substances are added to the potato plant, so that shoots preferably form. Furthermore, by adding kanamycin to the plant medium, the cells of the potato plant are not killed. Growing shoots are cut off and rooted on medium without plant growth substances, but with kanamycin. The further cultivation of the potato plants is carried out in the usual way.
  • tropoelastin and lysine oxidase can be expressed in plant cells, in particular in a plant. Furthermore, it can be seen that the incubation of lysine oxidase with the tropoelastin converts the latter into elastin and this can be isolated in pure form.
  • CDNAs are used which code for the subunits ⁇ 1 and ⁇ 2 of the human tropocollagen (see Chu, ML et al., Journal of Biological Chemistry 260 (1985), 2315-2320; Dickson LA et al., Nucleic Acids Res. 13 (1985), 3427-3438). Furthermore, cDNAs are used which code for human lysine oxidase, human procollagen C-proteinase or procollagen N-proteinase from bovine (cf. Häffleläinen, ER et al., Supra; Li, SW et al., Proc. Natl. Acad. Sci. USA 93 (1996), 5127-5130; Colige, A. et al., Proc. Natl. Acad. Sci. USA 94 (1997), 2374-2379).
  • cDNAs are treated as described in Example 1 and inserted into the vector pSR 8-30.
  • the expression vectors pSR 8-30 tropocollagen ⁇ 1, pSR 8-30 tropocollagen ⁇ 2, pSR 8-30 lysine oxidase, pSR 8-30-C proteinase and pSR 8-30-N proteinase are obtained.
  • the further procedure is as described in Example 1.
  • tropocollagen and proteins processing it can be expressed in plant cells, in particular in a plant. It also shows that collagen can be obtained which has a high purity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Faserproteins, umfassend die folgenden Verfahrensschritte: (a) Expression eines Vorläufer-Faserproteins in einer Pflanzenzelle; und (b) Inkubation des Vorläufer-Faserproteins mit einem es prozessierenden Protein. Ferner betrifft die Erfindung hierfür verwendbare Pflanzenzellen und durch das Verfahren erhaltene Faserproteine.

Description

Faserproteine und ihre Herstellung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Faserproteinen in Pflanzenzellen, hierfür verwendbare Pflanzenzellen und durch das Verfahren erhaltene Faserproteine .
Faserproteine sind Proteine, die eine mechanische Stabilität, z.B. Elastizität, aufweisen. Sie entstehen aus Vorläufer- Faserproteinen, die eine Polymerisierung bzw. Quervernetzung erfahren. Hierfür ist das Vorliegen von repetetiven Aminosäuresequenzen in den Vorläufer-Faserproteinen und das Einwirken von Proteinen notwendig, die Vorläufer-Faserproteine prozessieren. Faserproteine finden sich in tierischen und menschlichen Zellen. Beispiele von Faserproteine sind Kollagen und Elastin. Beide sind Bestandteile von Bindegeweben, z.B. Haut, Sehnen, Bändern und Blutgefäßen. Kollagen entsteht durch Quervernetzung von Tropokollagen-Molekülen, während Elastin durch Quervernetzung von Tropoelastin-Molekülen gebildet wird.
Faserproteine werden für medizinische bzw. kosmetische Zwecke verwendet. Hierzu werden sie vielfach aus Zellen von Tieren isoliert. Dies bringt ein großes Risiko, da somit Erkrankungen der Tiere, z.B. BSE, auf den Menschen übertragen werden können.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem Faserproteine ohne die vorstehenden Risiken hergestellt werden können.
Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.
Die vorliegende Erfindung beruht auf den Erkenntnissen des Anmelders, daß Vorläufer-Faserproteine in Pflanzenzellen hergestellt werden können, die dann durch Behandlung mit sie. prozessierenden Proteinen in die entsprechenden Faserproteine überführt werden können. Insbesondere hat er erkannt, daß die Herstellung von Vorläufer-Faserproteinen in einzelnen Pflanzenzellen wie auch in Pflanzen erfolgen kann. Ferner hat er erkannt, daß die Überführung von Vorläufer-Faserproteinen in die entsprechenden Faserproteine in vitro wie auch in vivo erfolgen kann. In letzterem Fall kann dies z.B. dadurch erfolgen, daß das Vorlaufer-Faserprotein zusammen mit dem es prozessierenden Protein in einer Pflanzenzelle exprimiert wird. Der Anmelder hat seine Erkenntnisse an einzelnen Pflanzenzellen wie auch an Pflanzen, insbesondere der Kartoffelpflanze, gemacht.
Erfindungsgemäß werden die Erkenntnisse des Anmelders für ein Verfahren zur Herstellung eines Faserproteins genutzt, das die folgenden Verfahrensschritte umfaßt:
(a) Expression eines Vorläufer-Faserproteins in einer Pflanzenzelle, und
(b) Inkubation des Vorlaufer-Faserproteins mit einem es prozessierenden Protein.
Der Ausdruck "Faserprotein" umfaßt ein Faserprotein jeglicher Art und Abstammung. Es kann eine zwei- oder dreidimensional vernetzte Struktur aufweisen. Auch kann es ein tierisches oder menschliches Faserprotein sein. Ferner kann es in Wildtypoder veränderter Form vorliegen. Letzteres umfaßt ein Faserprotein dessen Aminosäuresequenz im Vergleich zur Wildtyp- Sequenz an ein oder mehreren Stellen verändert ist. Solche Veränderungen können Additionen, Substitutionen, Deletionen und/oder Inversionen von ein oder mehreren Aminosäuren sein. Insbesondere können Aminosäuren vorliegen, die in Pflanzenzellen bevorzugt exprimiert werden. Ferner kann das Faserprotein ein Fusionsprotein sein, wobei der Fusionspartner z.B. Oleosin sein kann. Dieses Protein ermöglicht dann die Lokalisation des Faserproteins in der Ölphase von pflanzlichem Vermehrungsmaterial. Faserproteine, die in veränderter Form vorliegen, weisen eine mechanische Stabilität, z.B. Elastizität, auf, die zumindest mit jener der Wildtyp-Form vergleichbar ist. Bevorzugte Faserproteine sind Kollagen und Elastin sowie Derivate bzw. Fragmente davon. Für sie gelten vorstehende Ausführungen hinsichtlich einer veränderten Form entsprechend.
Der Ausdruck "Expression eines Vorlaufer-Faserproteins" umfaßt jegliche Expression eines für ein Vorläufer-Faserprotein kodierenden Gens in einer Pflanzenzelle, wobei das Vorläufer- Faserprotein in üblicher Weise, z.B. durch Quervernetzung oder Polymerisierung, in das entsprechende Faserprotein überführt werden kann. Vorstehende Ausführungen zu dem Ausdruck "Faserprotein" gelten hier entsprechend. Ferner kann das Vorläufer-Faserprotein mit oder ohne Signalpeptid vorliegen. Ersteres kann z.B. das natürliche oder ein fremdes Signalpeptid sein, wodurch eine extrazelluläre Lokalisation des Vorläufer-Faserproteins erreicht wird. Bei letzterem wird dagegen eine Lokalisation des Vorläufer-Faserproteins im Zytoplasma erreicht. Deweiteren kann das Vorläufer-Faserprotein ein Steuerpeptid aufweisen, wodurch eine Lokalisation des Vorläufer-Faserproteins in bestimmten Kompartimenten der Pflanzenzelle, z.B. ER, Chloroplasten oder Vakuolen, erreicht wird. Bevorzugte Vorläufer-Faserproteine sind Tropokollagen und Tropoelastin sowie Derivate bzw. Fragmente davon. Für die Expression eines für ein Vorläufer-Faserprotein kodierenden Gens können übliche Expressionsvektoren für Pflanzenzellen verwendet werden. Solche umfassen Regulationselemente, z.B. Enhancer- , Promotor- und Terminations-Sequenzen, die in Pflanzenzellen erkannt werden. Beispiele hierfür sind CaMV 35S Promotor- und Terminations-Sequenzen (vgl. Odell, J. T. et al., Nature 313 (1985), 810-812) . Auch können die Expressionsvektoren, Selektionsmarker, z.B. ein Neomycin- oder Kanamycin-Resistenz-Gen, enthalten. Desweiteren können die Expressionsvektoren Sequenzen enthalten, die ihre Einschleusung in Pflanzenzellen begünstigen. Beispielsweise können die Expressionsvektoren T-DNA von binären Vektoren, wie pSR 8-30 oder pSR 8-35/1 enthalten, wenn sie über Agrobacterium tumefaciens in Pflanzen eingeschleust werden sollen (vgl. Düring, K. et al . , Plant Journal 3 (1993), 587-598; Porsch, P. et al., Plant Molecular Biology 37 (1998), 581-585). Darüber hinaus können die Expressionsvektoren auch durch Verfahren . in Pflanzenzellen eingeschleust werden, für die sie keine speziellen Sequenzen benötigen. Solche Verfahren sind z.B. Mikroinjektion, Elektroporation, DNA-Transfer mittels Polyethylenglykol, Liposomenfusion oder Partikelkanone.
Der Ausdruck "Pflanzenzelle" umfaßt Pflanzenzellen jeglicher Art und Abstammung. Es können einzelne Pflanzenzellen, frisch isoliert oder als Zellinie etabliert, oder solche sein, die in einem Verband vorliegen. Letzteres ist z.B. eine Pflanze oder ein Teil davon. Beispiele von Pflanzen sind monocotyle Pflanzen, wie Mais, Reis, Weizen, Gerste und Zuckerrohr, und dicotyle Pflanzen, wie Kartoffel, Tabak, Tomate, Tee, Kaffee, Brassicaceaen, insbesondere Raps und Kohl, und Leguminosen, insbesondere Erbse, Phaseolus, Vicia und Sojabohne.
Der Ausdruck "Vorläufer-Faserprotein prozessierendes Protein" umfaßt jegliches Protein, das ein Vorläufer-Faserprotein in das entsprechende Faserprotein überführen kann. Die Überführung kann in üblicher Weise, z. B. durch Quervernetzung oder Polymerisierung, erfolgen. Beispiele eines solchen Proteins sind Lysinoxidasen. Auch können es Proteinasen sein, die z.B. im Falle von Kollagen beschrieben worden sind. Die Lysinoxidasen bzw. Proteinasen können als solche bzw. als Derivate oder Fragmente davon vorliegen. Für sie gelten vorstehende Ausführungen hinsichtlich einer veränderten Form eines Faserproteins entsprechend.
Der Ausdruck "Inkubation eines Vorläufer-Faserproteins mit einem es prozessierenden Protein" umfaßt jegliche Inkubation dieser Proteine, durch die das Vorläufer-Faserprotein in das entsprechende Faserprotein überführt werden kann. Die Inkubation kann z.B. in vitro erfolgen. Hierzu ist es günstig, das exprimierte Vorläufer-Faserprotein in Lösung mit dem es prozessierenden Protein zu inkubieren. Auch kann die Inkubation in vivo erfolgen. Hierzu ist es günstig, nicht nur das Vorläufer-Faserprotein, sondern auch das es prozessierende Protein in einer Pflanzenzelle zu exprimieren. Die Expression beider Proteine kann in verschiedenen Pflanzenzellen erfolgen, die dann vereinigt werden, wodurch eine Inkubation des Vorläufer-Faserproteins mit dem es prozessierenden Proteins erfolgt. Auch kann die Expression des Vorläufer-Faserproteins und des es prozessierenden Proteins in der gleichen Pflanzenzelle erfolgen. Die Inkubation beider Proteine erfolgt damit zwangsläufig in dieser Pflanzenzelle. Für die Expression eines ein Vorläufer-Faserprotein prozessierenden Proteins gelten vorstehende Ausführungen hinsichtlich der Expression eines Vorläufer-Faserproteins entsprechend.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Pflanzenzelle, die ein Vorläufer-Faserprotein und ein es prozessierendes Protein exprimiert. Auch ist eine Pflanzenzelle bevorzugt, die von diesen Proteinen nur letzteres exprimiert. Hinsichtlich der Ausdrücke "Pflanzenzelle", "Vorläufer-Faserprotein" und "Vorläufer- Faserprotein prozessierendes Protein" wird auf vorstehende Ausführungen verwiesen. Ferner kann die Pflanzenzelle in Form eines Vermehrungsmaterials vorliegen.
Zur Herstellung einer erfindungsgemäßen Pflanzenzelle können übliche Verfahren verwendet werden. Ergänzend zu vorstehenden Ausführungen wird beispielhaft die Herstellung einer erfindungsgemäßen Pflanze beschrieben, die ein Vorläufer- Faserprotein, z.B. Tropoelastin und ein es prozessierendes Protein, z.B. Lysinoxidase, exprimiert. Hierzu ist es günstig, eine für Tropoelastin kodierende cDNA mit CaMV 35S Promotor- und Terminations-Sequenzen zu versehen und in einen binären Vektor, z.B. pSR 8-30 bzw. pSR 8-35/1 zu inserieren. Gleiches kann mit einer für eine Lysinoxidase kodierende cDNA erfolgen. Die erhaltenen DNA-Moleküle werden zur Transformation von Bakterien, z.B. E.coli S17-1 verwendet, die sich für einen Transfer der DNA-Moleküle in Agrobacterium tumefaciens, z.B. GV 3101, eignen. Hierzu werden E.coli Ξ17-1 und Agrobakterium tumefaciens GV 3101 miteinander gemischt und über Nacht inkubiert. Agrobakterien, welche die DNA-Moleküle aufgenommen haben, werden durch Wachstum auf Carbenicillin-haltigem Medium selektioniert . Diese werden dann auf abgeschnittenen und mehrfach an der Mittelrippe eingeritzten Blättern von Kartoffelpflanzen aufgebracht und zwei Tage im Dunkeln inkubiert. Danach werden die Agrobakterien entfernt und den Kartoffelpflanzen Wuchsstoffe zugegeben, so daß sich Sprosse ausbilden. Diese werden abgeschnitten und zur Kultivierung von neuen Kartoffelpflanzen verwendet. Der Nachweis der Expressionsprodukte Tropoelastin und Lysinoxidase bzw. des erhaltenen Elastins wird mittels spezifischer Antikörper gegen diese Proteine durchgeführt. Es wird auf die nachfolgenden Beispiele verwiesen.
Mit der vorliegenden Erfindung ist es möglich, Faserproteine in Pflanzenzellen, insbesondere Pflanzen, in großer Reinheit herzustellen. Die Faserproteine eignen sich daher für die verschiedensten Anwendungen. Solche finden sich z.B. in der Landwirtschaft, Chemie, Kosmetik-Herstellung und Medizin. In letzterem Fall ist z.B. der Einsatz von Faserproteinen für Transplantate und Wundverschlüsse zu nennen. Insbesondere zeichnen sich die Faserproteine dadurch aus, daß sie frei von tierischen oder menschlichen Viren bzw. Krankheitserregern sind. Deweiteren können die Faserproteine in rießigen Mengen hergestellte werden. Dies trifft insbesondere zu, wenn sie aus auf Feldern kultivierten Pflanzen isoliert werden. Die vorliegende Erfindung stellt somit einen großen Beitrag dar, Arzneimittel sicher und in großen Mengen bereitzustellen.
Die Erfindung wird durch die nachfolgenden Beispiele erläutert .
Beispiel 1: Herstellung von Elastin in Kartoffelpflanzen
Es wird eine cDNA für humanes Elastin verwendet (vgl. Fazio, M.J., Journal of Investigative Dermatology 91 (1988), 458- 464). Diese cDNA wird mittels einer PCR am 5 ' -Ende mit einer Ncol- und am 3 ' -Ende mit einer Xbal-Restriktionsstelle versehen. Das erhaltene cDNA-Fragment wird in den Vektor pRT 100 inseriert, der eine Expressionskassette mit CaMV 35S Promotor- und Terminations-Sequenzen enthält (vgl. Töpfer, R. et al., Nucleic Acids Research 15 (1987), 5890; Odell, J. T. et al., vorstehend). Nach Spaltung mit Hindlll wird die die Elastin-cDNA enthaltende Expressionskassette isoliert und in den binären Vektor pSR 8-30 inseriert (vgl. Düring, K. et al . ; Porsch, P. et al . , vorstehend). Es wird der Expressionsvektor pSR 8-30-Elastin erhalten.
Ferner wird eine cDNA für humane Lysinoxidase verwendet (vgl. Hämäläinen, E.R., Genomics 11 (1991), 508-516). Diese wird wie vorstehend behandelt und in den binären Vektor pSR 8-30 inseriert. Es wird der Expressionsvektor pSR 8-30-Lysinoxidase erhalten.
Die Expressionsvektoren pSR 8-30-Elastin und pSR 8-30- Lysinoxidase werden zur Transformation von E.coli S17-1 verwendet. Transformanten werden mit Agrobacterium tumefaciens GV 3101 gemischt und über Nacht bei 27°C inkubiert (vgl. Koncz, C, Shell, J., Molecular and General Genetics 204 (1986), 383- 396; Koncz, C. et al . , Proc . Natl . Acad. Sei. USA 84 (1987), 131-135) . Es wird auf Carbenicillin selektioniert , wobei das hierfür notwendige bla-Gen in den vorstehenden Expressionsvektoren vorliegt. Sei ekt i onsklone von Agrobacterium tumefaciens werden auf abgeschnittenen und mehrfach an der Mittelrippe eingeritzten Blättern der Kartoffelpflanze cv. Desiree aufgebracht und die Pflanze wird 2 Tage bei 20°C im Dunkeln inkubiert. Danach werden die Agrobakter ien abgetrennt und der Kartoffelpflanze Pflanzenwuchsstoffe zugesetzt, so daß sich bevorzugt Sprosse ausbilden. Ferner werden durch Zugabe von Kanamycin in das Pflanzenmedium ni ch t - t r ans f o rmi er t e Zellen der Kartoffelpflanze abgetötet. Heranwachsende Sprosse werden abgeschnitten und auf Medium ohne Pflanzenwachstu sstoffe, aber mit Kanamycin, bewurzelt. Die weitere Kultivierung der Kartoffelpflanzen erfolgt in üblicher Weise.
Der Nachweis des exprimierten Tropoelas tins und der Lysinoxidase bzw. des erhaltenen Elastins wird durch Antikörper im Western Blot bzw. ELISA erreicht, die spezifisch für die einzelnen Proteine sind. Hierzu wird Gesamt-Protein oder die interzelluläre Waschflüssigkeit der Kartoffelpflanze isoliert und in die entsprechenden Nachweisverfahren eingesetzt .
Es zeigt sich, daß Tropoelastin und Lysinoxidase in Pflanzenzellen, insbesondere in einer Pflanze, exprimiert werden können. Ferner zeigt sich, daß durch die Inkubation von Lysinoxidase mit dem Tropoelastin letzteres in Elastin überführt wird und dieses in reiner Form isoliert werden kann.
Beispiel 2 : Herstellung von Kollagen in Kartoffelpflanzen
Es werden cDNAs verwendet, die für die Untereinheiten αl und α2 des humanen Tropokollagens kodieren (vgl. Chu, M.L. et al . , Journal of Biological Chemistry 260 (1985), 2315-2320; Dickson L.A. et al., Nucleic Acids Res . 13 (1985), 3427-3438). Ferner werden cDNAs verwendet, die für humane Lysinoxidase, humane Prokollagen C-Proteinase bzw. Prokollagen N-Proteinase aus dem Rind kodieren (vgl. Hämäläinen, E.R. et al . , vorstehend; Li, S.W. et al., Proc. Natl . Acad. Sei. USA 93 (1996), 5127-5130; Colige, A. et al . , Proc. Natl. Acad. Sei. USA 94 (1997), 2374- 2379) .
Diese cDNAs werden, wie in Beispiel 1 beschrieben, behandelt und in den Vektor pSR 8-30 inseriert. Es werden die Expressionsvektoren pSR 8-30-Tropokollagen αl , pSR 8-30- Tropokollagen α2 , pSR 8-30-Lysinoxidase, pSR 8-30-C-Proteinase und pSR 8-30-N-Proteinase erhalten. Das weitere Vorgehen erfolgt entsprechend der Beschreibung von Beispiel 1.
Es zeigt sich, daß Tropokollagen und es prozessierende Proteine in Pflanzenzellen, insbesondere in einer Pflanze, exprimiert werden können. Ferner zeigt sich, daß Kollagen erhalten werden kann, das eine hohe Reinheit aufweist.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Faserproteins, umfassend die folgenden Verfahrensschritte:
(a) Expression eines Vorläufer-Faserproteins in einer Pflanzenzelle, und
(b) Inkubation des Vorläufer-Faserproteins mit einem es prozessierenden Protein.
2. Verfahren nach Anspruch 1, wobei das prozessierende Protein in einer Pflanzenzelle exprimiert wird.
3. Verfahren nach Anspruch 2, wobei die Expression des Vorläufer-Faserproteins und des es prozessierenden Proteins in verschiedenen Pflanzenzellen erfolgt.
4. Verfahren nach Anspruch 2, wobei die Expression des Vorläufer-Faserproteins und des es prozessierenden Proteins in der gleichen Pflanzenzelle erfolgt.
5. Verfahren nach einem der Ansprüche 1 - 4, wobei die Pflanzenzelle in Form einer Pflanze vorliegt.
6. Verfahren nach einem der Ansprüche 1 - 5 , wobei das Vorläufer-Faserprotein ein Prokollagen oder ein Derivat bzw. Fragment davon ist.
7. Verfahren nach einem der Ansprüche 1-5, wobei das Vorläufer-Faserprotein ein Tropoelastin oder ein Derivat bzw. Fragment davon ist.
8. Verfahren nach einem der Ansprüche 1 - 6, wobei das Faserprotein ein Kollagen oder ein Derivat bzw. Fragment davon ist.
9. Verfahren nach einem der Ansprüche 1-5 und 7, wobei das Faserprotein ein Elastin oder ein Derivat bzw. Fragment davon ist.
10. Verfahren nach einem der Ansprüche 1 -9, wobei das Vorläufer-Faserprotein prozessierende Protein eine Lysinoxidase ist.
11. Pflanzenzelle, exprimierend ein Vorläufer-Faserprotein und ein es prozessierendes Protein.
12. Pflanzenzelle nach Anspruch 11, wobei die Pflanzenzelle in Form eines Vermehrungsmaterials vorliegt.
13. Pflanzenzelle nach Anspruch 11, wobei die Pflanzenzelle in Form einer Pflanze vorliegt.
14. Pflanzenzelle, exprimierend ein Vorläufer-Faserprotein prozessierendes Protein.
15. Pflanzenzelle nach Anspruch 14, wobei die Pflanzenzelle in Form eines Vermehrungsmaterials vorliegt.
16. Pflanzenzelle nach Anspruch 14, wobei die Pflanzenzelle in Form einer Pflanze vorliegt.
17. Verwendung der Pflanzenzelle nach einem der Ansprüche 11 - 16 zur Herstellung eines Faserproteins.
18. Faserprotein, hergestellt nach dem Verfahren nach einem der Ansprüche 1 - 10.
19. Faserprotein nach Anspruch 18, wobei das Faserprotein ein Kollagen oder ein Derviat bzw. Fragment davon ist.
20. Faserprotein nach Anspruch 18, wobei das Faserprotein ein Elastin oder ein Derivat bzw. Fragment davon ist.
EP99950481A 1998-08-03 1999-08-03 Faserproteine und ihre herstellung Withdrawn EP1100915A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19834909A DE19834909A1 (de) 1998-08-03 1998-08-03 Faserproteine und ihre Herstellung
DE19834909 1998-08-03
PCT/DE1999/002359 WO2000008142A2 (de) 1998-08-03 1999-08-03 Faserproteine und ihre herstellung

Publications (1)

Publication Number Publication Date
EP1100915A2 true EP1100915A2 (de) 2001-05-23

Family

ID=7876235

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99950481A Withdrawn EP1100915A2 (de) 1998-08-03 1999-08-03 Faserproteine und ihre herstellung

Country Status (7)

Country Link
EP (1) EP1100915A2 (de)
JP (1) JP2002523020A (de)
AU (1) AU758727B2 (de)
CA (1) CA2336064A1 (de)
DE (1) DE19834909A1 (de)
IL (1) IL140549A0 (de)
WO (1) WO2000008142A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194333A1 (en) 2022-04-04 2023-10-12 Swiftpharma Bv Recombinant spider silk-reinforced collagen proteins produced in plants and the use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004123A1 (en) * 1995-07-19 1997-02-06 Gel Tech Group Inc. Collagen compound production in plants
US5928922A (en) * 1996-04-10 1999-07-27 Academy Of Finland α2 subunit of prolyl-4-hydroxylase, nucleic acid sequences encoding such subunit and methods for producing the same
WO1997038710A1 (en) * 1996-04-12 1997-10-23 Fibrogen, Inc. Synthesis of human procollagens and collagens in recombinant dna systems
AUPO156596A0 (en) * 1996-08-09 1996-09-05 University Of Sydney, The Synthetic polynucleotides
EP0939826A2 (de) * 1996-08-15 1999-09-08 Agrivax Incorporated Abgabe von tolerogenen antigenen über essbare pflanzen oder deren produkte
FR2757874B1 (fr) * 1996-12-17 2003-04-25 Biocem Collagenes recombinants et proteines derivees produits par les plantes, leurs procedes d'obtention et leurs utilisations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0008142A3 *

Also Published As

Publication number Publication date
WO2000008142A3 (de) 2000-06-08
WO2000008142A2 (de) 2000-02-17
DE19834909A1 (de) 2000-02-17
CA2336064A1 (en) 2000-02-17
AU758727B2 (en) 2003-03-27
AU6325099A (en) 2000-02-28
IL140549A0 (en) 2002-02-10
JP2002523020A (ja) 2002-07-30

Similar Documents

Publication Publication Date Title
DE69734528T2 (de) Durch pflanzen hergestelltes rekombinantes kollagen, verfahren zu ihrer herstellung und verwendung
DE3687705T2 (de) Molekulare zuechtung.
DE19503359C1 (de) Streßtolerante Pflanzen und Verfahren zu deren Herstellung
DE69333529T2 (de) Pflanzenvirus-vektor, plasmid, methode der expression fremder gene und methode zur gewinnung obiger genprodukte
DE60221051T2 (de) Herstellung von peptiden und proteinen durch anhäufung in vom endoplasmatischen reticulum abgeleiteten proteinkörpern
EP0375091A1 (de) Wundinduzierbare und kartoffelknollenspezifische transkriptionale Regulation
EP0616035A2 (de) Transgener Pathogen-resistenter Organismus
EP0442592A2 (de) Plasmide zur Herstellung von in Habitus und Ertrag Veränderten Transgenen Pflanzen
EP0879293A1 (de) Kassetten zur expression von lagerstabilen proteinen in pflanzen
DE69836075T2 (de) Verfahren zur spaltung von fusionproteinen
DE69830262T2 (de) Stress-resistente Pflanze
Mayfield et al. Accumulation of chlorophyll, chloroplastic proteins, and thylakoid membranes during reversion of chromoplasts to chloroplasts in Citrus sinensis epicarp
DE60035509T2 (de) Regulierung der verzweigung von pflanzen
EP1206561B1 (de) Verfahren zur herstellung proteinöser substanzen
EP1287139B1 (de) Synthetische spinnenseidenproteine und deren expression in transgenen pflanzen
EP1100915A2 (de) Faserproteine und ihre herstellung
DE69820180T2 (de) Verfahren zur Herstellung einer krankheitsresistenten Pflanze, welche ein Thioningen enthält
WO2003041493A1 (de) Produktion von rekombinanten antikörpern mittels fusion mit elastin-ähnlichen peptiden
DE19940270C2 (de) Verfahren zur Herstellung von Pflanzen mit gesteigerter Photosyntheserate
DE60011930T2 (de) Oleosine in Kakao
DE69014100T2 (de) Cdns des orsv-virus gens.
EP1325143A1 (de) Verfahren zur erzeugung oder erhöhung einer resistenz in organismen gegenüber biotischen oder abiotischen stressfaktoren
DE69723383T2 (de) Gen kodierend für Pflanze-Indolacetaldehyd-Oxidase und seine Verwendung
EP1144610B1 (de) Verfahren zur gesteuerten nach-ernte-produktion von proteinen in pflanzen
DE10113781A1 (de) Synthetische Spinnenseidenproteine und deren Expression in transgenen Pflanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001215

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20031013