EP1088388A1 - Procede d'etude par modelisation pour un dispositif anti-oscillations et installation pourvue d'un tel dispositif - Google Patents

Procede d'etude par modelisation pour un dispositif anti-oscillations et installation pourvue d'un tel dispositif

Info

Publication number
EP1088388A1
EP1088388A1 EP99939352A EP99939352A EP1088388A1 EP 1088388 A1 EP1088388 A1 EP 1088388A1 EP 99939352 A EP99939352 A EP 99939352A EP 99939352 A EP99939352 A EP 99939352A EP 1088388 A1 EP1088388 A1 EP 1088388A1
Authority
EP
European Patent Office
Prior art keywords
damping device
pendulum
pdg
model
pendulum damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99939352A
Other languages
German (de)
English (en)
Inventor
Rüdiger KUTZNER
Rüdiger REICHOW
Kai Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1088388A1 publication Critical patent/EP1088388A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Definitions

  • the invention relates to a model-based design method for an oscillating steam device and to a system using the oscillating steam device created in this way.
  • a pendulum steaming device for turbogenerators in gas and / or steam power plants, the power vibrations that occur are to be reduced, a modulation of the excitation usually being derived from a significant signal.
  • pendulum steaming devices in practice is explained, for example, in Siemens Energy Technology 3, 1981, Issue 2, pages 50 to 53. Further information on this can be found in e & i, 107th volume, issue 1, pages 524 to 531.
  • PDGs pendulum steaming devices
  • Figure 1 shows the control of a turbo set
  • Figure 2 illustrates a conventional
  • Pendulum damping device also called PDG
  • FIG. 3 a linear model for the design of a pendulum damping device
  • FIG. 4 the so-called standard problem for a PDG
  • FIG. 5 the result of the procedure according to the invention
  • FIG. 6 the reduction of the solution from FIG. 5 for a system
  • FIG. 7 shows the conception of a multisize PDG ⁇ s and
  • FIG. 8 shows an arrangement of a gas turbo set regulated with two PDGs
  • turbo sets in the electrical power supply includes, in addition to the speed / power control and the voltage control, usually also a pendulum damping device (PDG) for reducing active power fluctuations.
  • PDG pendulum damping device
  • FIG. 1 provides an overview of the components of the system.
  • a turbo set for a gas and / or steam power plant consists of a turbine 1 and an electrical generator 2, which feeds into an electrical network 3.
  • a pendulum damping device 10 is assigned to the voltage regulator 7.
  • the regulation of the turboset takes place in detail by the turbine controller, which consists of a speed and a power controller, via the control valves of the turbine and by the voltage controller via the excitation and the generator.
  • the active power p a of the generator can be derived from the terminal voltage u a and the terminal current ⁇ a are formed.
  • the speed n of the turbo set is usually provided by an incremental encoder.
  • the turbomotive controller is unsuitable for the function of oscillation damping in the frequency range described.
  • the active power can only be influenced dynamically by the excitation, since only the turbine supplies the stationary part, the couplings can, however, be used for an additional control loop for pendulum damping.
  • the frequency range of the PDG output signal must be limited to low frequencies in order to avoid undesired coupling for voltage regulation.
  • a block diagram for the model-based design of a PDG can be developed.
  • the dynamic properties of the turbine control can largely be neglected here, so that the model for the design of the pendulum steaming device consists of the excitation system and the generator operated on the network. Speed fluctuations result from the starting time constant from the constant turbine torque and the reaction torque of the synchronous generator.
  • the behavior of the generator depends non-linearly on the selected operating point and the network connection. The occurring However, power fluctuations take place in the small signal range, so that linearization is permissible. The design only has to guarantee sufficient robustness for the operating range of the generator.
  • FIG. 3 shows the composition of the linearized model.
  • Units 31 to 33 contain the voltage regulator, the field voltage regulator and the generator, which feeds its power into the network, which has already been described with reference to FIG. 1.
  • the parameters of the individual components are known to the manufacturer or operator, so that this model can be set up without complex measurements.
  • the static excitation system is approximated by a small replacement time constant. Since the data vary from plant to plant, the PDG is optimally matched to the respective turbo set.
  • the transfer function F pu describes the behavior of the active power when the setpoint value of the terminal voltage changes.
  • the regulatory objectives mentioned at the beginning can be determined based on the amount of this transfer function
  • Transfer function corresponds to the maximum gain of this transfer function, and the course of the maximum singular values is identical to the amount course.
  • the damping can thus be set directly via the Ho o standard or the maximum singular values.
  • the PDG should only react to the alternating components of the power, whereas a stationary adjustment of the terminal voltage depending on the power output is not desirable.
  • FIG. 4 The treatment of the design problem for a pendulum damping device is illustrated in FIG. 4.
  • w denotes the inputs and v the outputs of the design task that interact with the entire block.
  • the block P also contains units 42 to 44 with weighting functions W ⁇ , W ⁇ , W 3 and a unit 45 with a differentiator.
  • T vw Pll + Pl2K (I-P22K) - * P21> I Tvw
  • the PDG can be extended by an input - the speed of the turbo set.
  • the standard problem and the model of the generator must be adapted accordingly. For this purpose, reference is made to FIG. 7
  • the amount of the transfer function F pu is decisive for the assessment of the damping achieved. F allows statements about the manipulated variable and thus also about the robustness. With the second input Ap a is measured value noise
  • the properties of the PDG can be controlled with the weighting functions. Wl influences the damping factor and W2 the dynamic use of the * manipulated variable "additional voltage setpoint
  • FIG. 5 shows the solution to the higher order design task corresponding to unit 50 together with the differentiating element 51 belonging to the PDG and the function of the transmission element 52.
  • a general 3rd or 4th order transfer function according to FIG. 6 is obtained.
  • the order of the PDG determined in this way is derived from the order of the standard problem and thus from the underlying model. It is unnecessarily high for practical use and is therefore reduced to a third to fourth order with a process of balanced model reduction without loss of performance. Together with the upstream DT ] _ element, this results in a fourth or fifth order PDG, which is integrated directly into the function of a digital voltage regulator.
  • FIG 7 the model of Figure 4 is supplemented such that a multi-size PDG 70 is designed.
  • further weighting elements are used, for example to weight the speed and use it as an input for the PDG.
  • the corresponding arrangement allows two influencing variables to be taken into account. This is particularly effective with the described method according to the invention.
  • FIG. 8 it is shown that several Pendeldä treatment devices can be used with turbogenerator.
  • the control and regulating circuit largely corresponds to the arrangement of the turboset from FIG. 1.
  • the PDG 10 which acts on the excitation of the generator 2
  • the latter PDG 20 also serves to dampen the power fluctuations. In this way, particularly low-frequency power oscillations, preferably in the range ⁇ 0.5 Hz, can advantageously be damped. This creates a particularly effective system.
  • the structure described above ensures that the voltage is not influenced stationary.
  • the PDG can be implemented in the function package of a digital voltage regulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Les dispositifs anti-oscillations pour turbo-alternateurs dans des centrales à gaz et/ou à vapeur servent à réduire les oscillations de puissance. L'étude d'un tel dispositif peut s'effectuer par modélisation. Selon l'invention, on utilise un modèle de système physique, et déjà lors de l'étude destinée à améliorer le comportement d'amortissement, un effet différentiateur est pris en compte dans le modèle de système, ce qui garantit que le signal de sortie du dispositif anti-oscillations est constamment égal à zéro.
EP99939352A 1998-06-17 1999-06-16 Procede d'etude par modelisation pour un dispositif anti-oscillations et installation pourvue d'un tel dispositif Withdrawn EP1088388A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19827021 1998-06-17
DE19827021 1998-06-17
PCT/DE1999/001773 WO1999066634A1 (fr) 1998-06-17 1999-06-16 Procede d'etude par modelisation pour un dispositif anti-oscillations et installation pourvue d'un tel dispositif

Publications (1)

Publication Number Publication Date
EP1088388A1 true EP1088388A1 (fr) 2001-04-04

Family

ID=7871184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99939352A Withdrawn EP1088388A1 (fr) 1998-06-17 1999-06-16 Procede d'etude par modelisation pour un dispositif anti-oscillations et installation pourvue d'un tel dispositif

Country Status (4)

Country Link
US (1) US20020103629A1 (fr)
EP (1) EP1088388A1 (fr)
DE (1) DE19927524A1 (fr)
WO (1) WO1999066634A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60318408T2 (de) * 2003-06-21 2009-01-29 Abb Research Ltd. Ermittlung elektromechanischer Schwingungen in Stromversorgungssystemen
EP1780619A1 (fr) * 2005-10-31 2007-05-02 Abb Research Ltd. Initialisation d'une estimation de paramètres de modèles dynamiques
US9893524B2 (en) * 2012-12-20 2018-02-13 Abb Schweiz Ag Coordinated control method of generator and SVC for improving power throughput and controller thereof
US10522854B2 (en) * 2017-12-04 2019-12-31 Cummins Enterprise Inc. Digital twin based management system and method and digital twin based fuel cell management system and method
US11119454B2 (en) * 2018-03-30 2021-09-14 General Electric Company System and method for power generation control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846261B2 (ja) * 1994-11-30 1999-01-13 三菱電機株式会社 電力系統安定化装置
GB9610265D0 (en) * 1996-05-16 1996-07-24 Univ Manchester Generator transfer function regulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9966634A1 *

Also Published As

Publication number Publication date
US20020103629A1 (en) 2002-08-01
DE19927524A1 (de) 1999-12-23
WO1999066634A1 (fr) 1999-12-23

Similar Documents

Publication Publication Date Title
EP2102495B1 (fr) Dispositif d'éolienne comportant une régulation de système inverse et procédé d'utilisation
DE69314132T2 (de) Feinregelungssystem zur verringerung von untersynchroner resonanz
DE102004001487B4 (de) Servo-Ventilsteuereinrichtung und Servo-Ventilsteuersystem mit Abnormalitätserfassung
EP3125397B1 (fr) Procédé, ensemble de traitement de données et produit de programme informatique pour améliorer un réseau d'énergie électrique
DE102007039697A1 (de) Verfahren und Vorrichtung zur Kompensation von Schwingungseffekten bei Netzunsymmetrie bei einer doppeltgespeisten Asynchronmaschine
EP3818609A1 (fr) Procédé pour commander un parc éolien
CH680889A5 (fr)
EP1927185A1 (fr) Procede de reglage pour la transmission de courant continu
EP3800755A1 (fr) Dispositif et procédé de réglage d'installations de production d'énergie décentralisées
DE4217625A1 (de) Verfahren zur Regelung einer Turbinen-Generator-Anordnung
DE19532142A1 (de) Verfahren und Vorrichtung zur Regelung eines vierdimensionalen Vektors einer Strecke mittels eines wertediskreten Stellgliedes mit begrenzter Schaltfrequenz
EP1088388A1 (fr) Procede d'etude par modelisation pour un dispositif anti-oscillations et installation pourvue d'un tel dispositif
EP2351204B1 (fr) DISPOSITIF DE COMMANDE D'UNE MACHINE À INDUCTION À & xA;DOUBLE ALIMENTATION
EP1053512B1 (fr) Procede et dispositif pour reguler le fonctionnement d'un groupe electrogene a turbine a gaz, en particulier de centrales electriques a gaz et a vapeur
CH662015A5 (de) Verfahren zum statischen kompensieren der blindleistung eines stromversorgungssystems.
WO1991015047A1 (fr) Procede et dispositif de detection de l'angle de dephasage interne d'un generateur connecte a un reseau d'alimentation en energie electrique
DE10326816A1 (de) Verfahren und Dämpfungsvorrichtung zur Dämpfung einer Torsionsschwingung in einem rotierenden Antriebsstrang
DE2812820A1 (de) Verfahren und einrichtung zur regelung einer dampfturbine
DE10204110A1 (de) Motortreiberkreis und Verfahren zur Steuerung des Motortreiberschaltkreises
DE19752940C2 (de) Verfahren und Vorrichtung zur dynamischen Leistungsregelung einer angetriebenen mehrphasigen Synchronmaschine
EP3297152A1 (fr) Unite d'alimentation en energie
DE4212726A1 (de) Verfahren und Einrichtung zur Regelung von Drehstrommaschinen mit dynamisch hochwertiger Erfassung von deren im elektrisch eingeschwungenen Zustand benötigten Statorspannungen
DE19545520A1 (de) Geschwindigkeitsregelvorrichtung für eine Turbowechselstromgeneratorgruppe
EP4048987B1 (fr) Procédé de mesure du comportement vibratoire d'une transmission d'un turbogénérateur comprenant un générateur dans une centrale électrique reliée à un réseau d'alimentation en énergie
EP4029138A1 (fr) Procédé et appareil pour la régulation en boucle fermée de la valeur réelle d'une variable régulée d'un système, et appareil de travail

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040103