EP1087839B1 - Manuell tragbare elektronische pipette mit verbessertem batterie-betriebenen mikroprozessor - Google Patents

Manuell tragbare elektronische pipette mit verbessertem batterie-betriebenen mikroprozessor Download PDF

Info

Publication number
EP1087839B1
EP1087839B1 EP00916122A EP00916122A EP1087839B1 EP 1087839 B1 EP1087839 B1 EP 1087839B1 EP 00916122 A EP00916122 A EP 00916122A EP 00916122 A EP00916122 A EP 00916122A EP 1087839 B1 EP1087839 B1 EP 1087839B1
Authority
EP
European Patent Office
Prior art keywords
pipette
microprocessor
control
user
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00916122A
Other languages
English (en)
French (fr)
Other versions
EP1087839A4 (de
EP1087839A1 (de
Inventor
Kenneth Rainin
Christopher Kelly
Haakon T. Magnussen, Jr.
William D. Homberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rainin Instrument Co Inc
Original Assignee
Rainin Instrument Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/264,389 external-priority patent/US6254832B1/en
Application filed by Rainin Instrument Co Inc filed Critical Rainin Instrument Co Inc
Priority to EP08018153.0A priority Critical patent/EP2065088B1/de
Publication of EP1087839A1 publication Critical patent/EP1087839A1/de
Publication of EP1087839A4 publication Critical patent/EP1087839A4/de
Application granted granted Critical
Publication of EP1087839B1 publication Critical patent/EP1087839B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • B01L3/0227Details of motor drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/08Ergonomic or safety aspects of handling devices
    • B01L2200/087Ergonomic aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • B01L2300/027Digital display, e.g. LCD, LED

Definitions

  • the present invention relates to electronic pipettes and more particularly to a battery powered microprocessor controlled hand portable electronic pipette which is light in weight and easily operated by a user over extended periods of time.
  • the present invention satisfies the foregoing needs by providing an electronic pipette in accordance with claim 1.
  • Such an electronic pipette is light in weight, comfortably holdable in either the right or left hand of a user and which is easily operated by the user to direct microprocessor controlled operation of the pipette through different user selected modes of operation for different user selected sample volume and speeds of operation.
  • the design includes an axially elongated hollow housing having a vertically extending longitudinal axis and vertically extending and substantially coaxial upper and lower portions.
  • the upper portion of the housing includes a forward compartment containing a forwardly facing alpha-numeric display adjacent a top of the housing.
  • the display is readily viewable by a user during all modes of operation of the pipette be the user right handed or left handed.
  • the forward compartment contains a plurality of columns of forwardly facing control keys as well as a plurality of forwardly facing trigger switches below the columns of control keys.
  • the display, columns of control keys and trigger switches are bilaterally symmetrical relative to the longitudinal axis of the housing.
  • the upper portion of the housing includes a rear compartment which contains a replaceable rechargeable battery for powering a microprocessor and linear actuator contained within the housing.
  • the lower portion of the housing comprises a vertically elongated handle which is coaxial with the longitudinal axis of the housing.
  • the handle has contiguous bilaterally symmetrical and vertically extending forward and rear portions for either right or left hand gripping by a user of the pipette.
  • the forward portion of the handle extends forward of the upper portion of the housing and extends vertically downward to a lower end of the housing and in one embodiment internally contains and shields an upper portion of a pipette tip ejector.
  • the pipette tip ejector has a thumb actuated push button located at a top of the forward portion of the handle and a vertically moveable tip ejector arm extending below the housing and vertically along a pipette tip mounting shaft to encircle the shaft adjacent a lower end thereof.
  • the pipette tip ejector is designed to eject a pipette tip from a lower end of the mounting shaft upon downward movement of the tip ejector arm. Such downward movement is in response to a downward thumb force exerted by the pipette user on the push button while the user is gripping the handle of the pipette.
  • the rear portion of the handle extends rearward from the forward portion and has a hook extending rearward from a back of an upper end of the handle.
  • the hook includes a downwardly curved lower surface for engaging an upper side of an index finger (or middle finger, if desired) of the user while the user is gripping the handle with the thumb of the user free to actuate any of the bilaterally symmetrical control keys, trigger switches and push button in any sequence desired. All this the user is free to do while clearly viewing the alpha numeric display as it responds to the actuation of the control keys and trigger switches.
  • the hook, forward and rear portion of the handle and pipette tip ejector including push button and ejector arm are all bilaterally symmetrical relative to the longitudinal axis of the housing.
  • the pipette of the present invention is easily and comfortably gripped by the user in either his or her left or right hand with the user's index finger under the hook at the rear of the handle.
  • the electronic pipette of the present invention is useable by the user over extended periods of time without unduly stressing the user's thumb, hand or forearm enabling accurate and repeatable operation of the pipette in all operational modes of pipette under control of the user.
  • the electronic control circuit also compliments the user friendly control of the pipette enabling the user to easily switch between the various operating modes of the pipette and in each mode to select between a variety of operating speeds and operating features including cycle counting.
  • cycle counting feature When the cycle counting feature is selected by the pipette use, the user is continuously advised of the operational cycle of the pipette. This enables the user to interrupt a sequence of pipette operations without losing tract of the particular cycle of operation of the pipette.
  • the pipette 10 illustrated in Figs 1 and 2 of the drawings comprises a bilaterally symmetrical lightweight hand holdable battery powered microprocessor controlled electronic pipette.
  • the pipette 10 includes an axially elongated hollow housing 12 having a vertically extending longitudinal axis 14.
  • the housing 12 includes vertically extending and substantially coaxial upper and lower portions 16 and 18.
  • the upper portion 16 of the housing includes a forward compartment 20.
  • the compartment 20 contains and supports a forwardly facing alpha-numeric display 22 adjacent a top 24 of the housing.
  • the display is a LCD display of conventional design.
  • the forward compartment 20 contains and supports a plurality of columns (e.g.
  • vertically spaced upper control key 26a and lower control key 26b comprise a first column of control keys spaced to the left of the longitudinal axis 14 of the housing 12.
  • vertically spaced upper control key 28a and lower control key 28b comprise a second column of control keys to the right of the longitudinal axis 14 a distance substantially equal to the spacing of the control keys 26a,26b from the axis.
  • a trigger switch 30 is supported in the compartment 20 to the left of the axis 14 below the column of control keys 26a,26b while a trigger switch 32 is supported in the compartment 20 to the right of the axis 14 below the second column of control keys 28a,28b.
  • the right side of the trigger switch 30 and the left side of the trigger switch 32 lie substantially on a vertical plane including the longitudinal axis 14.
  • the display 22, the columns of control keys 26a,26b and 28a, 28b and the trigger switches 30 and 32 are bilaterally symmetrical relative to the longitudinal axis 14 of the housing 12 and as will be described hereinafter in close proximity to a pipette user's thumb while the user is gripping the pipette 10 in his right or left hand and viewing the display 22.
  • the upper portion 16 of the housing 12 includes a rear compartment 34.
  • the rear compartment 34 contains and supports a replaceable battery 36 for powering a microprocessor 38 and a stepper motor 40 included in a linear actuator 41 supported within the housing 12.
  • the lower portion 18 of the housing 12 comprises a vertically elongated handle 42 coaxial with the longitudinal axis 14 of the housing.
  • the handle 42 comprises contiguous bilaterally symmetrical and vertically extending forward and rear portions 44 and 46 for hand gripping by a user of the pipette 10.
  • the forward portion 44 of the handle 42 extends forward of the upper portion 16 of the housing 12. It also extends vertically downward to a lower end 48 of the housing 12 to internally contain and shield an upper portion of a pipette tip ejector 50 having a thumb actuated push button 52 located at a top 54 of the forward portion.
  • the pipette tip ejector 50 includes a vertically moveable tip ejector arm 56 extending below the housing 12 and vertically along a pipette tip mounting shaft 58 to encircle a shaft adjacent a lower end 59 thereof.
  • the pipette tip ejector 50 may be of conventional design such as included in the well known PIPETMAN pipette or may take the form illustrated and described in United States patent 5,614,153 issued March 25, 1997 , assigned to the assignee of the present invention. As described fully in the patent and as is well known with respect to the PIPETMAN pipette, it is a function of the pipette tip ejector 50 to eject a pipette tip, such as tip 60, from the mounting shaft 58 in response to a downward thumb force exerted by user on the push button 52.
  • the rear portion 46 of the handle 42 extends rearward from the forward portion 44 and includes a hook 62 extending rearward from a back 64 of an upper end 66 of the handle.
  • the hook preferably has a downwardly curved lower surface 68 for engaging an upper side of an index or middle finger of the pipette user while the user is gripping the handle in either his or her right or left hand. This leaves the thumb of the user free to actuate any of the bilaterally symmetrical and closely spaced control keys (26a,26b;28a,28b), trigger switches (30,32) and push button (52) in any sequence desired while clearly viewing the alpha-numeric display 22 as it responds to the actuation of the control keys and trigger switches.
  • the hook 62, forward and rear portions of the handle 42 and the pipette tip ejector 50 including the push button 52 and ejector arm 54 are all bilaterally symmetrical relative to the longitudinal axis 14 of the housing.
  • an uppermost portion 70 of the lower surface of the hook 62 lies in substantially the same horizontal plane as a top 72 of the push button 52. This further enhances the positioning of the user's hand in gripping the handle 42 such that freedom of movement is afforded the user's thumb to actuate the various closely spaced control keys and trigger switches as well as the push button when it is desired to eject a pipette tip from the mounting shaft of the pipette.
  • control key 26a within the left side column preferably comprises a pipette mode of operation control key while the control key 26b in the same column is designed to reset or modify operation of the pipette all as described hereinafter.
  • control keys 28a and 28b control the numeric value displayed by the display 22 as also described in detail hereinafter.
  • actuation of the control key 28a may increase the volume setting or speed of operation setting for the pipette 10 as indicated on the display 22.
  • actuation of the control key 28b may decrease the volume setting or speed of operation setting for the pipette 10 as indicated on the display 22.
  • a first user pressed one of the trigger switches 30,32 may comprise an aspiration actuation or pick up trigger switch while the other one of the trigger switches may comprise a dispense actuation trigger switch.
  • actuation of either trigger switch 30 or 32 may trigger the next programmed step in the user selected mode of operation of the pipette.
  • the internal structure of the pipette provides a pipette having a center of gravity within the handle 42.
  • This provides a balanced pipette which is neither top nor bottom heavy and is free of undesired tipping when the user releases his or her grip on the handle and depends upon the hook 42 for support of the pipette.
  • Such balanced structure is represented most clearly in Fig. 2 which illustrates in cross section the internal structure of the electronic pipette.
  • the display 22 is secured by conventional means such as a retaining plate directly behind and within an upper window 74 in a bezel 76 comprising a front face of the upper portion 16 of the pipette housing 12.
  • the display is electrically connected to a printed circuit board 78 mounted vertically within the upper portion of the housing 12 to define the forward compartment 20 for containing the display 22, the control keys (26a,b;28a,b) and the trigger switches 30 and 32 as illustrated.
  • the control keys (26a,b;28a,b) are of conventional design and are each supported by a horizontal tube 80 within an opening 82 in a window 84 in the bezel 76 directly below the upper window 74 containing the display 22.
  • the tubes 80 are moveable axially such that the user's thumb in pressing on a forward exposed end of a tube will move a rear end of the tube and a conductive element carried thereby against the printed circuit board 78 to actuate the microprocessor 38 housed on the printed circuit board 78 to (i) change or reset the mode of operation of the pipette or (ii) change the volumes of liquid to be handled by and/or the speed of operation of the pipette according to the user selected modes of operation and (iii) change the corresponding alpha-numeric displays on the display 22.
  • volumetric settings and speed of aspiration and dispensing indications displayed by the display 22 are controlled by the keys 28a and 28b and are reflected in modifications of the operation of the pipette in the various modes selected by actuation of the control key 26a, the control key 26b being a "reset" key.
  • the trigger switches 30,32 on the other hand are in circuit with the microprocessor and as described in the concurrently filed patent application are welded or otherwise connected to the bezel 76 such that a thumb actuation of one of the switches will actuate operation of the pipette, such as aspiration, while thumb actuation of the other of the trigger switches 30,32 will actuate a different operation of the pipette such as a dispensing of a liquid by the pipette.
  • the battery 36 is contained in the rear compartment 34 between the printed circuit board 78 and a removable door 85 included in the upper portion 16 of the housing.
  • the battery 36 powers the microprocessor 38 and the motor 40 by electrical connections through a power jack connected to the printed circuit board 78.
  • the motor 40 is located in the handle 42 of the pipette 10 below the printed circuit board 78 and is vertically secured by a support rib 86 on a backbone support 88 within the housing.
  • the motor 40 may be of conventional design and preferably is a stepper motor powered by the battery 36 and controlled by the microprocessor 38 in a manner described in detail hereinafter.
  • an output shaft 89 extends vertically from the stepper motor 40 and is connected in a conventional manner to a piston 90 such that rotation of a rotor within the motor produces axial movement of the output shaft 89 and corresponding axial movement of the piston 90 within the pipette tip mounting shaft 56.
  • the pipette tip mounting shaft 58 is secured by a threaded nut 91 to a threaded collar 92 extending axially from a lower end of the handle 42.
  • the piston 90 passes through a piston seal 93 which is secured in place around the piston by a spring loaded seal retainer 94 (the spring being removed for clarity of illustration).
  • the return spring in the pipette tip ejector 50 shown in Fig. 2 is also removed for clarity of illustration.
  • the return spring extends around a rod 96 between the push button 52 and ejector arm 54 secured at opposite ends of the rod. Downward movement of the push button 52 is opposed by the return spring and upon a release of the push button, the return spring returns the push button and the rod 96 to their uppermost position.
  • axial motion of the output shaft 89 of the motor 40 produces controlled axial movement of the piston 90 in the pipette tip mounting shaft 56 to draw or dispense liquid into or from a pipette tip 60 secured to a lower end of the shaft.
  • the user of the pipette grips the handle 42 in his or her right or left hand with his or her index or middle finger under the hook 62. This leaves the user's thumb free to operate the push button 52, the trigger switches 30,32 and/or control keys 26a,b or 28a,b in any sequence he or she desires while clearly viewing the display 22.
  • the trigger switches and the control keys being bilaterally symmetrical relative to the longitudinal axis 14 of the pipette are easily actuated by the user's thumb without the exertion of forces which would lead to stress or strain of the user's thumb, hand or forearm. This allows the electronic pipette of the present invention to be operated in laboratories by technicians for long periods of time without resulting in fatigue or undesired strain on the thumb or hand of the user.
  • the electronic control circuit for the pipette of the present invention is depicted generally by the number 100 and basically comprises the microprocessor 38 ( Fig.3D ) with internal circuitry 102 and external support circuitry including the wall power supply (external power source) circuitry 104 ( Fig. 3A ), battery power management and recharge circuitry 106 ( Figs. 3A , 3B and 3D ) external reset circuitry 108 ( Fig. 3C ), EEPROM memory circuitry 110 ( Fig. 3B ), reference voltage circuitry 112 ( Fig.
  • control circuitry 110 derives power from the battery 36 or an external power source 37 to power the microprocessor 38 which in turn controls operation of the display 22 and stepper motor 40 included in the linear actuator 41.
  • control is in response to user actuation of the control key 26a, 26b; 28a, 28b (indicated in Fig. 3A as "Function Switches SW1, SW2, SW3 and SW4 respectively) and trigger switches 30 and 32 (indicated as SW5 and SW6 respectively in Fig. 3B ), the function switches and trigger switches defining a keyboard 120 for the pipette 10 as subsequently described.
  • Such microprocessor control of the display 22 and stepper motor 40 is also based upon tables of data programmed into and stored in memory within the microprocessor 38 such as the data depicted in Figs. 4b-1,4b-2 , 5 , 6 , 7a-7f , 8 and 19 and/or tables of data programmed into and stored in the EEPROM memory circuitry 116 depicted in Fig. 3D such as the data depicted in Figs. 9 and 9a-9f .
  • the operation of the microprocessor 38 in various pipette modes of operation is also programmed by software routines and subroutines depicted in Figs. 10A-16B .
  • the stepper motor 40 includes the current receiving windings A and B depicted in Figs. 3C and 3E respectively for receiving drive signals from the microprocessor 38 and the motor drive circuitry 118 for electromagnetically driving a rotor of the motor to impart the previously described lengthwise movements to a plunger comprising the piston 90 in the cylinder 92 ( Fig. 2 ) to aspirate and dispense fluid into and from the pipette tip 60 ( Fig. 1 ).
  • a plunger comprising the piston 90 in the cylinder 92 ( Fig. 2 ) to aspirate and dispense fluid into and from the pipette tip 60 ( Fig. 1 ).
  • the microprocessor 38 is programmed to generate the drive signals for the stepper motor which are pulse width modulated (PWM) signals having duty cycles corresponding to different microstep positions for the stepper motor derived by the microprocessor from a first table of data stored in the internal memory included in the microprocessor and having a repetition pattern derived by the microprocessor from a second table of data stored in the memory to determine the speed of motor movement.
  • PWM pulse width modulated
  • the microprocessor 38 is further programmed so that the PWM drive signals have phases which do not overlap whereby there is no overlap of the PWM drive signals applied to the current receiving windings A and B of the stepper motor 40.
  • the microprocessor 38 may comprise a single chip microcontroller or microprocessor, such as the uPD753036 4 Bit Single Chip Microcontroller manufactured by NEC. Electronics Inc., Santa Clara, CA designated as U1 in Fig. 3D .
  • the processor can operate from voltages as low as 1.8 V and as high as 5.5V and may be characterized by an internal ROM or PROM of 16, 384 by 8 bits, an internal RAM of 768 by 4 bits, a standby current of less than 100 ⁇ A and an operating current at 6.00Mhz of less than 4.0 ma. Also the microprocessor has a large number of Input/Output pins which are arranged into groups called ports.
  • the microprocessor 38 is equipped with an internal reset circuit.
  • the external reset circuit 108 Fig. 3C
  • a reset sequence is started. This reset sequence triggers a delay. At 6.00 MHz the delay is 21.8 msec. This delay begins when the external reset line is released and is brought up to Vcc.
  • the microprocessor 38 also has two conventional oscillator circuits 120 and 122 termed “Main System Clock” and "Subsystem Clock".
  • the "Main System Clock” 120 is a fast oscillator circuit which operates in the megahertz frequency range.
  • the oscillator 120 can be stopped under microprocessor control to conserve power. Upon power-up or when the main clock is restarted after it has been stopped by the processor, there is a delay of 5.46 msec for the oscillator 120 before the frequency is guaranteed to be stable and the processor begins to actually execute instructions. Instruction execution times are dependent on the division ratio chosen by the program for the microprocessor, and can range from 0.67 ⁇ sec to 10.7 ⁇ sec.
  • Subsystem Clock 122 is a slow speed clock intended to be used for power conservation and time keeping purposes.
  • the crystal for this clock is 32,768 Hz. This clock is always active but uses very little current ( 4 ⁇ A).
  • Ports 6 and 7 contain software controllable pull-up resistors which are used to self-bias the circuits for the control keys and trigger switches 26a, b; 28a, b; 30 and 32 (SW1-SW6). Activation of which shorts the associated microprocessor input to ground.
  • pins 60 and 61 of Port 6 power the voltage reference as hereinafter described.
  • Port 5 is an open drain output which is able to withstand voltages up to 13 V. This is helpful in dealing with the presence of a voltage which are greater than Vcc and as will be described hereinafter greatly simplifies controlling a P-channel MOSFET switch in a conventional Dual Complementary MOSFET designated as U7 which regulates the battery charging power.
  • Port S (S12-S31) provides multiple drive levels for LCD segments of the display 22.
  • Port AN (AN0-AN7) is an analog input to an internal Analog to Digital (A to D) converter included in the microprocessor.
  • the A to D converter preferably is an 8 bit successive approximation converter equipped with an internal sample and hold circuit. At 6.00Mhz each conversion will take at least 28 ⁇ sec. Conversions are made with respect to a reference voltage appearing on port AVref. This reference voltage is supplied by a low-dropout micropower 3-terminal voltage reference fixed at 2.5 Volts and designated as U2.
  • U2 may be the MAX 6125 available from Maxim Integrated Products.
  • the internal A to D converter serves two functions, measuring the Vcc Node voltage and measuring the Wall Node voltage ( Fig. 3A ). In both cases the voltage input to the internal A to D converter is reduced to 0.41 times the actual value by the action of the voltage dividers formed by R3 - R5 and R4 - R6 in the external A to D circuitry 114. At a clock frequency of 6.00 MHz a conversion will take 28 ⁇ sec. Because the input to the internal A to D converter is sampled and held, the signal does not have to be stable for the entire conversion period. However, the AVref input must be stable for the entire conversion. C8 decouple spikes generated by the display 22 the LCD bias circuitry 116.
  • SPI Serial
  • P00-P03 Serial EEPROM memory
  • U8 Serial EEPROM memory
  • U8 Serial EEPROM memory
  • It can also serve as a communications port to the microcontroller 38 if the "DO Pad”, “DI PAD”, and “CLK PAD” inputs on the electronic pipette printed circuit board are utilized.
  • This serial link provides high speed bi-directional communication to and from the processor.
  • the LCD (S12-S31 and COMO-COM3) port of the microprocessor 38 is a semi-autonomous peripheral circuit which transfers segment data stored in memory to the LCD segments of the display 22. It automatically outputs the multiple voltages necessary to control a multiplexed display. There are 20 segment lines and 4 common lines available. Through multiplexing, the four common lines (COM0-COM3) are able to control up to 80 individual LCD segments. All of the actual multiplexing circuitry is contained in the microprocessor 38. To activate an LCD segment on a display, a bit is written in memory. After choosing an operating mode, the microprocessor handles all of the actual display functions in a conventional manner.
  • Bias voltages for the LCD display are input to a VLC port (VLC0-VLC2) by dividing down the 2.5 reference voltage which is used for the internal A to D converter.
  • the Voltage Reference U2 used for the internal A to D converter Vref, is also used as the source of the bias voltage for the LCD display.
  • VLC 0 receives the full 2.50 volt reference signal. This level is further divided down by R11 and R10 to provide a second voltage level, 1.25 V, for VLC1 and VLC2.
  • the display 22 preferably is a non-backlit, liquid crystal type of display including a total of 57 annunciators, or individually switchable segments.
  • the annunciators describe the state of the unit at any given time as follows:
  • Reset to the microcontroller 38 is controlled by the reset circuitry 108 illustrated in Fig. 3C and may comprise a MAX821RUS (U9) available from Maxim Integrated Products.
  • the reset circuitry 108 illustrated in Fig. 3C may comprise a MAX821RUS (U9) available from Maxim Integrated Products.
  • the circuit holds reset low (to ground) for 100 msec after power has reached a 2.63 V threshold voltage. It will also take reset low (to ground) if the power dips below 2.63 V for a given length of time. The time required to initiate reset depends on both the amplitude of the dip below the 2.63 V level, and on how long it stays below that level. Supply current is 2.5 ⁇ A. Reset is guaranteed to be held low for voltages as low as 1.0V.
  • the EEPROM memory designated as U8 and illustrated in Fig. 3B is a non-volatile electrically erasable, programmable memory such as 93LC56ASN. It stores 256 words of 8 bits each, has self timed write and erase cycles and can operate down to 2.0 V. Further, it can undergo 1,000,000 erase - write cycles. Current during operation is 1 Ma while current in standby is 5 pA.
  • Data is transferred to and from the EEPROM memory 110 via the 3 wire SPI serial link.
  • a CS pin is provided which is active HIGH.
  • U8 is not powered. This is accomplished by taking the GND terminal, pin Vss, to the Vcc Node voltage.
  • the U7 N channel MOSFET is not enabled, port bit P81 of the microprocessor being low. This action denies a power return path for U8.
  • lines P03, P02 and P01 of the SPI port must also be held HIGH in order to bring all of the lines of U8 to the same voltage level.
  • Port bit P80 should also be held high during normal operation. This can be accomplished by one of three methods. The most preferable is to put the line in a tristate (floating) condition and let R1 of the EEPROM circuitry 110 pull the line up to the Vcc node voltage. Alternatively, the port bit P80 can be made an input and be passively pulled up by the actions of a software enabled internal pull-up resistor. Or finally, the line P80 can be actively driven to the high state, although this is the least desirable of the three options.
  • port bit P81 When it becomes necessary to read or write the EEPROM, port bit P81 is brought high. This action turns on the N - Channel MOSFET in U7 and provides a path to GND for the Vss pin on U8. If P80 is in a tristate condition, then this action will also pull the CS line low through the action of R1. If P80 is actively driven then it should be set to the low state immediately after or immediately before the Vss pin is taken to GND. If P80 is passively pulled up by the action of the internal pull-up resistor, then it should immediately be made an output, and driven low.
  • Pin CS of U8 is an active high input and as long as it is high, the chip is enabled. Once the chip U8 is powered up and in a stable idle state the CS, Data In, Data Out, and Clock lines can be used in a normal manner to read from and write to the chip. These lines follow the industry standard SPI protocol for data transmission.
  • the ideal sequence for powering down U8 is to put P80 in a tristate condition. It should be held in a low state by the action of R1. P02 and P01 should be set high. Lastly, P81 should be taken actively low. As the drain of the N-Channel MOSFET in U7 rises in voltage, R1 should pull the CS line up with the rest of the lines on the chip. In this way, the CS line never rises faster than the other lines and the EEPROM will therefore never be enabled.
  • the motor drive consists of four MMDF2C01HD Dual Complementary MOSFETs (U3-U6) in SOIC 8 pin packages. Each package contains both a P channel MOSFET and an N channel MOSFET. Each FET can handle 2 Amps at up to 12 V. Power dissipation for the package is 2 Watts.
  • the drain to source resistance (Rds) for the N Channel is 0.045 ohms and for the P channel it is 0.18 ohms.
  • MOSFETs are arranged in a classic H-Bridge configuration. Each FET is individually controlled by the microprocessor.
  • each P channel FET is pulled up to the Vcc node voltage by a 51K ⁇ pull-up resistor.
  • U3-U6 form two full H bridge drives for driving the two windings A and B of the stepper motor as shown in Figs. 3C and 3E .
  • the circuit is a simple, classical circuit with no current sensing or feedback from the motor. Such a simple circuit is usually associated with normal full step or half step drive to a stepper motor. It is not associated with micro stepping because it lacks the traditional motor winding current sense with feedback to a comparitor and associated circuitry for forming a pulse width modulation (PWM) drive to force the motor current to track control signals from a microstep controller.
  • PWM pulse width modulation
  • the frequency or period of the PWM signal is asynchronous from the motor stepping rate from the microstep controller.
  • Microstep control of a stepper motor is desirable over simple full or half stepping because it gives finer control of the motor positioning as well as allows the motor to run more efficiently at high speeds (i.e.; more power output from the motor for a given power input to the motor.) Both of these characteristics are important in a battery powered electronic pipette.
  • Microstep control of the motor is achieved with the simple circuit shown in Fig. 3 if the PWM period is synchronized with the stepping rate. This is accomplished by having the microcontroller 38 generate the PWM signals to the two H bridges, and have each microstep correspond to an integer number of PWM periods. At the highest motor speed each PWM period would correspond to a new microstep.
  • Fig. 4 illustrates a timing chart for the H bridge gate drive over a 17 microstep period of time running at the maximum speed (i.e.; a 1:1 correspondence between PWM period and microstep.) Each PWM period has a different duty cycle corresponding to the desired drive current to a motor winding for a given microstep.
  • the microprocessor 38 divides a full step into 16 microsteps. Therefore, a full 360 degrees of electrical rotation (i.e.; 4 full steps) contains 64 microsteps.
  • Fig. 4 shows the gate drive signals going from an electrical position of 45 degrees to 135 degrees at full speed.
  • the duty cycles to each motor winding correspond to a sin and cosine function that are advanced in 5.625 degree increments.
  • Period 1 corresponds to 45 degrees of electrical rotation where both motor windings receive an equal current.
  • Winding A, cosine function is driven from Port 2 (P20 through P23) and winding B, sin function, is driven from Port 3 (P30 through P33.) Both Ports have an equal duty cycle at 45 and 135 degrees.
  • the seventeenth period corresponds to an electrical position of 135 degrees.
  • the PWM period is equal to approximately 188 microseconds which corresponds to a PWM drive frequency of approximately 5.32 kHz to each motor winding.
  • the stepping rate is 332 full steps per second (5.32 kHz divided by 16 periods per full step.)
  • the P channel FET's are usually keep on by keeping the gate drive low (P21, P23, P31, and P33.)
  • the only time a P channel FET is turned off (gate goes high) is when the corresponding N channel FET is turned on (gate is driven high by P20, P22, P30, and P32.)
  • the FET's used are low threshold, high speed FET's so a small guard band is added to each switching edge of the P channel FET's to guarantee that they are off before a corresponding N channel FET is turned on. This avoids current spikes from flowing through a complimentary FET pair during switching transitions.
  • the guard bands can easily be seen in Fig. 4a which illustrates only the first period of Fig. 4 .
  • Winding B is driven by Port 3 in a similar fashion to winding A except that the "on" portion is at the end of the first period rather than at the beginning as would be expected from prior art PWM circuits.
  • the advantage of driving the two windings at different ends of the PWM period is that it is possible to avoid having both windings on at the same time provided that the peak PWM duty cycle of the sin function doesn't exceed approximately 70% so that at the 45 degree point the sine and cosine PWM duty cycles do not exceed 50% each. Allowing for the P channel guard bands and microcontroller processing times a practical peak duty cycle is closer to 60% (rather than 70%) resulting in a duty cycle of approximately 42% at the 45 degree points for each winding.
  • a PWM peak duty cycle less than 60% guarantees that both winding are never on at the same time.
  • the advantage of not having both windings on at the same time is that it significantly reduces current variations (ripple) from the supply thereby reducing supply voltage ripple.
  • the reduced current ripple allows for the use of a smaller value bypass capacitor on the supply rail (C1 and C6) to keep the voltage ripple within acceptable limits. Also, an even more serious restraint is caused by the fact that the wall power supply 37 (Fig.
  • the motor can be run at slower speeds by having a PWM period repeat the same duty cycle that is by microcontroller control of the duty cycle of successive drive pulses. If every microstep duty cycle were to be used for two PWM periods then the motor speed would be one-half of the maximum speed (i.e.; a 2:1 correspondence between PWM period and microstep.) If every step were to be used for three PWM periods (3:1 ratio) then the motor speed would be one-third the full speed and so on. For finer speed control not every microstep needs to be repeated the same amount.
  • an acceleration table similar to that shown in Figs. 7a-7b , is used that defines the pattern in which the microstep duty cycles are repeated in a PWM period such that the speed asymptotically approaches the specified running speed.
  • Fig. 6 and Fig.8 are graphs which depict that data.
  • the acceleration ramp (which is also run in reverse to decelerate) defines and limits the acceleration.
  • the acceleration is reduced as the motor speed approaches its maximum speed by making successively finer speed changes.
  • a corresponding table of data is stored in the microprocessor to allow the microcontroller to provide such control over the operation of the stepper motor.
  • control key 26 comprises a "mode" control key in a keyboard for the pipette.
  • the "Mode” key toggles or rotates through three regular pipette modes of operation.
  • the software routine of the microprocessor 38 for the Mode key is depicted in Fig. 12 ("Mode Key Routine"). As illustrated, entry into the Mode Key Routine starts an internal timer within the microprocessor. The timer has a preset duration stored in the EEPROM memory 110.
  • the up, and down “arrow" keys 28a and 28b are used to edit or change any selected parameter such as volume or speed settings according to the microprocessor software routine depicted in Fig. 14 .
  • the fourth key 26b "Reset" has two primary functions depending whether the unit is at its Home position or not. If the pipette is not at Home (i.e.; is ready to dispense or has finished dispensing all of its aliquots in the Multi-Dispense mode) pressing the Reset key will cause the pipette to dispense, do a blow-out and return to Home position according to the microprocessor software routine depicted in Fig. 13 . When the device is at Home, ready for a pickup, the Reset key 26b is used to toggle or rotate through the various parameters that can be edited in the selected mode. For example; in the Multi-Dispense mode it is used to toggle between the number of aliquots and the dispense volume so that either one can be edited.
  • the pipette 10 comprises the motor 40 with current receiving windings A and B for electromagnetically driving a rotor to impart the lengthwise movement to the plunger 90 in the cylinder 92 and a control circuit 110 including the microprocessor 38 programmed to generate the drive signals for the motor.
  • the control circuit 110 comprises the display 22; the user actuateable control keys 26a, 26b, 28a, 28b electrically connected to the microprocessor for generating within the microprocessor pipette mode of operation, liquid pick up volume, liquid dispense, pipette speed of operation and pipette reset signals for controlling operation of the pipette and alpha-numeric user readable displays on the display; a memory having tables of data stored therein and accessible and useable by the microprocessor to control operations of the pipette; and at least one user actuateable switch 30, 32 for triggering pipette operations selected by user actuation of the control keys.
  • the microprocessor is further programmed to sequentially enter successive user selected modes of operation in response to successive user actuation of a first one of the control keys defining a "mode"-key and in each selected mode to control operation of the pipette so that
  • the microprocessor is further programmed so that in each selected mode successive user actuations of the option key causes the microprocessor to control the display to sequentially display successive operational options for the selected mode only, each controllable pursuant to (b) and (c) above.
  • the microprocessor 38 is preferably programmed so that the mode key functions as the option key to step between successive operational options in response to an initial sustained pressing of the mode key for a period of time longer than a momentary pressing of the mode key followed by successive momentary pressings of the mode key.
  • microprocessor 38 is preferably further programmed to control the display to exit the display of the operational options while remaining in the selected mode in response to user actuation of a fourth one of the control keys defining a "reset" key and or a subsequent sustained pressing of the mode key.
  • the microprocessor 38 is preferably further programmed so that the reset key forces a displayed parameter in the display to read zero in response to an initial sustained pressing of the reset key for a period of time longer than a momentary pressing of the reset key and is further programmed to enter a "blow out" operation in response to a momentary user actuation of the reset key to drive the plunger in the cylinder to blow fluid from the pipette tip.
  • the microprocessor 38 is preferably further programmed so that each successive momentary user actuation of the reset key causes the microprocessor to control the display 22 to sequentially display different one of a plurality of successive operational parameters for editing by user actuation of the up or down keys and is further programmed to count and to control the display to distinctly display to the pipette user different displays for successive cycles of operation of the pipette in the selected mode of pipette operation thereby enabling the user to determine the operating cycle of the pipette for any period of pipette operation.
  • one of the operational modes for the pipette 10 is a manual mode.
  • the pipette utilizes two user actuateable switches (30, 32) for triggering pipette operations selected by user actuation of the control keys.
  • the microprocessor 38 is further programmed to enter the manual mode of operation selected by user actuation of the mode key and in the manual mode to control operation of the pipette so that
  • one of the tables of data stored in the memory accessible by the microprocessor 38 comprises correction factors for a maximum pick up volume associated with the pipette tip for reducing liquid volume errors associated with the pick up and dispensing of liquids by the pipette and the correction factors are added to pick up and dispense movements of the motor to correct for the volume errors.
  • the microprocessor 38 is further programmed to count and to control the display to distinctly display to the pipette user different displays for successive cycles of operation of the pipette in the manual mode of pipette operation thereby enabling the user to determine the operating cycle of the pipette for any period of pipette operation.
  • the microprocessor 38 is further programmed to control operation of the pipette so that
  • the microprocessor38 is further programmed to control operation of the pipette so that
  • Pipet mode is depicted by the software flow diagram of Figs. 11A and 11B and is indicated by the lit "Pipet" annunciator on the display 22.
  • the up and down arrow keys 28a and 28b are used to change the volume.
  • the arrow keys are only active when the pipette is in its home position indicated by the "pickup" annunciator being on.
  • trigger 30 or 32 is pressed the pipette aspirates the indicated volume at a motor speed corresponding to the speed setting.
  • each pick up of a user selected volume of liquid by activation of a trigger switch (30, 32) adds offset steps to the motor movement to correct for fluid effects which would otherwise result in the aspirated volume being less than the selected volume.
  • Such errors are depicted by the lower curve in Fig. 9 while the correction factors for each selected volume are depicted by the upper curve in Fig.9 .
  • Figs. 9a-9f depict in chart format a table of such correction factors for the various user selected or "set" volumes for the pipette 10.
  • a table of such data is stored in the EEPROM memory U8 and is accessed by the microprocessor 38 to add pulses as microsteps to the train of pulses comprising the drive signal to the windings A and B of the motor 40. This results in the adding of offsets to the lengthwise movement of the plunger 90 in the cylinder to draw into the tip 60 the selected volumes of liquid.
  • the pipette dispenses its entire volume at a speed according to the speed setting, goes through the blowout stroke to bottom of blowout, pauses one second there, and returns to the home position.
  • the pipette will pause before entering the blowout stroke for a period of time determined by the speed setting (generally longer for slower speeds). If the trigger is depressed when the pipette reaches bottom of blow out the pipette stays at the bottom of blow out until the trigger is released.
  • the Options menu for the Pipet mode will be activated.
  • the first item displayed will be the last item displayed from the previous access of the Options menu (Speed is the default option after initialization.) Succeeding normal presses of the Mode key will toggle through the available options for the Pipet mode which are listed below:
  • Speed When Speed is selected the "Speed" annunciator will be lit and the Speed setting will be flashing in the first digit of the volume display.
  • the up/down arrows keys can be used to change the speed setting.
  • the speed setting is unique for each mode. The default setting that is selected upon initial power up is determined by what is programmed into the EEPROM U8; this typically would be the fastest speed available for the Pipet and Multi-Dispense modes and a medium speed for the Manual mode.
  • the selectable speeds will be numbered 1 through 10.
  • the mix volume (the volume aspirated and dispensed during a mix cycle) for the E3 is always the same as the set volume to be pipetted.
  • the mix speed will be the same motor speed as programmed in the speed set mode.
  • the microprocessor 38 software flow diagram for the manual mode of operation is depicted in Figs.10A and 10B .
  • the volume displayed is the default (full scale) volume unless a smaller volume (“pickup limit”) has been set. This determines the maximum volume of liquid that can be picked up.
  • the first trigger (30 or 32) pressed upon entering the Manual mode becomes the “up” trigger and the other becomes the “down” trigger by default.
  • Pressing the "up" trigger causes the display to stop displaying the maximum pick up limit and starts picking up liquid, slowly at first, then at a faster and faster rate.
  • the display indicates the amount of liquid picked up so far.
  • the maximum rate is controlled by the set speed selected by use of the Speed option as previously described according to the routines set forth in Figs. 13 and 14 .
  • the display continues to show the total liquid picked up from the home position. If the reset button is pressed for a long duration, the display is reset to zero and the display then will indicate the volume picked up, or dispensed (depending on which trigger is pressed next), after the display was reset . If the reset button is pressed for a normal duration the unit dispenses, goes through "blow-out", pauses at bottom of blow out, and returns to home position and the volume displayed reverts to the pickup limit that was last set.
  • the display While dispensing, the display decrements to indicate the amount of liquid in the tip (picked-up from home position) unless the display has been reset. This allows one to overshoot and then return to the desired amount.
  • the display If the display has been reset (by pressing the reset button for a long duration) the display afterwards indicates as a positive number the amount of liquid either picked up from that point, or as a negative number the amount dispensed from that point.
  • the center crossbar of the rightmost aliquot digit forms the "minus" symbol. As noted above, with any change in motor direction, the proper amount of offset steps are added for that volume range.
  • the microprocessor 38 software flow diagram for the Multiple Dispense Mode of pipette operation is depicted in Figs. 16A and F16B.
  • the dispense volume When toggling to this mode by activating the Mode key, the dispense volume is active and can be edited with the arrow keys 28a, 28b.
  • the dispense volume can be changed when the unit is at "Home" as well as while the unit is waiting to dispense.
  • the dispense volume is changed the number of aliquots is recalculated and displayed on the display 22 in the two small, dedicated digits adjacent to the "X" symbol.
  • the number of aliquots is calculated to be the largest it can be and still have a sufficiently large residual volume (i.e.; a full scale pickup).
  • the residual volume can be easily changed since it is stored in the EEPROM memory U8.
  • the number of aliquots is recalculated to represent the remaining aliquots in the tip (assuming the dispense volume remains unchanged for the remaining aliquots.)
  • the volume can be changed at any and all pause points while in the dispense phase (within the limits of the remaining volume left in the tip.)
  • the number of aliquots decrements by one so that the display always shows how many aliquots are remaining in the tip.
  • the user does not want to aspirate a full scale load in the tip then he can decrease the calculated number of aliquots while still at "Home" before pickup.
  • the user presses the "Reset” key which activates the number of aliquots field for editing.
  • the number of aliquots digits and the "X" symbol flash indicating that the arrow keys will change the number of aliquots.
  • the number of aliquots field remains activated until either the "Reset” key is pressed again, or a trigger is pressed, in either case the dispense volume becomes activated (but, if the trigger was pushed liquid is also aspirated).
  • the user activates one of the trigger switches (30, 32). While the presettings are stored, the microprocessor 38 controls the motor 40 to pick up into the tip 60 a volume of liquid in excess of volume equal to the aliquot volume times the number of aliquots (selected total volume). The motor reverses to dispense some of the liquid leaving in the tip the correct selected total volume and a residual volume of liquid.
  • the arrow keys can be activated to modify the aliquot volume if so desired accompanied by any necessary microprocessor recalculation of the number of aliquots.
  • Activation of the Reset key 26b will then cause the pipette to dispense all liquid in the tip overriding the multi-mode operation of the pipette.
  • the pipette In response to activation of one of the trigger switches, however, the pipette enters the microprocessor controlled dispense routine depicted in Fig. 16B with the microprocessor introducing offset corrections according to data stored in the EEPROM memory U8 such as correction data similar to the correction curve and tables of Figs. 9 and 9a-9f as described for the Pipet Mode of pipette operations. This operation is repeated for each subsequent activation of a trigger switch until all aliquots have been dispensed.
  • the only option on the Option menu is the speed setting which operates in the manner previously described.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Secondary Cells (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Claims (29)

  1. Elektronische Pipette (10), umfassend:
    einen Linearaktuator (41) zum Antrieb eines Plungers (90) in Längsrichtung in einem Zylinder (59), um Fluid in eine Pipettenspitze (60) anzusaugen und Fluid von einer Pipettenspitze (60) abzugeben, wobei der Linearaktuator einen Motor (40) mit Stromaufnahmewindungen zum elektromagnetischen Antrieb eines Rotors umfasst, um die Längsbewegung auf den Plunger aufzubringen; und
    eine Steuerschaltung (100) für die Pipette mit einem anwendersteuerbaren Mikroprozessor (38), der derart programmiert ist, um Antriebssignale für den Motor zu erzeugen, wobei die Steuerschaltung ferner umfasst:
    eine Anzeige (22), die mit dem Mikroprozessor elektrisch verbunden ist,
    anwenderbetätigbare Steuertasten (26a, 26b; 28a, 28b), die mit dem Mikroprozessor (38) elektrisch verbunden sind, um in dem Mikroprozessor Pipettenbetriebsart-, Flüssigkeitsaufnahmevolumen-, Flüssigkeitsabgabe-, Pipettenbetriebsgeschwindigkeits- und Pipettenrücksetzsignale zur Steuerung des Betriebs der Pipette (10) sowie alphanumerische, anwenderlesbare Anzeigen an der Anzeige (22) zu erzeugen,
    einen Speicher (116) mit darin gespeicherten Datentabellen, auf die der Mikroprozessor zugreifen kann und die von dem Mikroprozessor verwendbar sind, um Betriebsabläufe der Pipette zu steuern, und
    zumindest einen anwenderbetätigbaren Auslöserschalter (30, 32) zum Auslösen von Pipettenbetriebsabläufen, die durch Anwenderbetätigung der Steuertasten gewählt sind,
    wobei der Mikroprozessor ferner derart programmiert ist, um zu bewirken, dass die Pipette der Reihe nach in aufeinanderfolgende, anwendergewählte Betriebsarten in Ansprechen auf eine aufeinanderfolgende Anwenderbetätigung nur einer ersten der Steuertasten, die eine "Betriebsart"-Taste definiert, eintritt, und um in jeder gewählten Betriebsart einen Betrieb der Pipette so zu steuern, dass
    (a) eine Betätigung einer Optionstaste, die entweder durch eine zweite unterscheidbare Betätigung der Betriebsartentaste oder eine Betätigung einer anderen der Steuertasten definiert ist, bewirkt, dass der Mikroprozessor die Anzeige steuert, um zumindest eine erste Betriebsoption nur für die gewählte Betriebsart anzuzeigen, wobei anschließende Betätigungen der Optionstaste bewirken, dass die Anzeige irgendeine andere Betriebsoption nur für die gewählte Betriebsart der Reihe nach anzeigt,
    (b) eine Betätigung einer zweiten der Steuertasten, die eine "Aufwärts"-Taste definiert, bewirkt, dass der Mikroprozessor die Anzeige steuert, um eine Aktivierung oder Deaktivierung der Betriebsoption, wie durch die Anzeige (22) angezeigt ist, oder einen zunehmenden Wert für eine numerische Anzeige im Zusammenhang mit der Betriebsoption in Ansprechen auf Daten von den in dem Speicher gespeicherten Tabellen anzugeben, und
    (c) eine Betätigung einer dritten der Steuertasten, die eine "Abwärts"-Taste definiert, bewirkt, dass der Mikroprozessor die Anzeige steuert, um eine Aktivierung oder Deaktivierung der Betriebsoption, wie durch die Anzeige angezeigt ist, oder einen abnehmenden Wert für die numerische Anzeige im Zusammenhang mit der Betriebsoption in Ansprechen auf Daten von den in dem Speicher gespeicherten Tabellen anzugeben, und
    (d) anschließende Anwenderbetätigung des Auslöseschalters den Motor betätigt, um den Plunger in der durch die Betriebsoptionen gemäß (b) und (c) oben erweiterten, gewählten Betriebsart und in einer Aufwärtsrichtung anzutreiben, um Flüssigkeit in die Spitze aufzunehmen, und dann in einer Abwärtsrichtung anzutreiben, um Flüssigkeit von der Pipettenspitze abzugeben.
  2. Pipette nach Anspruch 1,
    wobei der Mikroprozessor (38) ferner derart programmiert ist, dass in jeder gewählten Betriebsart aufeinanderfolgender Anwenderbetätigungen der Optionstaste bewirken, dass der Mikroprozessor die Anzeige steuert, um aufeinanderfolgende Betriebsoptionen nur für die gewählte Betriebsart der Reihe nach anzuzeigen, von denen jede gemäß (b) und (c) von Anspruch 1 steuerbar ist.
  3. Pipette nach Anspruch 1,
    wobei der Mikroprozessor (38) derart programmiert ist, dass die Betriebsarttaste als die Optionstaste funktioniert, um zwischen aufeinanderfolgenden Betriebsoptionen zu wechseln, und zwar in Ansprechen auf ein anfängliches fortgesetztes Drücken der Betriebsarttaste für eine Zeitdauer, die länger als ein kurzzeitiges Drücken der Betriebsarttaste ist, gefolgt durch nachfolgende kurzzeitige Drückvorgänge der Betriebsarttaste.
  4. Pipette nach Anspruch 1,
    wobei der Mikroprozessor (38) ferner derart programmiert ist, um die Anzeige zu steuern, um die Anzeige (22) der Betriebsoptionen zu verlassen, während man in der gewählten Betriebsart bleibt, und zwar in Ansprechen auf eine Anwenderbetätigung einer vierten der Steuertasten, die eine "Rücksetz"-Taste definiert, und/oder ein anschließendes fortgesetztes Drücken der Betriebsarttaste.
  5. Pipette nach Anspruch 1,
    wobei der Mikroprozessor (38) so programmiert ist, dass eine vierte der anwenderbetätigbaren Steuertasten eine "Rücksetz"-Taste definiert.
  6. Pipette nach Anspruch 5,
    wobei der Mikroprozessor (38) ferner so programmiert ist, dass die Rücksetztaste einen angezeigten Parameter in der Anzeige (22) auf Null setzt, und zwar in Ansprechen auf ein anfängliches fortgesetztes Drücken der Rücksetz-Taste für eine Zeitdauer, die länger als ein kurzzeitiges Drücken der Rücksetz-Taste ist.
  7. Pipette nach Anspruch 5,
    wobei der Mikroprozessor (38) ferner programmiert ist, um in einen "Ausblas"-Betrieb einzutreten, und zwar in Ansprechen auf eine kurzzeitige Anwenderbetätigung der Rücksetz-Taste, um den Plunger (90) in dem Zylinder zum Ausblasen von Fluid aus der Pipettenspitze (60) anzutreiben.
  8. Pipette nach Anspruch 5,
    wobei der Mikroprozessor (38) ferner so programmiert ist, dass jede aufeinanderfolgende kurzzeitige Anwenderbetätigung der Rücksetz-Taste bewirkt, dass der Mikroprozessor die Anzeige (22) steuert, um der Reihe nach verschiedene von mehreren aufeinanderfolgenden Betriebsparametern zum Editieren durch Anwenderbetätigung der Aufwärts- oder Abwärtstasten anzuzeigen.
  9. Pipette nach Anspruch 1,
    wobei der Mikroprozessor (38) ferner so programmiert ist, um die Anzeige (22) zu zählen und zu steuern, um dem Pipettenanwender verschiedene Anzeigen für aufeinanderfolgende Betriebszyklen der Pipette in der gewählten Betriebsart des Pipettenbetriebes deutlich anzuzeigen, wodurch der Anwender in die Lage versetzt wird, den Betriebszyklus der Pipette für eine beliebige Periode des Pipettenbetriebs zu bestimmen.
  10. Pipette nach Anspruch 1 mit zwei anwenderbetätigbaren Schaltern (30, 32) zur Auslösung von Pipettenbetriebsabläufen, die durch Anwenderbetätigung der Steuertasten (26a, 26b; 28a, 28b) gewählt sind,
    wobei der Mikroprozessor (38) ferner so programmiert ist, dass er in eine manuelle Betriebsart eintritt, die durch Anwenderbetätigung der Betriebsarttaste gewählt ist, und um in der manuellen Betriebsart:
    (i) einen Betrieb der Pipette so zu steuern, dass
    (a) ein erster der Auslöseschalter, der durch den Anwender betätigt ist, eine "Aufwärts"-Auslösebetätigung definiert, die zur Folge hat, dass der Mikroprozessor den Motor steuert, um den Plunger in einer Aufwärtsrichtung anzutreiben und Flüssigkeit in die Spitze aufzunehmen, und
    (b) ein zweiter der Auslöseschalter, der durch den Anwender betätigt ist, eine "Abwärts"-Auslösebetätigung definiert, die zur Folge hat, dass der Mikroprozessor den Motor steuert, um den Plunger in einer Abwärtsrichtung zum Abgeben von Flüssigkeit aus der Spitze anzutreiben, und
    (ii) die Anzeige (22) zu steuern, um das Volumen an Flüssigkeit in der Spitze anzugeben.
  11. Pipette nach Anspruch 10,
    wobei der Mikroprozessor (38) ferner in der manuellen Betriebsart programmiert ist, um
    (i) einen Betrieb der Pipette so zu steuern, dass in einer Ruheposition, in der sich der Plunger (90) an einer Stelle befindet, in der er bereit ist, um ein Abgeben oder Aufnehmen von Flüssigkeit zu beginnen, die Anzeige (22) das maximale Volumen anzeigt, das aufgenommen werden kann, und
    (a) eine Betätigung der "Aufwärts"-Taste bewirkt, dass der Mikroprozessor die Anzeige steuert, um einen zunehmenden Wert für ein gewähltes maximales, von der Spitze aufzunehmendes Flüssigkeitsvolumen anzugeben, wenn die "Aufwärts"-Taste von dem Anwender betätigt ist, und
    (b) eine Betätigung einer "Abwärts"-Taste bewirkt, dass der Mikroprozessor die Anzeige steuert, um einen abnehmenden Wert für das gewählte maximale, von der Spitze aufzunehmende Flüssigkeitsvolumen anzugeben.
  12. Pipette nach Anspruch 10,
    wobei der Mikroprozessor (38) ferner programmiert ist, um die Geschwindigkeit der Flüssigkeitsaufnahme und -abgabe zu erhöhen, wenn der Aufwärtsauslöser bzw. der Abwärtsauslöser von dem Anwender betätigt ist.
  13. Pipette nach Anspruch 10,
    wobei eine der Datentabellen, die in dem Speicher (116) gespeichert sind, Korrekturfaktoren für ein maximales Aufnahmevolumen im Zusammenhang mit der Pipettenspitze (60) zur Reduzierung von Flüssigkeitsvolumenfehlern im Zusammenhang mit dem Aufnehmen und Abgeben von Flüssigkeiten durch die Pipette umfasst, und wobei die Korrekturfaktoren zu Aufnahme- und Abgabebewegungen des Motors addiert werden, um die Volumenfehler zu korrigieren.
  14. Pipette nach Anspruch 10,
    wobei der Mikroprozessor (38) ferner programmiert ist, um die Anzeige (22) zu zählen und zu steuern, um dem Pipettenanwender verschiedene Anzeigen für aufeinanderfolgende Betriebszyklen der Pipette in der manuellen Betriebsart des Pipettenbetriebs deutlich anzuzeigen, wodurch der Anwender in die Lage versetzt wird, den Betriebszyklus der Pipette für eine beliebige Periode des Pipettenbetriebs zu bestimmen.
  15. Pipette nach Anspruch 10,
    wobei der Mikroprozessor (38) ferner programmiert ist, um den Motor so zu steuern, das er in ein "Ausblasen" eintritt, bei dem der Motor (40) den Plunger (90) über eine Ruheposition hinaus antreibt, um in der Spitze (60) verbleibende Flüssigkeit auszublasen, nachdem der Plunger die Ruheposition erreicht.
  16. Pipette nach Anspruch 15,
    wobei der Mikroprozessor (38) so programmiert ist, um in ein "Ausblasen" in Ansprechen auf eine Anwenderbetätigung einer der Steuertasten oder eine Mehrfachbetätigung des Abgabeauslösers einzutreten.
  17. Pipette nach Anspruch 16,
    wobei der Mikroprozessor (38) so programmiert ist, um in einen "Ausblas"-Betrieb in Ansprechen auf eine kurzzeitige Anwenderbetätigung einer vierten der Steuertasten, die eine "Rücksetz"-Taste definiert ist, einzutreten.
  18. Pipette nach Anspruch 17,
    wobei der Mikroprozessor (38) ferner so programmiert ist, dass die Rücksetztaste die Volumenanzeige (22) auf Null stellt, und zwar in Ansprechen auf ein anfängliches fortgesetztes Drücken der Rücksetztaste für eine Zeitdauer, die länger als ein kurzzeitiges Drücken der Betriebsart ist, wenn sich die Pipette nicht in ihrer Ruheposition befindet,
    wobei eine weitere Aufwärtsbewegung des Plungers (90) aus der Position, in der die Anzeige (22) auf Null gesetzt ist, die Volumenablesung erhöht, und eine weitere Abwärtsbewegung des Plungers von der Nullsetzposition eine Anzeige eines negativen Volumens bewirkt.
  19. Pipette nach Anspruch 1,
    mit mehreren anwenderbetätigbaren Auslöseschaltern (30, 31) zum Auslösen von Pipettenbetriebsabläufen, die durch Anwenderbetätigung der Steuertasten (26a, 26b; 28a, 28b) gewählt werden, wobei der Mikroprozessor (38) ferner programmiert ist, um in eine Pipettierbetriebsart einzutreten, die durch Anwenderbetätigung der Betriebsartentaste gewählt ist, und um in der Pipettierbetriebsart
    (i) einen Betrieb der Pipette so zu steuern, dass
    (a) eine Betätigung der Aufwärtstaste bewirkt, dass der Mikroprozessor die Anzeige so steuert, um einen zunehmenden Wert für ein gewähltes, von der Spitze aufzunehmendes Flüssigkeitsvolumen anzugeben, und
    (b) eine Betätigung der Abwärtstaste bewirkt, dass der Mikroprozessor die Anzeige steuert, um einen abnehmenden Wert für das gewählte, von der Spitze aufzunehmende Flüssigkeitsvolumen anzugeben, und
    (c) eine erste Anwenderbetätigung von einem der Auslöseschalter den Motor betätigt, um den Plunger in einer Aufwärtsrichtung anzutreiben und das gewählte Flüssigkeitsvolumen in die Spitze aufzunehmen, und
    (d) eine zweite Anwenderbetätigung von einem der Auslöseschalter den Motor betätigt, um den Plunger in einer Abwärtsrichtung anzutreiben, um das gewählte Flüssigkeitsvolumen von der Spitze abzugeben.
  20. Pipette nach Anspruch 19,
    wobei eine der Datentabellen, die in dem Speicher (114) gespeichert sind, Anweisungen zur Steuerung der Antriebssignale umfasst, die an den Linearaktuator (41) angelegt werden, um die Betriebsgeschwindigkeit des Motors (40) gemäß den Betriebsgeschwindigkeitseinstellungen, die durch Anwenderbetätigung der Steuertasten gewählt sind, zu steuern.
  21. Pipette nach Anspruch 19,
    wobei eine andere der Datentabellen, die in dem Speicher (116) gespeichert sind, Korrekturfaktoren für verschiedene der Flüssigkeitsaufnahmevolumeneinstellungen umfasst, die durch Anwenderbetätigung der Steuertasten gewählt sind, um Flüssigkeitsvolumenfehler im Zusammenhang mit dem Aufnehmen und Abgeben von Flüssigkeiten durch die Pipette zu steuern und zu beseitigen.
  22. Pipette nach Anspruch 19,
    wobei der Mikroprozessor (38) so programmiert ist, um die Anzeige zu zählen und zu steuern, um dem Pipettenanwender verschiedene Anzeigen für aufeinanderfolgende Betriebszyklen der Pipette in der Pipettierbetriebsart deutlich anzuzeigen, wodurch der Anwender in die Lage versetzt wird, den Betriebszyklus der Pipette für eine beliebige Periode des Pipettenbetriebs zu bestimmen.
  23. Pipette nach Anspruch 19,
    wobei der Mikroprozessor (38) ferner programmiert ist, um (i) ein zweites gewähltes Flüssigkeitsvolumen aufzunehmen, wenn der Plunger eine Ruheposition für den Plunger (90) erreicht, und in Ansprechen auf eine Anwenderbetätigung von einem der Auslöseschalter, wenn sich der Plunger der Ruheposition während dem Abgeben des gewählten Flüssigkeitsvolumens annähert, und (ii) das zweite gewählte Flüssigkeitsvolumen mit dem gewählten Flüssigkeitsvolumen zu mischen und abzugeben.
  24. Pipette nach Anspruch 23,
    wobei der Mikroprozessor (38) ferner derart programmiert ist, um (i) und (ii) so lange zu wiederholen, bis keiner der Auslöseschalter mehr aktiviert ist, wenn sich der Plunger der Ruheposition annähert, und um anschließend den Motor derart zu betreiben, dass der Plunger über die Ruheposition hinaus ausgefahren wird, um Flüssigkeit von der Spitze auszublasen.
  25. Pipette nach Anspruch 1,
    mit mehreren anwenderbetätigbaren Auslöseschaltern (30, 32) zum Auslösen von Pipettenbetriebsabläufen, die durch Anwenderbetätigung der Steuertaste gewählt sind, wobei der Mikroprozessor (38) ferner programmiert ist, um in eine Mehrfachbetriebsart einzutreten, die durch Anwenderbetätigung der Betriebsarttaste gewählt ist, und um in der Mehrfachbetriebsart
    (i) einen Betrieb der Pipette so zu steuern, dass
    (a) eine Betätigung der Aufwärtstaste bewirkt, dass der Mikroprozessor die Anzeige steuert, um einen zunehmenden Wert für ein gewähltes, von der Spitze abzugebendes Flüssigkeitsvolumen anzugeben, und
    (b) eine Betätigung der Abwärtstaste bewirkt, dass der Mikroprozessor die Anzeige steuert, um einen abnehmenden Wert für das gewählte, von der Spitze abzugebende Flüssigkeitsvolumen anzugeben, und
    (c) eine dritte der Steuertasten eine "Rücksetz"-Taste definiert, deren Betätigung bewirkt, dass der Mikroprozessor die Anzeige steuert, um eine Anzahl entsprechend der Anzahlen von Flüssigkeitsaliquoten des gewählten Volumens anzugeben, die die Pipette abgeben kann, wobei die Anzahl durch Betätigung der "Aufwärts"- und "Abwärts"-Tasten einstellbar ist, und
    (d) eine erste Anwenderbetätigung von einem der Auslöseschalter den Motor betätigt, um den Plunger in einer Aufwärtsrichtung anzutreiben, um in die Spitze ein Flüssigkeitsvolumen über ein Volumen hinaus aufzunehmen, das gleich dem gewählten Volumen mal der Anzahl von Flüssigkeitsaliquoten, die von der Pipette abgegeben werden sollen, ist, und
    (e) eine zweite Anwenderbetätigung von einem der Auslöseschalter den Motor betätigt, um den Plunger in einer Abwärtsrichtung anzutreiben, um das gewählte Flüssigkeitsvolumen von der Spitze abzugeben, was für jede zweite Betätigung von einem der Auslöseschalter wiederholt wird, bis die Anzahl von Aliquoten von der Pipette abgegeben worden ist.
  26. Pipette nach Anspruch 25,
    wobei eine der Datentabellen, die in dem Speicher (116) gespeichert sind, Anweisungen zur Steuerung der Antriebssignale umfasst, die an den Linearaktuator (41) angelegt werden, um die Betriebsgeschwindigkeit des Motors (40) gemäß Betriebsgeschwindigkeitseinstellungen zu steuern, die durch Anwenderbetätigung der Steuertasten gewählt sind.
  27. Pipette nach Anspruch 25,
    wobei eine andere der Datentabellen, die in dem Speicher (116) gespeichert sind, Korrekturfaktoren für verschiedene der gewählten Flüssigkeitsvolumeneinstellungen umfasst, die durch Anwenderbetätigung der Steuertasten (26a, 26b; 28a, 28b) gewählt sind, um Flüssigkeitsvolumenfehler im Zusammenhang mit dem Aufnehmen und Abgeben von Flüssigkeiten durch die Pipette zu steuern und zu beseitigen.
  28. Pipette nach Anspruch 25,
    wobei der Mikroprozessor (38) ferner derart programmiert ist, um den Motor (40) so zu steuern, dass dieser in eine "Ausblas"-Betriebsart eintritt, in der der Motor den Plunger (90) über eine Ruheposition für den Plunger hinaus antreibt, um in der Spitze (60) verbleibende Flüssigkeit auszublasen, nachdem der Plunger die Ruheposition erreicht.
  29. Pipette nach Anspruch 25,
    wobei der Mikroprozessor (38) so programmiert ist, dass Schritt (a) und/oder Schritt (b) vor Schritt (d) und/oder nach Schritt (d) und vor Schritt (e) und/oder nach irgendeiner Betätigung gemäß Schritt (e) betätigt werden können.
EP00916122A 1999-03-05 2000-03-03 Manuell tragbare elektronische pipette mit verbessertem batterie-betriebenen mikroprozessor Expired - Lifetime EP1087839B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08018153.0A EP2065088B1 (de) 1999-03-05 2000-03-03 Mikroprozessorgesteuerte tragbare elektronische Handpipette

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26313299A 1999-03-05 1999-03-05
US263132 1999-03-05
US09/264,389 US6254832B1 (en) 1999-03-05 1999-03-08 Battery powered microprocessor controlled hand portable electronic pipette
US264389 1999-03-08
PCT/US2000/005873 WO2000051738A1 (en) 1999-03-05 2000-03-03 Improved battery powered microprocessor controlled hand portable electronic pipette

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP08018153.0A Division EP2065088B1 (de) 1999-03-05 2000-03-03 Mikroprozessorgesteuerte tragbare elektronische Handpipette

Publications (3)

Publication Number Publication Date
EP1087839A1 EP1087839A1 (de) 2001-04-04
EP1087839A4 EP1087839A4 (de) 2006-06-28
EP1087839B1 true EP1087839B1 (de) 2008-12-24

Family

ID=26949677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00916122A Expired - Lifetime EP1087839B1 (de) 1999-03-05 2000-03-03 Manuell tragbare elektronische pipette mit verbessertem batterie-betriebenen mikroprozessor

Country Status (7)

Country Link
EP (1) EP1087839B1 (de)
JP (1) JP3785321B2 (de)
CN (1) CN1267192C (de)
BR (1) BR0005229A (de)
PL (1) PL343833A1 (de)
TW (1) TW460334B (de)
WO (1) WO2000051738A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038569C2 (de) 2000-08-03 2002-07-04 Brand Gmbh & Co Kg Repetierend manuell zu betätigende Abgabe- und/oder Aufnahmeeinrichtung für Flüssigkeiten
JP2004337108A (ja) * 2003-05-16 2004-12-02 Hitachi High-Technologies Corp 核酸精製装置、核酸捕捉用チップ、及び核酸精製方法
FR2862889B1 (fr) * 2003-11-27 2006-09-22 Gilson Sas Pipette a main pour le prelevement d'un echantillon liquide sans derive de temperature
US7976793B2 (en) 2003-11-27 2011-07-12 Gilson S.A.S. Electronic pipette
FI116612B (fi) 2004-07-05 2006-01-13 Biohit Oyj Imulaite
DE102006024051A1 (de) * 2006-05-23 2007-12-06 Eppendorf Ag Elektronische Dosiervorrichtung zum Dosieren von Flüssigkeiten
DE102006032859A1 (de) 2006-07-14 2008-01-17 Eppendorf Ag Elektronische Dosiervorrichtung zum Dosieren von Flüssigkeiten
DE102006037213A1 (de) * 2006-08-09 2008-02-14 Eppendorf Ag Elektronische Dosiervorrichtung zum Dosieren von Flüssigkeiten
US8033188B2 (en) * 2007-09-17 2011-10-11 Integra Biosciences Corp. Pipettor software interface
TWI393905B (zh) * 2009-08-17 2013-04-21 Wistron Corp 用來測試一充電電路的測試系統及測試方法
FR2986718B1 (fr) * 2012-02-13 2014-03-28 Gilson Sas Pipette de prelevement permettant de detecter, de maniere simplifiee, le passage du piston par une position predeterminee
FI125310B (fi) * 2012-03-30 2015-08-31 Sartorius Biohit Liquid Handling Oy Sähköpipetin jarrumekanismi
DE102016121816A1 (de) * 2016-11-14 2018-05-17 Ika-Werke Gmbh & Co. Kg Fluidabgabeeinheit und Handdosiervorrichtung mit wenigstens einer Fluidabgabeeinheit
CN108410714B (zh) * 2018-03-16 2021-05-04 苏州亚通生物医疗科技有限公司 一种细胞混匀移液枪

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US263131A (en) 1882-08-22 Thomas a
US4369665A (en) * 1978-01-11 1983-01-25 Indicon Inc. Manually holdable automatic pipette
US4475666A (en) * 1981-08-31 1984-10-09 American Hospital Supply Corporation Automated liquid dispenser control
US5187990A (en) * 1984-02-16 1993-02-23 Rainin Instrument Co., Inc. Method for dispensing liquids with a pipette with compensation for air pressure and surface tension
US4671123A (en) * 1984-02-16 1987-06-09 Rainin Instrument Co., Inc. Methods and apparatus for pipetting and/or titrating liquids using a hand held self-contained automated pipette
US4567780A (en) * 1984-03-12 1986-02-04 American Hospital Supply Corporation Hand-held pipette with disposable capillary
FI852704L (fi) * 1985-07-08 1987-01-09 Labsystems Oy Eldriven pipett.
US4821586A (en) * 1988-02-25 1989-04-18 Medical Laboratory Automation, Inc. Programmable pipette
US4967606A (en) * 1988-04-29 1990-11-06 Caveo Scientific Instruments, Inc. Method and apparatus for pipetting liquids
US5090255A (en) * 1990-03-27 1992-02-25 Drummond Scientific Company Programmable pipet apparatus
FI87740C (fi) * 1990-05-04 1994-04-08 Biohit Oy Pipett
FI922939A0 (fi) * 1992-06-24 1992-06-24 Labsystems Oy Knappipett.
US5614153A (en) 1995-05-26 1997-03-25 Rainin Instrument Co., Inc. Pipette tip ejector
US5892161A (en) * 1997-09-09 1999-04-06 Tyco Group S.A.R.L. Transducer assembly for an electronically monitored mechanical pipette

Also Published As

Publication number Publication date
TW460334B (en) 2001-10-21
BR0005229A (pt) 2001-01-02
JP3785321B2 (ja) 2006-06-14
EP1087839A4 (de) 2006-06-28
JP2002537980A (ja) 2002-11-12
PL343833A1 (en) 2001-09-10
EP1087839A1 (de) 2001-04-04
WO2000051738A1 (en) 2000-09-08
CN1300239A (zh) 2001-06-20
CN1267192C (zh) 2006-08-02

Similar Documents

Publication Publication Date Title
EP2065088B1 (de) Mikroprozessorgesteuerte tragbare elektronische Handpipette
EP1087839B1 (de) Manuell tragbare elektronische pipette mit verbessertem batterie-betriebenen mikroprozessor
US4905526A (en) Portable automated pipette for accurately pipetting and/or titrating liquids
US5187990A (en) Method for dispensing liquids with a pipette with compensation for air pressure and surface tension
EP2709764B1 (de) Elektronische pipette mit zweiachsiger steuerung
US4821586A (en) Programmable pipette
US8122779B2 (en) Electronic pipettor with improved accuracy
US6299841B1 (en) Bilaterally symmetrical battery powered microprocessor controlled lightweight hand-holdable electronic pipette
EP1725331B1 (de) Steuerbare pipette
JPH08187438A (ja) ノッブピペット
US7972575B2 (en) Two-phase pipette
US7524461B2 (en) Motorized pipette
US6499365B1 (en) Electronic metering device
JP2024505842A (ja) 手持ち式ピペット装置
MXPA00010801A (en) Improved battery powered microprocessor controlled hand portable electronic pipette
JP2024505834A (ja) 手持ち式ピペット装置
JPH05142107A (ja) 分注装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RAININ INSTRUMENT LLC.

A4 Supplementary search report drawn up and despatched

Effective date: 20060529

17Q First examination report despatched

Effective date: 20070307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

R17C First examination report despatched (corrected)

Effective date: 20070307

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF & PARTNER INTELLECTUAL PROPERTY

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60041168

Country of ref document: DE

Date of ref document: 20090205

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090324

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: RAININ INSTRUMENT LLC.

Free format text: RAININ INSTRUMENT LLC.#7500 EDGEWATER DRIVE#OAKLAND, CA 94621 (US) -TRANSFER TO- RAININ INSTRUMENT LLC.#7500 EDGEWATER DRIVE#OAKLAND, CA 94621 (US)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60041168

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENT- UND RECHTSANWALTSPA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60041168

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60041168

Country of ref document: DE

Owner name: METTLER-TOLEDO RAININ, LLC (N.D.GES.D. STAATES, US

Free format text: FORMER OWNER: RAININ INSTRUMENT LLC., OAKLAND, CALIF., US

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: METTLER-TOLEDO RAININ, LLC, US

Free format text: FORMER OWNER: RAININ INSTRUMENT LLC., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190215

Year of fee payment: 20

Ref country code: FI

Payment date: 20190227

Year of fee payment: 20

Ref country code: GB

Payment date: 20190227

Year of fee payment: 20

Ref country code: CH

Payment date: 20190125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60041168

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200302

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE