EP1095543A1 - Ballast pour au moins une lampe a decharge, et procede pour faire fonctionner une tel ballast - Google Patents

Ballast pour au moins une lampe a decharge, et procede pour faire fonctionner une tel ballast

Info

Publication number
EP1095543A1
EP1095543A1 EP00941880A EP00941880A EP1095543A1 EP 1095543 A1 EP1095543 A1 EP 1095543A1 EP 00941880 A EP00941880 A EP 00941880A EP 00941880 A EP00941880 A EP 00941880A EP 1095543 A1 EP1095543 A1 EP 1095543A1
Authority
EP
European Patent Office
Prior art keywords
duty cycle
switch
ballast
control circuit
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00941880A
Other languages
German (de)
English (en)
Other versions
EP1095543B1 (fr
Inventor
Franz Raiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1095543A1 publication Critical patent/EP1095543A1/fr
Application granted granted Critical
Publication of EP1095543B1 publication Critical patent/EP1095543B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2988Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/04Dimming circuit for fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the present invention relates to a ballast for at least one gas discharge lamp according to the preamble of claim 1 and a method for operating a ballast for at least one gas discharge lamp according to the preamble of claim 7.
  • FIGS. 2a and 2b shown there show the control signals of the two switches in the unburned operating state, ie when maximum power is being supplied to the gas discharge lamp
  • the duty cycle mentioned several times below is defined as the quotient of the time period in which the control signal assumes the high voltage value and the sum of the time periods of the high and low voltage values, based on a duty cycle. It can be seen that the pulse duty factor of the one switch has been changed, in the present case starting from a value of 50% according to FIG.
  • Another object of the present invention is to develop a method for operating a ballast of the type mentioned at the outset in such a way that the gas discharge lamp is prevented from lighting up unevenly.
  • the invention is based on the knowledge that dimming operation with control signals provided by the control circuit according to FIGS. 3a and 3b of WO 94/06261 leads to a different temperature of the two lamp electrodes. As experiments have shown, when the thermal load on the two electrodes of the gas discharge lamp is essentially the same, there is no longer a non-uniform glow.
  • the solution according to the invention not only offers advantages in the dimming operation of a gas discharge lamp, it can also be used to change a predetermined ballast by varying the pulse duty factor in an inventive manner for the operation of a wide variety of gas discharge lamps with completely different lamp parameters, in particular lamp line to make available.
  • a ballast is dimensioned so that it operates with a duty cycle of 50% to operate the gas discharge lamp, which requires maximum power. All other lamps that are to be operated with the same ballast are then operated with a duty cycle of less than 50% without fear of uneven lighting of these lamps.
  • the first and second switches are operated in push-pull, i.e. while one switch receives an input signal at a high level, the other switch receives one at a low level and vice versa.
  • the duty cycle of both switches is changed periodically with the control circuit. This is preferably expressed in that the control circuit controls the duty cycle so that the sum of the ON times of the first switch is on average equal to the sum of the ON times of the second switch.
  • the first and the second switch are operated with N different duty cycles, where N> 2 and the change between the different duty cycles takes place with a period which in the shortest case is determined by the fact that each duty cycle is only carried out exactly once before switching to the next, and which in the longest case is determined by the thermal inertia of the first and second electrodes.
  • N 2
  • the first duty cycle being D
  • the second duty cycle E 100-D.
  • ballast for gas discharge lamps of different powers which can be stored in the control circuit to match the respective lamp, can also be provided to additionally provide an input to the control circuit via which the duty cycle can be changed by an operator, for example for dimming the gas discharge lamp .
  • FIG. 1 shows in schematic form the structure of a ballast according to the invention
  • FIG. 3 shows in a schematic form the time course of various signals of a ballast according to the present invention or a ballast which is operated according to the inventive method.
  • FIG. 1 shows a ballast 10 according to the invention with a component 12, which is connected on the input side to a mains voltage source UN, and one Rectifiers, filters known to the person skilled in the art and optionally also devices for correcting the power factor on the network side.
  • the DC voltage signal provided by the module 12 is stabilized via a capacitor CO and applied to a bridge circuit with a switch T1 and a switch T2.
  • the bridge center is connected to the load circuit 14, which comprises a gas discharge lamp 26 with a first and a second electrode 28, 30.
  • the switches T1 and T2 form a half-bridge arrangement together with the capacitors C1 and C2.
  • a control circuit 16 supplies the control signals for the switches T1 and T2 via lines 18 and 20, respectively.
  • a line 22 can be used to provide the control circuit 16 with lamp data, for example data about the current power converted in the lamp and about the lamp current during generation the control signals applied to the switches T1 and T2 via the lines 18 and 20 can be taken into account.
  • the control circuit 16 can have a microcontroller in which the configuration of the control signals provided via the lines 18, 20 to the switches T1 and T2 is stored, for example for operating the respective gas discharge lamp 26 with maximum power.
  • an input signal to the control circuit can optionally be supplied via a line 24, with which an operator can influence the control signals of the switches T1 and T2, for example by actuating a rotary knob or the like for dimming of the gas discharge lamp 26.
  • the control signals provided by the control circuit 16 via the lines 18 and 20 are described in more detail below with reference to FIGS. 2 and 3:
  • Fig. 2 shows first in the curves A and B, the time course of the control signals of the first and second switches Tl, T2 according to the teaching of State of the art.
  • Switch T1 is operated according to the curve with a pulse duty factor of 30%.
  • Switch T2 is operated according to curve B with a duty cycle of 70%.
  • the curves C and D show the time profiles of the associated currents II and 12 through the switch Tl and through the switch T2.
  • Curve E shows the time profile of the load current II. Due to the differently long ON times of switch T1 and switch T2, different currents result through electrodes 28, 30 of the gas discharge lamp 26, depending on whether switch T1 or T2 is in the ON state. This leads to an uneven thermal loading of the electrodes 28, 30 of the gas discharge lamp 26.
  • FIG. 3 shows, corresponding to FIG. 2, the time profile of the same circuit parameters when the ballast is modified in accordance with the teaching according to the invention.
  • Both switches T1 and T2 are operated in push-pull mode, i.e. with the exception of switching operations that are negligible, one switch has a high level signal as the drive signal, while the other switch has a low level drive signal and vice versa.
  • curve A is considered: While switch Tl is operated with a duty cycle of 70% between times t1 and t2, control circuit 16 changes the duty cycle to 30% at time t2. This duty cycle is maintained until time t3, after which the switch is made to a duty cycle of 70%. With reference to curve B of FIG. 3, switch T2 is operated with the corresponding inverse duty cycle, ie between times t2 and t3 with a duty cycle of 70% and after t3 there is again a duty cycle of 70%. Curves C, D and E in turn show the time profiles of currents II, 12 and load current II. While switching between two duty cycles, ie a duty cycle of 70% and a duty cycle of 30%, in the exemplary embodiment according to FIG. 3, implementations are also conceivable in which there is a switchover between several duty cycles.
  • FIG. 3 shows a changeover from one duty cycle to another immediately after passing through a duty cycle of a certain duty cycle.
  • provision can also be made to maintain a specific duty cycle over a longer period of time before switching to the next duty cycle, provided that there are no substantially different thermal loads on the two electrodes 28, 30 of the gas discharge lamp 26.
  • the point in time at which it is necessary to switch to a different duty cycle at the latest depends on the physical properties of the electrodes used in the respective gas discharge lamp.
  • Switching from one duty cycle to another, not immediately after executing a certain duty cycle has the advantage that 16 components can be used in the control circuit which are designed for lower frequencies and are therefore cheaper. For example, a cheaper microcontroller can be used, since a smaller amount of data has to be processed with longer switching times.
  • the circuit described can be used not only for externally controlled but also for free-swinging inverters.
  • Bipolar transistors were chosen as switches in FIG. It is obvious to the person skilled in the art that other types of switches, for example field effect transistors, can also be considered.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
EP00941880A 1999-05-12 2000-04-19 Ballast pour au moins une lampe a decharge, et procede pour faire fonctionner une tel ballast Expired - Lifetime EP1095543B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19922039A DE19922039A1 (de) 1999-05-12 1999-05-12 Vorschaltgerät für mindestens eine Gasentladungslampe und Verfahren zum Betreiben eines derartigen Vorschaltgeräts
DE19922039 1999-05-12
PCT/DE2000/001226 WO2000070921A1 (fr) 1999-05-12 2000-04-19 Ballast pour au moins une lampe a decharge, et procede pour faire fonctionner une tel ballast

Publications (2)

Publication Number Publication Date
EP1095543A1 true EP1095543A1 (fr) 2001-05-02
EP1095543B1 EP1095543B1 (fr) 2003-11-12

Family

ID=7907933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00941880A Expired - Lifetime EP1095543B1 (fr) 1999-05-12 2000-04-19 Ballast pour au moins une lampe a decharge, et procede pour faire fonctionner une tel ballast

Country Status (10)

Country Link
US (1) US6316888B1 (fr)
EP (1) EP1095543B1 (fr)
JP (1) JP2003500808A (fr)
KR (1) KR20010071870A (fr)
CN (1) CN1242653C (fr)
AT (1) ATE254385T1 (fr)
CA (1) CA2337062A1 (fr)
DE (2) DE19922039A1 (fr)
TW (1) TW494706B (fr)
WO (1) WO2000070921A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501499A (ja) * 2000-06-20 2004-01-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 回路装置
US6388398B1 (en) * 2001-03-20 2002-05-14 Koninklijke Philips Electronics N.V. Mixed mode control for ballast circuit
SE516910C2 (sv) 2001-03-29 2002-03-19 Kanthal Ab Anordning vid horisontell installation av elektriska motståndselement
DE10125510A1 (de) * 2001-05-23 2002-12-05 Innolux Gmbh Leuchtstofflampenschaltung
WO2003009650A1 (fr) * 2001-07-19 2003-01-30 Koninklijke Philips Electronics N.V. Dispositif pour actionner une lampe a decharge haute pression
US7964883B2 (en) * 2004-02-26 2011-06-21 Lighting Science Group Corporation Light emitting diode package assembly that emulates the light pattern produced by an incandescent filament bulb
JP4771073B2 (ja) * 2005-03-24 2011-09-14 東芝ライテック株式会社 放電ランプ点灯装置および照明装置
DE102005021595A1 (de) * 2005-05-10 2006-11-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elekronisches Vorschaltgerät und entsprechendes Einstellverfahren

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2067690A5 (fr) * 1969-11-13 1971-08-20 Lepaute
US4388563A (en) * 1981-05-26 1983-06-14 Commodore Electronics, Ltd. Solid-state fluorescent lamp ballast
US4682080A (en) * 1984-08-17 1987-07-21 Hitachi, Ltd. Discharge lamp operating device
AT392384B (de) * 1985-02-04 1991-03-25 Zumtobel Ag Vorschaltgeraet zum betrieb von gasentladungslampen mit gleichstrom
DE3729383A1 (de) * 1987-09-03 1989-03-16 Philips Patentverwaltung Schaltungsanordnung zum starten einer hochdruckgasentladungslampe
US4920299A (en) 1988-04-27 1990-04-24 General Electric Company Push-pull fluorescent dimming circuit
US5103138A (en) 1990-04-26 1992-04-07 Orenstein Edward D Switching excitation supply for gas discharge tubes having means for eliminating the bubble effect
DE4123187A1 (de) * 1991-07-12 1993-01-14 Tridonic Bauelemente Vorschaltgeraet zum pulsbetrieb von gasentladungslampen
US5189343A (en) 1991-08-27 1993-02-23 Everbrite, Inc. High frequency luminous tube power supply having neon-bubble and mercury-migration suppression
DE4228641A1 (de) * 1992-08-28 1994-03-03 Tridonic Bauelemente Gmbh Dorn Vorschaltgerät für eine Gasentladungslampe mit einem Wechselrichter
TW344190B (en) * 1992-09-22 1998-11-01 Matsushita Electric Works Ltd Discharge lamp lighting device
JP3244859B2 (ja) * 1993-04-12 2002-01-07 池田デンソー株式会社 放電灯点灯装置
US5583402A (en) 1994-01-31 1996-12-10 Magnetek, Inc. Symmetry control circuit and method
DE19708792A1 (de) * 1997-03-04 1998-09-10 Tridonic Bauelemente Verfahren und Vorrichtung zum Erfassen des in einer Gasentladungslampe auftretenden Gleichrichteffekts
US5949197A (en) 1997-06-30 1999-09-07 Everbrite, Inc. Apparatus and method for dimming a gas discharge lamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0070921A1 *

Also Published As

Publication number Publication date
WO2000070921A1 (fr) 2000-11-23
KR20010071870A (ko) 2001-07-31
CN1304631A (zh) 2001-07-18
DE19922039A1 (de) 2000-11-16
JP2003500808A (ja) 2003-01-07
DE50004415D1 (de) 2003-12-18
ATE254385T1 (de) 2003-11-15
US6316888B1 (en) 2001-11-13
CA2337062A1 (fr) 2000-11-23
EP1095543B1 (fr) 2003-11-12
TW494706B (en) 2002-07-11
CN1242653C (zh) 2006-02-15

Similar Documents

Publication Publication Date Title
DE4332059B4 (de) Vorschaltgerät zur Helligkeitssteuerung von Entladungslampen
DE69921616T2 (de) Schaltungsanordnung
EP1465465B1 (fr) Ballast électronique avec un circuit en pont complet
EP1095543B1 (fr) Ballast pour au moins une lampe a decharge, et procede pour faire fonctionner une tel ballast
EP1589645A2 (fr) Circuit pour convertir une tension alternative en tension continue
EP1148768B1 (fr) Stabilisation dans le contrôle de lampes à décharge
DE2445033C3 (de) Gleichstromumrichter
DE69706397T2 (de) Versorgungsschaltung für Entladungslampen mit symmetrischer Resonanzschaltung
EP0738455B1 (fr) Dispositif servant au fonctionnement d'une lampe a decharge
DE69709604T2 (de) Schaltungsanordnung
DE102010046795A1 (de) Verfahren zum Betrieb eines LED-Leuchtmittels mit mehreren LEDs, Steuereinheit für ein LED-Leuchtmittel mit mehreren LEDs und LED-Leuchtmittel
EP2174532A1 (fr) Appareil électronique intercalé et procédé d'exploitation d'au moins une lampe à décharge
DE60214526T2 (de) Mischmodus-steuerung für ein vorschaltgerät
DE60219499T2 (de) Verfahren und vorrichtung zum betreiben von entladungslampen
DE19516052A1 (de) Verfahren zum Betreiben einer Hochdruckgasentladungslampe und Schaltungsanordnung zur Durchführung des Verfahrens
DE3524681A1 (de) Dimmerschaltung fuer ein elektronisches leuchtstofflampen-vorschaltgeraet
EP1189490B1 (fr) Ballast électronique de lampe fluorescente
EP0679047B1 (fr) Circuit pour l'alimentation pulsée d'une lampe à décharge
EP0215156A1 (fr) Unité d'alimentation de tension
DE3517297C1 (de) Vorschaltgerät für Entladungslampen
DE69313094T2 (de) Umrichter zum Betreiben von Entladungslampen mit Heizwendeln durch einen Resonanzkreis
EP2425684B1 (fr) Circuit de ballast régulé en puissance pour un luminaire, et procédé de fonctionnement
DE3924398A1 (de) Einrichtung zur speisung eines verbraucherzweipols mit einem weitgehend oberschwingungsfreien und dennoch rasch veraenderbaren gleichstrom
EP1191826B1 (fr) Ballast électronique avec une unité de commande numérique
DE60009222T2 (de) Regelvorrichtung einer leuchtstofflampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031112

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50004415

Country of ref document: DE

Date of ref document: 20031218

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040212

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040223

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040419

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040419

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20031112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040813

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060404

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060411

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060425

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060511

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070419

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20070430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50004415

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50004415

Country of ref document: DE

Effective date: 20110805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50004415

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50004415

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50004415

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150421

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004415

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101