JP3785321B2 - 改良電池式マイクロプロセッサ制御携帯電子ピペット - Google Patents

改良電池式マイクロプロセッサ制御携帯電子ピペット Download PDF

Info

Publication number
JP3785321B2
JP3785321B2 JP2000602397A JP2000602397A JP3785321B2 JP 3785321 B2 JP3785321 B2 JP 3785321B2 JP 2000602397 A JP2000602397 A JP 2000602397A JP 2000602397 A JP2000602397 A JP 2000602397A JP 3785321 B2 JP3785321 B2 JP 3785321B2
Authority
JP
Japan
Prior art keywords
pipette
microprocessor
display
key
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000602397A
Other languages
English (en)
Other versions
JP2002537980A (ja
Inventor
ライニン、ケネス
ケリー、クリストファー
マグヌッセン、ハーコン、ティ、ジュニア
ホムバーグ、ウィリアム、ディ
Original Assignee
ライニン インストルメント、エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/264,389 external-priority patent/US6254832B1/en
Application filed by ライニン インストルメント、エルエルシー filed Critical ライニン インストルメント、エルエルシー
Publication of JP2002537980A publication Critical patent/JP2002537980A/ja
Application granted granted Critical
Publication of JP3785321B2 publication Critical patent/JP3785321B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • B01L3/0227Details of motor drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/08Ergonomic or safety aspects of handling devices
    • B01L2200/087Ergonomic aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • B01L2300/027Digital display, e.g. LCD, LED

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Secondary Cells (AREA)

Description

【0001】
(関連出願)
これは、1999年3月5日に出願された米国特許出願第09/263,132号の一部継続出願である。
【0002】
(発明の分野)
本発明は、ピペットに関し、特に軽量でありかつ延長時間間隔にわたってユーザによって容易に操作される電池式マイクロプロセッサ制御携帯電子ピペットに関する。
【0003】
(背景)
レイニン・インスツルメント社(the Rainin Instrument Co.,Inc.)、本発明の讓受者による電池式マイクロプロセッサ制御握り可能かつ容易に運搬可能な電子ピペットの最初の商業的導入以来、25年より長くの間レイニン・インスツルメント社によって米国内で独占的に販売された世界的に有名なPIPETMANピペットのような手動ピペットの機能感触及び操作能力を有する電子ピペットを用意することは、全ての電子ピペット製造業者の望みであったし、またあり続けている。特にこれに関して、軽量であり、ユーザによって容易に握り可能かつ運搬可能であり、かつピペット・ユーザの手及び前腕に物理的応力及びひずみを生じないで延長時間間隔にわたっていくつかの操作モードで操作可能である電子ピペットを開発し及び製造することは、電子ピペットを開発し及び製造する全ての電子ピペット製造業者の目標であり続けている。1984年に導入されたレイニン・インツルメント社のEDP電子ピペット及びその後継モデルは、前掲の設計判定基準の各々に取り組んだ。レイニンに続いて、電子ピペットを開発し及び製造する他の会社は、同じ判定基準にまた取り組んできており、及び数年にわたって電子ピペットはいくらか更に軽量になっておりかつユーザにかなり優しくなっている。しかしながら、感触特徴及び機能特徴の点で手動ピペットのそれらに極めて接近する電子ピペットに対する願望は、完全には決して達成されていない。したがって、本発明によって満足されるような電子ピペットの必要があり続けている。
【0004】
(発明の要約)
基本的には、本発明は、軽量であり、ユーザの右手又は左手のどちらかで快適に握り可能であり、かつ異なったユーザ選択標本量及び操作速度に対する異なったユーザ選択操作モードを通してユーザがピペットのマイクロプロセッサ制御操作を指図することで容易に操作される電子ピペットを用意することによって、前掲の必要を満足する。異なったユーザ選択標本量及び操作速度に対して異なったユーザ選択操作モードを用意するに当たり、またこのようなユーザに優しい電子ピペットを用意するに当たり、本発明は同時に出願した米国特許出願第09/263,131号に詳細に説明された左右対称(bilaterally symmetrical)設計を含み、この同時出願米国特許出願はここに引用することによってその内容を本明細書に組み込んである。基本的に、その設計は、軸方向に長い中空ハウジングを含み、このハウジングは垂直に延びる縦軸及び垂直に延びかつ実質的に同軸の上側部と下側部を有する。ハウジングの上側部は前方区画を含み、この区画は前方に面しハウジングの頂部に隣接した英数字ディスプレイを含む。このように置かれて、ディスプレイは、ピペットがユーザの右手に持たれても左手に持たれても、その全操作モード中ユーザが容易に眺めることができる。ディスプレイに加えて、前方区画は、前方に面する制御キーの複数の列(column)ばかりでなく制御キーの列の下に複数の前方に面するトリガ・スイッチを含む。ディスプレイ、制御キーの列、及びトリガ・スイッチは、ハウジングの縦軸に対して左右対称的である。更に、ハウジングの上側部は後方区画を含み、この区画はハウジング内に含まれるマイクロプロセッサ及び線形アクチュエータを附勢する交換可能かつ再充電可能電池を含む。ハウジングの下側部は垂直に長いハンドルを含み、このハンドルはハウジングの縦軸と同軸である。ハンドルは、隣接した左右対称的なかつピペットのユーザによる右手又は左手握りのどちらか用に垂直に延びる前部及び後部を有する。ハンドルの前部は、ハウジングの上側部の前方へ延びかつハウジングの下端まで下向きに垂直に延び、及び1実施の形態ではピペット先端エジェクタの上側部を内部に含みかつ遮蔽する。設計の好適実施の形態では、ピペット先端エジェクタは、ハンドルの前部の頂部に置かれた親指作動押しボタン及び垂直に運動可能な先端エジェクタ・アームを有し、このアームはハウジングの下をかつピペット先端取付け軸に沿って垂直に延びて取付け軸の下端近くでこの軸を囲む。このように構成されて、ピペット先端エジェクタは、先端エジェクタ・アームの下向き運動の際に取付け軸の下端からピペット先端を突出させる。このような下向きの運動は、ピペット・ユーザがピペットのハンドルを握っている間にユーザによって押しボタンに加えられる下向き親指力に応答して生じる。ハンドルの後部は、前部から後方へ延びかつハンドルの上端の背から後方へ延びるホックを有する。ホックは、ユーザが親指を自由にしてハンドルを握ると共に親指で左右対称制御キー、同トリガ・スイッチ、同押しボタンを所望のいずれかのシーケンスで操作する間に、ユーザの人差し指(又は、望むならば、中指)の上側に係合する下向きに曲がった下側表面を含む。この全てをユーザは自由に行う一方、英数字ディスプレイを明瞭に眺める。というのは、ディスプレイは、制御キー及びトリガ・スイッチの操作に応答するからである。これに関して、ホック、ハンドルの前部と後部、押しボタンとエジェクタ・アームを含むピペット先端エジェクタは、ハウジングの縦軸に関して全て左右対称的である。このように配置されて、本発明のピペットは、ユーザの人差し指をハンドルの後部でホックの下に置いたその左手又は右手のどちらかでユーザによって容易にかつ快適に握られる。これは、ユーザの親指を自由にしたまま親指で望むように制御キー又はトリガ・スイッチのいずれかを操作するようにし、これらのキー又はスイッチは電子ピペットの種々の操作モードばかりでなくピペットのいくつかの操作モード中ピペットによって吸い込まれかつ放出される液体の量を調整する。これの全ては、ユーザによって快適に完遂される一方、制御キー、トリガ・スイッチ、及び押しボタンに最小限の親指力しか加えない。それゆえ、本発明の電子ピペットは、ユーザの親指、手、又は前腕に不当に応力を与えないで延長時間間隔にわたって使用可能であって、ユーザの制御の下にピペットの全ての操作モードでピペットの正確なかつ繰返し操作をできるようにする。
【0005】
本発明の電子ピペットはまた、好適には、比較的簡単な電子制御回路を含み、この回路は、ソフトウェア制御可能マイクロプロセッサが線形アクチュエータに含まれたステッパ・モータの巻線に対するパルス幅変調(PWM)駆動信号を発生するマイクロコントローラとして機能できるようにする。PMW信号は、モータのステッピング・レートを定義するクロック・パルスと同期して発生される。これで、在来の電流センシング又は帰還回路部の使用を要求する制御回路を伴なって、マイクロコントローラは、PWM信号を発生できるようになる。
【0006】
電子制御回路はまた、ステップ・モータの電力要件を最少限にし、それによってピペットを附勢する電池の電力消散(power drain)を減少させる。これに立ち代わって、電池の要求される再充電間のピペットの操作寿命を延長する。
【0007】
電子制御回路はまた、ピペットのユーザに優しい制御を補足し、ユーザがピペットの種々の操作モード間を容易にスイッチしかつ各モードで種々の操作速度間及びサイクル・カウンティングを含む操作特徴間で選択できるようにする。サイクル・カウンティング特徴がピペットユーザによって選択されるときに、ユーザはピペットの操作サイクルについて連続的にアドバイスされる。これは、ユーザが、ピペットの特定操作サイクルの追跡を失わないで、ピペット操作のシーケンスを割り込めるようにする。
【0008】
更に、本発明のピペットの電子制御回路は、単一電源から多数のピペットを順次再充電するようになっている。
【0009】
(発明の詳細な説明)
図1及び2に示したピペット10は、左右対称軽量握り可能電池式マイクロプロセッサ制御電子ピペットを含む。図示したように、ピペット10は軸方向に長い中空ハウジング12を含み、ハウジングは垂直に延びる縦軸14を有する。ハウジング12は、垂直に延びかつ実質的に同軸の上側部16及び下側部18を含む。ハウジングの上側部16は前方区画20を含む。区画20は、前方に面しハウジングの頂部24に隣接した英数字ディスプレイ22を含みかつ支持する。ディスプレイは、在来設計のLCDディスプレイである。更に、前方区画20は、ディスプレイの下に置かれた前方に面する制御キーの複数の(例えば、2つの)列及び制御キーの列の各々のすぐ下に1つずつ置かれた前方に面する複数のトリガ・スイッチを含みかつ支持する。本発明の図示の実施の形態では、垂直に間隔を取った上側制御キー26a及び下側制御キー26bは、ハウジング12の縦軸14の左へ間隔を取った制御キーの第1列を構成する。同様に、垂直に間隔を取った上側制御キー28a及び下側制御キー28bは、縦軸14からの制御キー26、26bの間隔と実質的に等しい距離だけ、縦軸の右へ間隔を取った制御キーの第2列を構成する。また、トリガ・スイッチ30は制御キー26a、26bの列の下で軸14の左に区画20内で支持されるのに対して、トリガ・スイッチ32は制御キー28a、28bの第2列の下で軸14の右に区画20内で支持される。事実、図示の実施の形態では、トリガ・スイッチ30の右側及びトリガ・スイッチ32の左側は、縦軸14を含む垂直面上に実質的に横たわる。
【0010】
これに関して、ディスプレイ22、制御キー26a、26b及び28a、28bの列、及びトリガ・スイッチ30、32は、ハウジング12の縦軸14に関して左右対称的であり、かつ以下に説明するようにピペットのユーザがその右手又は左手にピペット10を握っておりかつディスプレイ22を眺めている間にユーザの親指に極く近接していることが、本発明の重要な特徴である。
【0011】
前方区画20に加えて、ハウジング12の上側部16は後方区画34を含む。図示したように、後方区画34は、マイクロプロセッサ38及びハウジング12内に支持された線形アクチュエータ41に含まれたステッパ・モータ40を附勢する交換可能電池36を含む。
【0012】
他方、ハウジング12の下側部18は、ハウジングの縦軸14と同軸の垂直に長いハンドル42を含む。ハンドル42は、ピペット10のユーザによる握り用に隣接した左右対称的かつ垂直に延びる前部44及び後部46を有する。
【0013】
図示したように、ハンドル42の前部44は、ハウジング12の上側部16より前方へ拡がる。前部はまた、ハウジング12の下端48まで下向きに垂直に延び、及びピペット先端エジェクタ50の上側部を内部に含みかつ遮蔽し、エジェクタは前部の頂部54に置かれた親指操作押しボタン52を有する。更に、ピペット先端エジェクタ50は、垂直に運動可能な先端エジェクタ・アーム56を含み、このアームはハウジング12の下をかつピペット先端取付け軸58に沿って垂直に延びてこの軸の下端59近くで取付け軸を囲む。ピペット先端エジェクタ50は、周知のPIPETMANピペットに含まれたような在来設計のものであってよく又は本発明の讓受者に讓受されかつここに引用することによってその内容を本明細書に組み込んである、1997年3月25日に発行された米国特許第5,614,153号に図示されかつ説明された形を取ってよい。この特許に充分に説明されているように及びPIPETMANに関して周知であるように、ユーザによって押しボタン52に加えられる下向き親指力に応答して取付け軸58から、先端60のような、ピペット先端を突出させるのが、ピペット先端エジェクタ50の機能である。
【0014】
図示したように、ハンドル42の後部46は、前部44から後方へ延びかつハンドルの上端66の背64から後方へ延びるホック62を有する。ホックは、好適には、ピペット・ユーザがその右手又は左手でハンドルを握っている間に、ユーザの人差し指又は中指の上側に係合する下向きに曲がった下側表面68を含む。これは、ユーザが親指を自由にしたまま親指で左右対称のかつ狭い間隔を取った制御キー(26a、26b、28a、28b)、同トリガ・スイッチ(30、32)、及び同押しボタン(50)を所望のいずれかのシーケンスで操作するようにする一方、ユーザが英数字ディスプレイ22を明瞭に眺めるようにする。というのは、ディスプレイは、制御キー及びトリガ・スイッチの操作に応答するからである。これに関して、ホック62、ハンドル42の前部と後部、押しボタン52及びエジェクタ・アーム54を含むピペット先端エジェクタ50は、ハウジングの縦軸14に関して全て左右対称的である。更に、注意を要するのは、ホック62の下側表面の最上部70が押しボタン52の頂部72と実質的に同じ水平面に横たわることである。これは、ピペットの取付け軸からピペット先端を突出させようと望むとき、種々の狭い間隔を取った制御キー及びトリガ・スイッチばかりでなく押しボタンを操作するユーザの親指に運動の自由を与えるというように、ハンドル42を握る際にユーザのその手の位置決めを更に助長する。
【0015】
これに関して、左側列内の制御キー26aは、好適には、操作ピペット・モード制御キーを構成するのに対して、同じ列内の制御キー26bはピペットの操作をリセット又は修正するように設計されている。これについては、全て以下に説明する。
【0016】
更に、図示のように、制御キーの右縦列内で、制御キー28a、28bは、以下にまた詳細に説明するように、ディスプレイ22によって表示される数値を制御する。例えば、制御キー28aの操作は、ディスプレイ22上に指示されるピペット10に対する量設定又は操作速度設定を増すことがある。他方、制御キー28bの操作は、ディスプレイ22上に指示されたピペット10に対する量設定又は操作速度設定を減らすことがある。
【0017】
最後に、以下に更に説明するように、ピペットに対する操作「手動モード」では、トリガ・スイッチ30、32のうちの第1ユーザ押しスイッチは吸込み動作又は採取トリガ・スイッチを構成することがあるのに対して、トリガ・スイッチのうちの他のスイッチは放出動作トリガ・スイッチを構成することがある。ピペットの他の全ての操作モードでは、トリガ・スイッチ30又は32のどちらかの操作は、ピペットの操作ユーザ選択モードでのその次のプログラム化ステップをトリガすることがある。
【0018】
更に特に、本発明のピペットの好適実施の形態では、ピペットの内部構造は、重心をハンドル42内に有するピペットを与える。これは、平衡ピペットを用意し、平衡ピペットは頂部も底も重くなくかつユーザがハンドル上のその握りを解きかつピペットを支持するためにホック42に頼るとき、望ましくない傾斜を生じない。このような平衡構造は図2に最も明瞭に表してあり、この図は電子ピペットの内部構造を断面で示す。
【0019】
これに関して、注意を要するのは、ディスプレイ22がピペット・ハウジング12の上側部16の前面を含む表縁(bezel)76内の上側窓74のすぐ背後かつ同窓内の止め板のような在来の手段によって固定されていることである。ディスプレイは、前方区画20を区切るためにハウジング12の上側部内に垂直に取り付けられた印刷配線板78に電気的に接続され、前方区画は図示のようにディスプレイ22、制御キー(26a、26b、28a、28b)及びトリガ・スイッチ30と32を含む。
【0020】
制御キー(26a、26b、28a、28b)は、在来設計のものであり、かつディスプレイ22を含む上側窓74のすぐ下で表縁76内にある窓84内の開口82内で水平チューブ80によって各々支持されている。チューブ80は、このチューブの前方に露出した端を押しているユーザの親指がチューブの後端及びそれによって坦持された導体素子を印刷配線板78に押し当てて印刷配線板78上に収容されたマイクロプロセッサ38を作動して、(i)ピペットの操作モードを変化させる又はリセットする、又は(ii)ユーザ選択操作モードによって取り扱われる液体の量またはこのモードに従うピペットの操作速度のいずれかを変化させる、及び(iii)ディスプレイ22上の相当する英数字表示を変化させるように、軸方向に運動可能である。特に、吸込み及び放出の容積設定及び速度は、キー28aと28bによって制御されかつ制御キー26aの操作によって選択された種々のモードでのピペットの操作の修正に反映され、制御キー26bは「リセット・キー」である。
【0021】
他方、トリガ・スイッチ30、32は、マイクロプロセッサと閉路しており(in circuit)かつ同時提出特許出願に説明されているように、それらのスイッチのうちの1つの親指操作は吸込みのようなピペットの操作をするというように、ピペットの操作をする一方、トリガ・スイッチ30、32のうちの他の親指操作はピペットによる液体の放出のようなピペットの異なった操作をするというように、ベゼル76に溶接されている又は、そうでなければ、接続されている。
【0022】
更に、図示したように、電池36は、ハウジングの上側部16に含まれた印刷配線板78と取外し可能ドア85との間の後方区画34に含まれている。電池36は、印刷回路板78に接続されたパワー・ジャッキを通す電気接続によってマイクロプセッサ38及びモータ40を附勢する。モータ40は、印刷配線板78の下のピペット10のハンドル42に置かれかつハウジング内の背骨支持体88上の支持リブ86によって垂直に固定されている。モータ40は、在来設計のものであってよくかつ、好適には、電池36で附勢されかつ以下に詳細に説明する方法でマイクロプロセッサ38によって制御されるステッパ・モータである。
【0023】
図示したように、出力軸89は、ステッパ・モータ40から垂直に延びかつ、モータ内の回転子の回転が、出力軸89の軸方向運動及びピペット先端取付け軸56内のピストン90の相当する軸方向運動を生じるというように、ピストン90に在来の方法で接続されている。ピペット先端取付け軸58は、立ち代わって、ハンドル42の下側端から軸方向に延びるねじ込み継輪92にねじ込みナット91によって固定される。ピストン90は、ばね装荷シール止め94によってピストンの回りで適当な場所に固定されているピストン・シール93を通過する(ばねは図の明瞭のために除いてある)。
【0024】
また図の明瞭のために、図2に示したピペット先端エジェクタ50では戻しばねが除いてある。戻しばねは、押しボタン52とロッド96の反対端に固定されたエジェクタ・アーム54との間でロッドの回りに延びる。押しボタン52の下向きの運動は戻しばねによって反対され、かつ押しボタンの解放の際、戻しばねが押しボタン及びロッド96をそれらの最上位置へと戻す。
【0025】
ピペット10の操作中、モータ40の出力軸89の軸方向運動は、ピペット先端取付け軸56内でピストン90の制御された軸方向運動を生じて取付け軸の下端に固定されたピペット先端60内へ液体を引き込む又はこの先端から液体を放出する。ピペット10の操作において、ピペットのユーザは、その右手又は左手にハンドル42を握ると共にその親指又は中指をホック62の下に当てる。これは、ユーザの親指を自由にしたまま親指で押しボタン52、トリガ・スイッチ30、32、または制御キー26a、26b又は28a、28のいずれかをその望むいずれかのシーケンスで操作するようにする一方、ユーザがディスプレイ22を明瞭に眺めるようにする。トリガ・スイッチ及び制御キーは、ピペットの縦軸14に対して左右対称的であって、ユーザの親指、手、又は前腕に応力又はひずみを生じるおそれのある力を加えないでユーザの親指によって容易に操作される。これで、本発明の電子ピペットは、ユーザの親指又は手に疲労又は望ましくないひずみを生じないで、長期間技術者によって研究所内で操作されるようになる。
【0026】
図3を形成する図3A、3B、3C、3D、及び3Eに示したように、本発明のピペットに対する電子制御回路は、全体的に100で指示され、かつ、内部回路部102を備えたマイクロプロセッサ38(図3D)及び外部支援回路部を基本的に含むものであって、壁電源(wall power supply)(外部電源)回路部104(図3A)、電池電力管理及び再充電回路部106(図3A、3B、3D)、外部リセット回路部108(図3C)、EEPROMメモリ回路部110(図3B)、基準電圧回路部112(図3B)、外部アナログ・ディジタル(A・D)変換回路114(図3A、3B、3D)、LCDディスプレイ22(図3D)、バイアス回路部116(図3D)、及びモータ駆動回路部118(図3C、3E)を含む。
【0027】
先に簡単に述べたように、制御回路部110は、電池36又は外部電源37(図22)から電力を導出してマイクロプロセッサ38を附勢し、マイクロプロセッサは、立ち代わって、ディスプレイ22及び線形アクチュエータ41に含まれたステッパ・モータ40の動作を制御する。このような制御は、制御キー26a、26b、28a、28b(図3Aにそれぞれ機能スイッチSW1、SW2、SW3、SW4として指示されている)、及びトリガ・スイッチ30、32(図3BにそれぞれSW4、SW6として指示されている)のユーザ操作に応答し、機能スイッチ及びトリガ・スイッチは後に説明するようにピペット10用キーボード120を定義する。ディスプレイ22及びステッパ・モータ40のこのようなマイクロプロセッサ制御は、図4b−1、4b−2、5、6、7a〜7f、8、19に示されたデータのようなマイクロプロセッサ38内のメモリ内へプログラムされ、かつこれに記憶されたデータのテーブルにまたは図9及び9a〜9fに示されたデータのいずれかのような図3Dに示されたEEPROMメモリ回路部116内へプログラムされ、かつこれに記憶されたデータのテーブルに基づいている。種々の操作ピペット・モードでのマイクロプロセッサ38の動作は、図10A〜16B及び21a〜cに示されたソフトウェア・ルーチン及びソフトウェア・サブルーチンによってまたプログラムされる。
【0028】
これらに関して、ステッパ・モータ40は、マイクロプロセッサ38及びモータ駆動回路部118から駆動信号を受信するそれぞれ図3C及び3Eに示された電流受取り巻線A及びBを含み、モータの回転子を電磁的に駆動して、プランジャに先に述べた縦運動を伝え、プランジャはシリンダ92(図2)内のピストンを含み、ピペット先端60(図1)内へ液体を吸い込みかつ先端から液体を放出する。更にこれらに関し、かつ図4、4a、4b−1、4b−2、5〜7f、17〜21cに関して更に詳細に説明するように、マイクロプロセッサ38内のソフトウェア・プログラムの制御の下に、プランジャ90の縦運動は、一連のマイクロステップを通してユーザ制御速度にる。特に、マイクロプロセッサ38はステッパ・モータに対する駆動信号を発生するようにプログラムされ、駆動信号はパルス幅変調(PWM)信号であって、ステッパ・モータ運動の速度を決定するためにマイクロプロセッサに含まれた内部メモリに記憶されたデータの第1テーブルからマイクロプロセッサによって導出されたステッパ・モータに対する異なったマイクロステップ位置に相当するデューティ・サイクルを有しかつそのメモリに記憶されたデータの第2テーブルからマイクロプロセッサによって導出された繰返しパターンを有する。
【0029】
これに関して、マイクロプロセッサ38は、PWM駆動信号がオーバラップしない位相を有し、それによってステッパ・モータ40の電流受取り巻線A及びBに印加されるPWM駆動信号のオーバラップが存在しないように、更にプログラムされる。
【0030】
(マイクロプロセッサ)
例として、マイクロプロセッサ38は、図3DにU1として指定したカルフォルニア、サンタクララ、NEC・エレクトロニクス社(NEC.Electronics Inc.)によって製造されたμPD753036なる4ビット単一チップ・マイクロコントローラ(4 Bit Single Chip Microcontroller)のような単一チップ・マイクロコントローラ又はマイクロプロセッサを含む。このプロセッサは、1.8Vほどの低い電圧及び5.5Vほどの高い電圧で動作することができ、かつ16,384×8ビットの内部ROM又はPROM、768×4ビットの内部RAM、100μA未満の待機電流、及び4.0mA未満の6.00MHzで動作電流を特徴とする。また、このマイクロプロセッサは、ポートと呼ばれる群に配置された多数の入出力ピンを有する。
【0031】
電子ピペット10の機能の多くは、マイクロプロセッサ38のオンボード(on−boad)又は内部回路部102によって取り扱われる。電子ピペット10操作に関して最も重要な内部回路を以下に論じる。
【0032】
(内部回路及びポート)
マイクロプロセッサ38は、内部リセット回路を具備している。外部リセット回108(図3C)がマイクロプロセッサのRESETピンを低にさせるとき、又は内部ウォッチドッグ・タイマが時間切れするとき、リセット・シーケンスは開始される。このリセット・シーケンスは、遅延をトリガする。6.00MHzで、遅延は21.8msである。外部リセット線が解放されかつVCCにもたらされるとき、この遅延は開始する。
【0033】
マイクロプロセッサ38はまた、「メイン・システム・クロック(Main System Clock)」及び「サブシステム・クロック(Subsystem Clock)」と呼ばれる2つの在来発振回路120及び122を有する。「メイン・システム・クロック」120は、メガヘルツ周波数範囲で動作する高速発振回路である。発振回路120は、電力を保存するためにマイクロプロセッサ制御の下で停止させることができる。電力投入の際又はメイン・クロックがプロセッサによって停止させられていた後に再開始されるとき、周波数が安定であると保証されかつプロセッサがインストラクション命令を実際に実行する前に発振器120に5.46msの遅延がある。インストラクション命令実行時間は、マイクロプロセッサに対するプログラムによって選択された分割比に依存し、かつ0.67μsから10.7μsの範囲を取ることができる。
【0034】
「サブシステム・クロック」122は、電力保存目的及び時間維持目的のために使用されるように意図された低速クロックである。このクロック用の水晶素子は、32,768Hzのものである。このクロックは、常に活性であるが、しかし非常に僅かの電流(4μA)しか使用しない。
【0035】
水晶素子自体に加えて、2つの小形コンデンサC2、C3及びC4、C5(22pF)が各発振器の動作に必要である。更にまた、300KΩ抵抗器R13は、サブシステム・クロック122の動作に必要である。
【0036】
いくつかのポートが電子ピペット10に対して重要な特性を有する。ポート6(P60〜P63)及び7(P70〜P73)は、制御キー及びトリガ・スイッチ26a、26b、28a、28b、30、32(SW1〜SW6)に対する回路を自己バイアスするために使用される。それらの活性化は、関連したマイクロプロセッ入力を地絡させる。更に、ポート6のピン60及び61は、以下に説明するように、電圧基準を附勢する。
【0037】
ポート5(P50〜P53)は、13Vまでの電圧に耐えることができる開放ドレイン出力である。これは、VCCより高い電圧の存在を扱う際に助けになり、かつ以下に説明するように電池充電電力を調整するU7として指定された在来のジュアル相補形(Dual Complementary)MOSFET内のPチャネルMOSFETの制御を極めて簡単化する。
【0038】
ポートS(S12〜S31)は、ディスプレイ22のLCDセグメントに対する多数の駆動レベルを与える。
【0039】
ポートN(AN0〜AN7)は、マイクロプロセッサに含まれた内部アナログ・ディジタル(A・D)変換器へのアナログ入力である。A・D変換器は、好適には、内部サンプル・ホールド(saple and hold)回路を具備した8ビット逐次近似変換器である。6.00MHzで、各変換が少なくとも28μsかかることになる。変換は、ポートAVrefに現れる基準電圧に対して行われる。この変換基準電圧は、2.5Vに固定されたかつU2として指定された低ドロップアウト・マイクロパワー3端子基準電圧によって供給される。U2は、マキシム・インテグレーティッド・プロダクツ(Maxim Integrated Products)から入手可能なMAX 6125であってよい。
【0040】
内部A・D変換器は、2つの機能、すなわち、VCC接続点電圧を測定すること及び壁接続点(Wall Node)電圧を測定することを役目とする(図3A)。両方の場合に、内部変換器への入力電圧は、外部A・D回路部114内のR3〜R4及びR4〜R6によって形成される分圧器の作用によって実値の0.41倍に低められる。6.00MHzのクロック周波数で、変換は、28μsかかることになる。内部A・D変換器への入力がサンプルかつホールドされるので、信号は全変換期間の間安定である必要はない。しかしながら、AVref入力は、変換全体の間安定でなければならない。C8は、ディスプイレ22LCDバイアス回路部116によって発生されるスパイクを結合する。
【0041】
SPI(直列(Serial))(P00〜P03)ポートは、U8として指定された直列EEPROMメモリをプログラムしかつ読み出すために使用される。このポートは、電子ピペット印刷配線板上の「DOパッド(DO Pad)」入力、DIパッド(DI Pad)」入力、「CLKパッド(CLK PAD)」入力が利用されるならば、マイクロプロセッサ38への通信ポートとしてもまた働く。この直列リンクは、プロセッサへ及びこれからの高速双方向通信を与える。
【0042】
マイクロプロセッサ38のLCD(S12〜S31及びCOM0〜COM3)ポートは、メモリに記憶されたセグメント・データをディスプレイ22のLCDセグメントへ転送する半自律周辺回路である。この回路は、多重化ディスプレイを制御するために必要な多数の電圧を自動的に出力する。利用可能な20本のセグメント線及び4本の共通線がある。多重化を通して、4つの共通線(COM0〜COM3)は、80までの個別LCDセグメントを制御することができる。実多重化回路部の全ては、マイクロプロセッサ38に含まれている。ディスプレイ上のLCDセグメントを活性化するには、或る1つのビットをメモリに書き込む。操作モードを選択した後、マイクロプロセッサは、在来方法で、実ディスプレイ機能の全てを取り扱う。
【0043】
LCDディスプレイに対するバイアス電圧は、内部A・D変換器に使用される2.5基準電圧を分圧することによるVLCポート(VLC0〜VLC2)への入力である。
【0044】
内部A・D変換器に使用される電圧基準U2なるVrefは、LCDディスプレイに対するバイアス電圧源としてまた使用される。VLC0は、全2.50ボルト基準信号を受信する。このレベルは、R11及びR10によって更に分圧されて、VLC1及びVLC2に対する第2電圧レベル1.25Vを供給する。
【0045】
(ディスプレイ)
ディスプレイ22は、合計57個のアナンシエータ、すなわち、個々にスイッチ可能なセグメントを含む無逆光(non−backlit)液晶型のディスプレイである。
【0046】
アナンシエータは、次のように所与の時刻にユニットの状態を記述する。すなわち、
Figure 0003785321
Figure 0003785321
【0047】
(外部リセット回路部)
マイクロプロセッサ38に対するリセットは、図3Cに示されたリセット回路部108によって制御されかつマキシム・インテグレーテッド・プロダクツから入手可能なMAX821RUS(U9)を含むことがある。電力がユニットU9に最初に印加されるとき、回路は、電力が2.63Vのしきい電圧に達した後100msの間リセットを低(接地)に保持する。所与の時間長の間電力が2.63Vより下へ降下するならば、回路はリセットをまた低く(接地に)する。リセットを開始するために要求される時間は、2.63Vレべルより下の降下の振幅及びいかに長く電力がそのレベルより下に滞在しているかの両方に依存する。供給電流は、2.5μAである。リセットは、1.0Vほどの低い電圧に対しては低く保持されることを保証される。
【0048】
(EEPROMメモリ回路部110)
U8として指定されかつ図3Bに示したEEPROMメモリは、93LC56ASNのような不揮発性電気的消去可能プログラマブル・メモリである。このメモリは、各8ビットの256語を記録するもので、セルフタイム式書込み及び消去サイクルを有しかつ2.0Vまで下げて動作することができる。更に、このメモリは、1,000,000消去−書込みサイクルを経ることができる。動作中の電流は1Aであるのに対して、待機中の電流は5μAである。
【0049】
データは、3線式SPI直列リンクを経由してEEPROMメモリ110へ及びこれから転送される。更に、CSピンが具備され、これは活性高(HIGH)である。
【0050】
電子ピペットの正規操作中、EEPROMのプログラミングが要求されないとき、U8は附勢されない。これは、GND端子、ピンVSSをVCC接続点電圧に取ることによって完遂される。情報がU8に書き込まれない又はこれから読み出されない正規操作中、U7 NチャネルMOSFETは使用可能とされず、マイクロプロセッサのポート・ビットP81は低である。この作用は、U8に対する電力帰路を否定する。SPIポートの線P03、P02、P01はU8の線の全てを同じ電圧レベルにもたらすために高に保持されねばならないことに、また注意されたい。
【0051】
ポート・ビットP80は、正規操作中また高に保持するものとする。これは、3つの方法のうちの1つによって完遂することができる。最も好適なのは、その線を3状態(浮動)条件に置きかつEEPROM回路部110のR1にその線をVCC接続点電圧にまで引き上げさせることである。これに代えて、ポート・ビットP80は、入力にすることができ、かつソフトウェアで使用可能とされる内部プルアップ抵抗器の作用によって受動的に引き上げられる。又は最後に、線P80は能動的に高状態へ駆動することができるが、これは3つのオプションのうちで最も望ましさに欠ける。
【0052】
EEPROMを読み出す又は書き込むことが必要になるときは、ポート・ビットP81を高にもたらす。この作用は、U7内のNチャネルMOSFETをターンオンし、U8上のVSSピンに対するGNDへの通路を用意する。P80が3状態条件にあるならば、この作用は、R1の作用を通してCS線を低へ引き下げることになる。P80が能動的に駆動されるならば、VSSピンをGNDに取った後直ちに又は取る前に直ちにP80を低状態にセットするものとする。P80が内部プルアップ抵抗器の作用によって受動的に引き上げられるならば、それを直ちに出力にして、かつ低へ駆動するものとする。
【0053】
U8のピンCSは能動高入力でありかつそれが高である限り、チップは使用可能とされる。いったんチップU8が電力投入されかつ安定休止(idle)状態にあるならば、CS線、データ入力(Data In)線、データ出力(Data Out)線、及びクロック(Clock)線は、そのチップからの読み出し及びチップに書き込むために正規方法で使用することができる。これらの線は、データ伝送用工業標準SPIプロトコルに従う。
【0054】
U8の電力を切る理想的なシーケンスは、P80を3状態に置くことである。P80をR1の作用で低状態に保持するものとする。P02及びP01を高にセットするものとする。最後に、P81を能動的に低にさせるものとする。U7内のNチャネルMOSFETのドレインの電圧が立ち上がるに連れて、R1はCSをチップ上の線の残りと共に引き上げるはずである。このようにして、CS線は他の線よりも決して速く立ち上がらず、したがって、EEPROMは決して使用可能とされないことになる。
【0055】
次のパラメータは、在来方法で図3Aの電池接続器J3を介してパーソナル・コンピュータ又はワーク・ステーションへの接続を通してEEPROMメモリU8内へ記憶される。
a. EEPROMデータ・セットのバージョン#
b. ピペットの全目盛量範囲(2、10、20、100、200、1000、2000μL)
c. オフセット・テーブル(全てのモードに使用される同じテーブル)。EEPROMメモリの230バイトに関する用途。各バイトは、ピペットの量設定に相当しかつ各量におけるオフセットの±254マイクロステップを見込む。
d. 多放出残留値
e. 多放出オーバシュート値
f. 多放出オーバシュート休止持続時間
g. ピペット・モード及び多放出モードに対する速度制限。
h. 走行方向を変えるときモータ運動に加えられる(バックラッシュに対する)手動モード・ヒステリシス。
i. トリガ・ダブルクリック最長遅延時間
j. 長いキー押し最短時間。このパラメータは、モード又はリセット・キーが「長い押し(long press)」に対して充分に長く押されたかどうか判定するために使用される。
k. 各モードに対して(電力投入の際にセットされた)省略時速度設定。
【0056】
(モータ駆動回路部118)
モータ駆動は、SOIC 8ピン・パッケージ内の4つのMMDF2C01HDジュアル相補形MOSFET(U3〜U6)で構成される。各パッケージは、PチャネルMOSFET及びNチャネルMOSFETの両方を含む。各FETは、12Vまでで2Aを取り扱うことができる。パッケージの電力消散は、2ワットである。Nチャネルについてドレイン・ソース間抵抗(Rds)は0.045オーム及びPチャネルについて0.18オームである。
【0057】
これらのMOSFETは、クラシックなHブリッジ構成に配置されている。各FETは、マイクロプロセッサによって個々に制御される。
【0058】
リセット状況、電力投入状況、又は吹消し状況中の事故導通を防止するために、各PチャネルFETは、51KΩプルアップ抵抗器によってVCC接続点電圧へ引き上げられる。
【0059】
マイクロプロセッサ38のポート2(P20〜P23)及び3(P30〜P33)からの全て8ビットは、相補形FET対U3〜U6のゲートに直接接続される。U3〜U6は、図3C及び3Eに示したようにステッパ・モータの2つの巻線A及びBを駆動する2つの全Hブリッジ駆動を形成する。この回路は、電流センシング又はモータからの帰還のない簡単なクラッシク回路である。このような簡単な回路は、通常、ステッパ・モータに対する正規全ステップ駆動又は半ステップ駆動に関連している。この回路は、マイクロステッピングに関連しない。なぜならば、この回路は、比較器への帰還を用いた通例のモータ巻線電流センス及びモータ電流にマイクロステップ・コントローラからの制御信号の追跡をさせるパルス幅変調(PWM)駆動を形成する関連回路部を欠くからである。通例のマイクロステップ駆動回路では、PWM信号の周波数又は周期は、マイクロステップ・コントローラからのモータ・ステッピング・レートとは非同期である。
【0060】
ステッパ・モータのマイクロステップ制御は、簡単な全又は半ステッピングにわたることが望ましい。なぜならば、この制御は、モータ位置決めのかなりの微細制御を行うばかりでなくモータを高速でかなり効率的に運転(すなわち、モータへの所与の入力に対してモータからのより多い出力)させるからである。これらの特性の両方共、電池式電子ピペットにとって重要である。
【0061】
PWM周期がステッピング・レートと同期しているならば、モータのマイクロステップ制御は、図3に示した簡単な回路で以て達成される。これは、マイクロプロセッサ38に2つのHブリッジへPWM信号を発生させ、かつ各マイクロステップを整数個のPWM周期に対応させることによって完遂される。最高モータ速度で、各PWM周期は、1つの新マイクロステップに対応することになる。図4は、最高速度(すなわち、PWM周期とマイクロステップとの間の1:1の対応)で運転している17マイクロステップ時間間隔にわたるHブリッジ・ゲート駆動に対するタイミング線図を示す。各PWM周期は、所与のマイクロステップ中のモータ巻線への所望駆動電流に相当して異なったデューティ・サイクルを有する。
【0062】
マイクロプロセッサ38は、全ステップを16マイクロステップに分割する。したがって、電気回転(electrical rotation)の全360度(すなわち、4全ステップ)が64マイクロステップを含む。図4は、最高速度で45度の電気位置から135度の位置へ移行するゲート駆動信号を示す。各モータ巻線へのデューティ・サイクルは、5.625度増分で進む正弦関数及び余弦関数に相当する。周期1は、両モータ巻線が等しい電流を受け取る電気回転の45度に相当する。巻線A、余弦関数はポート2(P20からP23)から駆動され、及び巻線B、正弦関数はポート3(P30から33)から駆動される。両ポートは、45度及び135度で等しいデューティ・サイクルを有する。第17周期(マイクロステップ)は、135度の電気位置に相当する。PWM周期は約188マイクロ秒に等しく、これは各モータ巻線への約5.32kHzのPWM駆動周波数に相当する。1PWM周期が1マイクロステップに相当する最高速度で、ステッピング・レートは、毎秒332の全ステップ(5.32kHzを16周期毎全ステップで除したもの)である。
【0063】
PチャネルFETは、通常、ゲート駆動を低に維持することによってオンに維持される(P21、P23、P31、P33)。PチャネルFETがターンオフされる(ゲートが高へ移行する)時間のみが、対応するNチャネルFETがターンオンされる(ゲートがP20、P22、P30、P32によって高へ駆動される)ときである。使用されるFETは低しきい値、高速FETであり、それで、小さい保護周波数帯(guard band)がPチャネルFETの各スイッチング・エッジに加えられて、対応するNチャネルFETがターンオンする前にそれらのPチャネルFETがオフするのを保証する。これは、スパイクがスイッチング遷移中に相補形FET対を通して流れるのを回避する。周波数保護帯は、図4の第1周期のみを示した図4aに容易に見ることができる。周期1の始まりに、P21は、高に移行してまずPチャネルFETをターンオフする。マイクロコントローラ上で約1マシン・サイクル遅れて(2.67マイクロ秒)、P20は高に移行してNチャネルFETをターンオンする。約77マイクロ秒遅れてP20は低へ移行してNチャネルFETをターンオフし、それから2.7マイクロ秒の後でP21がPチャネルFETをターンしてオンに戻す。巻線Aの他の側は、P23によって駆動されるPチャネルFETによって給電レールに接続を維持される。周期1の残りの間に巻線Aの両側は給電レールに結合を維持されて、巻線に電流が最少限の外部損失で循環できるようになる。
【0064】
巻線Bは巻線Aと類似の様式でポート3によって駆動されるが、ただし先行技術PWM回路から期待されるであろうように「オン」部分が第1周期の始まりではなくて終りにあることを除く。2つの巻線をPWM周期の異なった端で駆動することの利点は、もし正弦関数のピークPWMデューティ・サイクルが約70%を超えず、したがって45度点で正弦及び余弦PWMデューティ・サイクルが各々50%を超えないならば、両巻線を同時にオンにするのを回避することが可能であるということである。Pチャネル周波数保護帯及びマイクコントローラ処理時間を見込むならば、実用ピーク・デューティ・サイクルは(70%よりはむしろ)60%に近く、各巻線に対して45度点で約42%のデューティ・サイクルを生じる。60%未満のPWMピーク・デューティ・サイクルは、両巻線が同時には決してオンでないことを保証する。両巻線を同時にオンにしないことの利点は、それが電源からの電流変動(リプル)を顕著に減少させ、それによって供給電圧リプルを減少させるということである。減少電流リプルのために、電圧リプルを許容限界内に維持するために給電レール上の小さい値のバイパス・コンデンサ(C1及びC6)を使用できるようになる。またもっと厳しい制約は、ユニットを附勢しかつ電池を充電するために使用される壁電源37(図22)が電池で厳しい高速電流制限作用2.6C率(1.04アンペア)を持つ事実によって起こされる。もしモータが壁電源から1.04アンペアより多く引き出そうと試みたならば、バイパス・コンデンサ(C1及びC6)のみが電流制限点を超える電流を供給するので供給電圧は急速に降下することになる。この潜在的問題は、両巻線が同時にオンであるのを許さないことによって容易に回避される。
【0065】
PWM周期に同じデューティ・サイクルを繰り返させることによって、すなわち、逐次駆動パルスのデューティ・サイクルのマイクロコントローラ制御によって、モータをかなり低速で運転することができるのは、本発明の好適実施の形態の重要な特徴である。もしマイクロステップにデューティ・サイクルも2つのPWM周期に使用されたとしたならば、モータ速度は最高速度の2分の1であることになる(すなわち、PWM周期とマイクロステップとの間の2:1対応)。もし毎ステップが3PWM周期に使用されたとしたならば(3:1比)、モータ速度は最高速度の3分の1であることになる、以下同様。かなり微細な制御には、各々マイクロステップを同じ量だけ繰り返す必要はない。例えば、16番目毎のマイクロステップを1回繰り返しかつ他の15マイクロステップは繰り返さないならば、結果の速度は最大速度の94.12%(16/17)であることになり、同様に、8番目毎のマイクロステップを1回繰り返すならば、結果の速度は再高速度の88.89%(8/9)であることになる。16番目毎のマイクロステップを1回よりも低い頻度で或る1つのマイクロステップを繰り返すことによって最高速度にかなり近い速度をまた得ることができる。10の異なったピペット速度は、所望のモータ速度を与えるために、基本的に適当な繰り返しパターンを使用する。図5のテーブルは、マイクロプロセッサ・メモリに記憶されている対応テーブルで以て本発明の特徴を示す。
【0066】
停止から指定ピペッティング速度へ加速されるとき、図7a〜7bに示したそれと類似の加速度テーブルが使用され、これは、速度が指定運転速度に漸近的に接近するというようにマイクロステップ・デューティ・サイクルがPWM周期内で繰り返されるパターンを定義する。図6及び図8は、そのデータを示したグラフである。加速度傾斜(減速には逆をたどる)は、加速度を定義しかつ制限する。加速度は、モータが逐次かなり微細な速度変化を行うことによってその最高速度に接近するに従って下げられる。マイクロプロセッサがステッパ・モータの動作にこのような制御を施せるようにデータに対応のテーブルがマイクロプロセッサに記憶されている。
【0067】
上に概説した簡単化マイクロステップ回路及び方法から得られるモータ電流は、通例の先行技術PWM駆動回路におけるように供給電圧に無関係でない。むしろそれは供給電圧依存性である。本発明に使用されるLiイオン電池36からの電池電圧は、電池がほとんど枯渇しているときの3.2ボルトから電池が全容量に充電されているときの4.1ボルトまで変動する。同じ振幅(すなわち、ピーク・デューティ・サイクル)正弦または余弦テーブルがこの電圧範囲全体を通して使用されるならば、モータへの電力はその電圧範囲にわたって電圧比の平方だけ変動することになる(すなわち、3.2ボルトにおけるよりも4.1ボルトにおける方が64%多い電力)。壁電源から附勢されている間にピペットが使用されるとき、供給電圧は典型的に5.3ボルトであって、これは、同じテーブルが使用されるならば、3.2ボルトに比較してほとんど3倍も多い電力をモータへ供給する。使用されるマイクロコントローラは、先に説明したように、マイクロプロセッサ・アナログ・ディジタル変換器を用いて供給電圧を測定する能力を有する。上の欠点は、供給電圧を異なった範囲に分割しかつ各範囲に対して異なった振幅の正弦または余弦テーブルを使用することによって極めて減らすことができる。これは、異なった範囲に対してモータ電流を正規化することを可能にする。本発明のマイクロプロセッサは、供給電圧を4つの範囲に分裂させるようにプログラムされ、かつ4つ異なった振幅の正弦または余弦テーブルを有し、これらが異なった範囲の間でモータ電流を正規化する。これは、図4b−1及び図4b−2のテーブルに示してあり、かつモータ電流を減少させ、それゆえ全供給電圧範囲にわたって電力変動を遥かに小さい値に減少させる効果を有する。使用される範囲は、3.200から3.476、3,476から3.775、3.775から4.1、及び5.0から5.6である。これは、電池電圧範囲について、ちょうど1つの範囲が使用されるとした場合の電力変動を64%から3つの範囲が使用される場合の18%未満に減少させ、第4範囲は壁電流に対して使用される。供給電圧の関数として異なった電力範囲を使用することは、不必要な電池電力消散(battery drain)を減少させる効果を有し、それによって電池寿命を顕著に延長する。また、壁電源の流出(running off)のときモータ電力定格を超える可能性を除去する。
【0068】
(操作ピペット・モード)
本発明の図示の実施の形態において、及び先に説明したように、制御キー26は、ピペット用キーボード内の「モード」制御キーを含む。「モード(Mode)」キーは、3つの操作正規ピペット・モードをくまなくトグル又は回転する。モード・キー用マイクロプロセッサ38のソフトウェア・ルーチンを図12に示す(「モード・キー・ルーチン)。図示したように、モード・キー・ルーチン内へのエントリは、マイクロプロセッサ内の内部タイマを開始させる。タイマは、プリセット持続時間をEEPROM110に記憶ている。モード・キーがプリセット持続時間以上に長い時間間隔の間押されるならば、リセット・キーの「長い押し」が起こっておりこれが所与のモードに対するオプション・メニューを活性化し、かつモード・キーを更に押すと所与のモードに対する利用可能オプションをくまなく回転する。他の長い押しは、オプション・メニューを不活性化して、更にモードを選択する押しをしてよいようにする。
モード:
1. ピペット
2. 手動
3. 多放出
【0069】
上向き及び下向き「矢印」キー28a、28bは、図14に示したマイクロプロセッサ・ソフトウェア・ルーチンに従って量又は速度のようないずれかの選択パラメータを編集又は変えるために使用される。
【0070】
第4キー26b、「リセット(Reset)」は、ユニットがその元の位置にあるかどうかに依存して2つの主要な機能を有する。1ピペットが元の位置(すなわち、放出の準備ができている又は多放出モードでその区切りよい量の全てを放出し済みである)にないならば、リセット・キーを押すことが図13に示したマイクロプロセッサ・ソフトウェア・ルーチンに従ってピペットに放出、吹消しの実行、及び元の位置への復帰を行わせる。装置が元の位置にあり、採取の準備ができているとき、リセット・キー26bは、選択モードで編集することができる種々のパラメータをくまなくトグル又は回転するために使用される。例えば、多放出モードでは、このキーは、区切りのよい量の個数と放出量との間でトグルするために使用されるので、どちらか1つを編集することができる。
【0071】
ピペット10に対する次の操作モードの各々で、ピペットは、シリンダ92内のプランシャ90に縦運動を伝えるために回転子を電磁的に駆動する電流受取り巻線A及びBを備えたモータ40、及びモータに対する駆動信号を発生するようにプログラムされたマイクロプロセッサ38を含む制御回路110を含む。それぞれのこのような操作モードで、制御回路110は、ディスプレイ22、マイクロプロセッサ内に操作ピペット・モード、液体採取量、液体放出、ピペットの操作を制御するピペット操作速度信号とピペット・リセット信号、及びディスプレイ上の英数字ユーザ読取り可能表示を発生するためにマイクロプロセッサに電気的に接続されたユーザ操作可能制御キー26a、26b、28a、28b、データのテーブルを記憶しかつピペットの操作を制御するためにマイクロプロセッサによってアクセス可能かつ使用可能なそのメモリ、制御キーのユーザ操作によって選択されたピペット操作をトリガする少なくとも1つのユーザ操作可能スイッチ30、32を含む。それぞれのこのような操作モードで、マイクロプロセッサは、「モード」キーを定義する制御キーのうちの第1キーの逐次ユーザ操作に応答して操作の逐次ユーザ選択モードに順次に入るようにかつ各選択モードでピペットの操作を制御するように、更にプログラムされ、それであるから
(a) オプション・キーを定義する制御キーのうちのモード・キー又は他のキーの第2動作は、マイクロプロセッサに選択モードのみに対して第1操作オプションを表示するようにディスプレイを制御させ、
(b) 制御キーのうちの第2キーは「上向き」キーを定義し、その操作はマイクロプロセッサに操作オプションの活性化又は不活性化、或は操作オプションに関連した数値表示について増える値を指示するようにディスプレイを制御させ、かつ
(c) 制御キーのうちの第3キーは「下向き」キーを定義し、その操作は、マイクロプロセッサに操作オプションの活性化又は不活性化、或は数値表示について減る値を指示するようにディスプレイを制御させ、かつ
(d) トリガ・スイッチのその後のユーザ操作は、先端内へ液体を採取する上向き方向に、次いで先端から液体を放出する下向き方向に、操作オプションによって拡大された選択モードでプランシャを駆動するようにモータを作動する。
【0072】
また、マイクロプロセッサは、各選択モードで、オプション・キーの逐次ユーザ操作がマイクロプロセッサに選択モードのみに対して、逐次操作オプションを順次表示するようにディスプレイを制御させ、各オプションは制御可能で上の(b)及び(c)に従うように、更にプログラムされる。なお更に、マイクロプロセッサ38は、モード・キーがモード・キーの瞬時押しよりも長い時間間隔の間のモード・キーの初期持続押しとこれに続くモード・キーの逐次瞬時押しに応答して逐次操作オプション間をステップするオプション・キーとして機能するように、好適には、プログラムされる。また、マイクロプロセッサ38は、ディスプレイが操作オプションを出る一方、「リセット」キーを定義する制御キーのうちの第4キーのユーザ操作またはモード・キーのうちのいずれかのその後の持続押しに応答して選択モードに留まっているように、好適には、プログラムされる。
【0073】
なお更に、マイクロプロセッサ38は、リセット・キーの瞬時押しよりも長い時間間隔の間のリセット・キーの初期持続押しに応答してリセット・キーがディスプレイ内の表示パラメータを零と読み出すように、好適には、更にプログラムされ、及びピペット先端から流体を吹くようにシリンダ内のプランジャを駆動するためにリセット・キーの瞬時ユーザ操作に応答して「吹消し」操作に入るように、更にプログラムされる。また、マイクロプロセッサ38は、リセット・キーの各逐次瞬時ユーザ操作がマイクロプロセッサに上向き又は下向きキーのユーザ操作による編集用複数の逐次操作パラメータのうちの異なった1つを順次に表示するようにディスプレイ22を制御させるように、好適には、更にプログラムされ、及び、ピペット操作選択モードでピペットの操作の逐次サイクルの間異なった表示をピペット・ユーザに明瞭に表示するようにディスプレイをカウントしかつ制御し、それによって、ユーザがピペット操作のいずかの周期に対するピペットの操作サイクルを決定できるように、更にプログラムされる。
【0074】
以下に説明するように、ピペット10の操作モードのうちの1つは手動モードである。そのモードでは、ピペットは、制御キーのユーザ操作によって選択されたピペット操作をトリガするために2つのユーザ操作可能スイッチ(30、32)を利用する。手動モードでは、マイクロプロセッサ38は、モード・キーのユーザ操作によって選択された操作の手動モードに入りかつ手動モードでピペットの操作を制御するように、更にプログラムされ、それであるから
(a) ユーザによって操作されたトリガ・スイッチのうちの第1スイッチは「上向き」トリガを定義し、その作動はマイクロプロセッサに先端内へ液体を採取する上向き方向にプランジャを駆動するようにモータを制御させ、かつ
(b) ユーザによって操作されたトリガ・スイッチのうちの第2スイッチは「下向き」トリガを定義し、その作動はマイクロプロセッサに先端から液体を放出する下向き方向にプランジャを駆動するようにモータを制御させ、かつ先端内の液体の量を指示するようにディスプレイを制御させる。更に、手動モードでは、マイクロプロセッサ38は、ピペットの操作を制御するために更にプログラムされ、それであるから、プランジャを液体の吸込み又は採取を開始しようと準備している場所に置いた元の位置にある間にディスプレイは、採取することのできる最大量を表示し、及び、
(a) 「上向き」キーは、マイクロプロセッサに、「上向き」キーがユーザによって操作されるに連れて、先端によって採取される液体の選択最大量について増える値を指示するようにディスプレイを制御させ、かつ
(b) 「下向き」キーは、マイクロプロセッサに先端によって採取される液体の選択最大量について減る値を指示するようにディスプレイを制御させる。なお更に、手動モードで、マイクロプロセッサ38は、それぞれ上向きトリガ及び下向きトリガがユーザによって操作されるに連れて液体の採取及び放出の速度を高めるように、更にプログラムされる。
【0075】
以下に説明するように、手動モードで、マイクロプロセッサ38によってアクセス可能なメモリに記憶されたデータのテーブルのうちの1つは、ピペットによる液体の採取及び放出に関連した液体量誤りを減少させるためにピペットと関連した最大採取量に対する補正率を含み、かつ補正率は量誤りを補正するためにモータの採取運動及び放出運動に加えられる。更に、手動モードで、マイクロプロセッサ38は、ピペット操作手動モードでのピペットの操作の逐次サイクルの間ピペット・ユーザに異なった表示を明瞭に表示し、それによってユーザがピペット操作のいずれかの周期に対するピペットの操作サイクルを決定できるようにディスプレイをカウントしかつ制御するように、更にプログラムされる。
【0076】
以下に更に詳細に説明するように、ピペット10に対する操作ピペット・モードで、マイクロプロセッサ38は、ピペットの操作を制御するように、更にプログラムされ、したがって
(a) 「上向き」キー操作は、マイクロプロセッサに先端によって採取される液体の選択量について増える値を指示するようにディスプレイを制御させ、かつ
(b) 「下向き」キー操作は、マイクロプロセッサに先端によって採取される液体の選択量について減る値を指示するようにディスプレイを制御させ、かつ
(c) トリガ・スイッチのうちのいずれかの第1ユーザ操作は、先端内へ液体の選択量を採取するために上向き方向にプランジャを駆動するようにモータを作動し、かつ
(d) トリガ・スイッチのうちのいずれかの第2ユーザ操作は、先端から液体の選択量を放出するために下向き方向にプランジャを駆動するようにモータを作動する。更に、ピペット・モードで、メモリに記憶されたデータのテーブルのうちの1つは、制御キーのユーザ操作によって選択された操作速度設定に従ってモータの動作速度を制御する線形アクチュエータに印加される駆動信号を制御するインストラクション命令を含み、及びメモリに記憶されたデータのテーブルのうちの他のテーブルは、ピペットによる液体の採取及び放出に関連した液体量誤りを制御しかつ除去するために制御キーのユーザ操作によって選択された液体採取量の種々に対する補正率を含む。手動モードのように、ピペット・モードで、マイクロプロセッサ38は、ピペット・モードでピペットの操作の逐次サイクルの間異なった表示をピペット・ユーザに明瞭に表示するようにディスプレイをカウントしかつ制御し、それによって、ユーザがピペット操作のいずかの周期に対するピペットの操作サイクルを決定できるように、プログラムされる。ピペット・モードに独特に、マイクロプロセッサ38は、(i)液体の選択量を放出するためにプランジャが元の位置に接近する際トリガ・スイッチのうちの1つのユーザ操作に応答してプランジャが元の位置に達するとき液体の第2選択量を採取し、かつ(ii)液体の第2選択量を放出し及び液体の選択量と混合するように、更にプログラムされる。
【0077】
以下に更に詳細に説明するように、操作多放出モードで、マイクロプロセッサ38は、ピペットの操作を制御するために、更にプログラムされ、それであるから
(a) 「上向き」キー操作は、マイクロプロセッサに先端によって放出される液体の選択量について増える値を指示するようにディスプレイを制御させ、かつ
(b) 「下向き」キー操作は、マイクロプロセッサに先端によって放出される液体の選択量について減る値を指示するようにディスプレイを制御させ、かつ
(c) 制御キーのうちの第3キーは「リセット」キーを定義し、その作動はマイクロプロセッサにピペットが放出することができる選択量の液体の区切りよい量の個数に相当する数を指示するようにディスプレイを制御させ、この数は「上向き」キー及び「下向き」キーの操作によって調節可能であり、かつ
(d) 以下に「多放出モード」について説明すると、トリガ・スイッチのうちのいずれかの第1ユーザ操作は、区切りよい量の数の選択量倍に等しい量を超える液体の量をピペット先端内へ採取するために上向き方向にプランジャを駆動するようにモータを作動し、かつ
(e) トリガ・スイッチのうちのいずれかの第2ユーザ操作は、先端から液体の選択量を放出するために下向き方向にプランジャを駆動するようにモータを作動し、これは前記個数の約数がピペットによって放出されるまでトリガ・スイッチのいずれかの各第2動作に対して繰り返される。手動モード及びピペット・モードでのように、多放出モードで、メモリに記憶されデータのテーブルのうちの1つは、制御キーのユーザ操作によって選択された操作速度設定に従ってモータの動作速度を制御する線形アクチュエータに印加される駆動信号を制御するインストラクション命令を含み、及びメモリに記憶されたデータのテーブルのうちの他のテーブルは、ピペットによる液体の採取及び放出に関連した液体量誤りを制御しかつ除去するために制御キーのユーザ操作によって選択された液体採取量の種々に対する補正率を含む。更に、多放出モードで、マイクロプロセッサ38は、「吹消し」モードに入るためにモータを制御するように更にプログラムされ、吹消しモードで、モータは、プランジャがプランジャに対する元の位置に達した後先端内に残留している液体を吹き消すように元の位置を超えてプランジャを駆動する。
【0078】
(ピペット・モード)
ピペット・モードは、図11A及び11Bのソフトウェア流れ図に示されかつディスプレイ22上の点灯「ピペット(Pipet)」アナンシエータによって指示される。上向き及び下向き矢印キー28a及び28bは、量を変えるために使用される。矢印キーは、ピペットがオンしている「採取」アナンシエータによって指示されたその元の位置にあるときに限り能動的である。トリガ・キー30又は32のどちらかが押されると、ピペットは速度設定に相当するモータ速度で指示された量を吸い込む。図11Aのソフトウェア流れ図に指示したように、ピペット10がそのピペット・モードにあるとき、トリガ・スイッチ(30、32)の活性化による液体のユーザ選択量の各採取は、補正しなければ選択量よりも少ない吸込み量を生じることになる流体効果(fluid effect)を補正するためにモータ運動にオフセットを加える。このような誤りは図9の下側曲線によって示されるのに対して、各選択量に対する補正率は図9の上側曲線によって示される。図9a〜9fは、ピペット10に対する種々のユーザ選択又は「設定」量に対するこのような補正率のテーブルを図表形式で示す。このようなデータのテーブルは、EEPROMメモリU8に記憶され、かつモータ40の巻線A及びBへの駆動信号を含むパルスの列にマイクロステップとしてパルスを加えるためにマイクロプロセッサ38によってアクセスされる。この結果、液体の選択量を先端60内に引き込むためにシリンダ内のプランジャ90の縦運動にオフセットを加える。
【0079】
吸込みの完了で、放出アナンシエータがターンオンすると同時に採取アナンシエータがターンオフする。どちらかのトリガが押されると、ピペットは速度設定に従う速度でその全量を放出し、吹消しストロークを通して吹消しの底まで行き、そこで1秒休止し、それから元の位置へ復帰する。ピペットは、吹消しストロークに入る前に、速度設定によって決定された時間間隔(一般に、速度が遅いほど長い)の間休止することになる。ピペットが吹消しの底に達するときトリガが押し下げられるならば、ピペットは、トリガが解放されるまで吹消しの底に滞在する。
【0080】
図12に示したように、モード・キーが長持続時間(1秒を超える)の間押されると、ピペット・モードに対するオプション・メニューは活性化される。表示された第1項目は、オション・メニューの先行アクセスから表示された最終項目であることになる(速度は初期化後省略時オプションである)。モード・キーの逐次正規押しは、下にリストしたピペット・モードに対する利用可能オプションをくまなくトグルすることになる。すなわち、
a. Speed
b. & Mix
c. Cycle Counter
【0081】
速度が選択されると、「Speed」アナンシエータは点灯しかつ速度設定は量表示の第1数字でフラッシュすることになる。上向きまたは下向きのいずれかの矢印キーは、速度設定を変えるために使用することができる。速度設定は、各モードに対して一意である。初期電力投入の際に選択される省略時設定は、何をEEPROM U8内へプログラムするかによって決定される。これは、典型的に、ピペット・モード及び多放出モードに利用可能である最高速度であり、及び手動モードに利用可能な中速度であることになる。選択可能速度は、1から10の番号を付けられることになる。次の表は、各操作モードに対する速度設定に要する時間を指示する。
【0082】
【表1】
Figure 0003785321
【0083】
【表2】
Figure 0003785321
【0084】
どちらかのトリガの押しの結果、選択速度でピペット・モード量を採取しかつオプション・メニューを出ることになる。モード・キーの長い押し又はリセット・キーの押しの結果、オプション・メニューを出ることになる。モード・キーの正規押しは、混合オプションにトグルすることになる。
【0085】
図15のソフトウェア流れ図に示したように、混合オプションがオプション・メニューで選択されると、「& Mix」アナンシエータは点灯しかつ量数字表示は「OFF」又は「On」を読み出すことになる。上向きまたは下向きのいずれかの矢印キーは、混合オプションをどちらかの状態にセットするために使用することができる。混合オプションがオンのままのとき、「& Mix」アナンシエータはオプション・メニューを出るときまたオンのままである。
【0086】
混合オプションがオンでの操作は、混合を放出サイクルの完了で遂行することができることを除いて、混合オプションがオフのときと類似している。
【0087】
混合は、次のように起こることになる。すなわち、
1. ピストンが元の位置に近いときトリガが押し下げられるならば混合サイクル(元の位置から混合量を吸い込みかつ元の位置へ復帰する)が遂行されることになる。
2. ピストンが元の位置に近くかつトリガが押し下げられなくなるまで追加混合サイクルが起こることになる。
3. 中速ストロークでのトリガの上げ及び再押し下げは、元の位置の近くにあるときトリガが押し下られる限り効果がないことになる。
4. (ピペッティング・ストローク又は混合サイクルのどちらかの後)ピストンが元の位置に近づいている際かつトリガが押し下げられないならば、ピペットは休止し、吹消しストロークが遂行され、ピペットは吹消しの底で休止し、それからホーム位置に復帰することになる(サイクルの終端)。したがって、もしもユーザが望むならば、混合オプションがオンでの操作の間に混合をスキップすることができる。
5. 「採取」及び「放出」LCDアナンシエータは、混合サイクルの各相当する部分の間活性化されることになる。(すなわち、吸込み中の採取及び放出中の分散)。
【0088】
ピペット10に対する混合量(混合サイクル中に吸い込まれかつ放出された量)は、ピペットされる設定量と常に同じである。混合速度は、速度設定モードでプログラムされたのと同じモータ速度であることになる。
【0089】
Cycle Counterがピペット・モード・オプション・メニューから選択されるとき、数字表示は「CC OFF」又は「CC ON」のどちらかを読み出す。上向きまたは下向きのいずれいかのキーは、2つの状態の間でトグルするために使用することができる。Cycle Counterがオンでオプション・メニューを出るとき、量表示の左の2つの数字は、サイクル・カウントを指示することになる。初期的にカウントは、00を読み出すことになる。ピペット・サイクルを完了する都度、カウンタは1だけ増分することになる。カウントが99に達すると、それは00へロール・オーバすることになる。
【0090】
サイクル・カウンタが能動的であるとき、元の位置にある間にリセット・キーを押すと、サイクル・カウンタ・カウント又は採取量を交互に選択することになる。上向きまたは下向きのいずれかの矢印キーは、選択パラメータをいずれかの設定へ編集することができる。リセット・キーの長持続時間押しは、サイクル・カウンタを零にする敏速な方法である。
【0091】
次は、ピペット・モードでのキー押しの作用の要約である。
元の位置で、
Figure 0003785321
採取の後、
Figure 0003785321
【0092】
(手動モード)
手動モードに対するマイクロプロセッサ38ソフトウェア流れ図を図10A及び10Bに示す。手動モードで、小さい量(「採取制限」)がセットされていなければ、表示された量は、省略時(全目盛)量である。これは、採取することができる液体の最大量を決定する。
【0093】
手動モードに入る際に押された第1トリガ(30又は32)は、省略時によって「上向き」トリガになりかつ他は「下向き」トリガになる。
【0094】
「上向き」トリガを押すと、ディスプレイに最大採取制限を表示することを停止させかつ液体の採取を最初は遅く、次いで速くまた速くなる速度で開始する。ディスプレイは、それまで採取された液の量を表示する。最高速度は、図13及び14に示したルーチンに従って先に説明したように速度オプションの使用によって選択された設定速度によって制御される。
【0095】
「上向き」キーを放すと、モータを停止させる。その同じトリガを再び押すならば、そのトリガは、採取を、上のように、最初は遅く、次いで速くまた速くなる速度で続ける。それゆえ、採取が最高速度へ立ち上がる前にトリガを繰り返し押しかつ解放することによって、液体の採取の非常に微細な制御を達成することができる。
【0096】
ディスプレイは、元の位置からの合計液体採取を示し続ける。リセット・ボタンが長持続時間押されるならば、ディスプレイは零にリセットされ、かつディスプレイは、次いで、それがリセットされた後に、(どのトリガが次に押されるかに依存して)採取された又は放出された量を指示することになる。リセット・ボタンが正規持続時間押されるならば、ユニットは、放出し、「吹き消し」を通り、吹消しの底で休止し、元の位置に復帰し、かつ表示された量は最新にセットされた採取制限に戻る。
【0097】
「下向き」キーを押すと、上のように、最初は遅く、次いで、速くまた速くなる速度で液体を放出させる。採取から分散への変化が起こる(又はこの逆が起こる)とき常に、モータ運動が流体及び機械バックラッシュ効果をオフセットするようにオフセット・ステップが加えられる。オフセット・ステップの数は、器械の容量範囲に依存しかつEEPROMメモリU8にマイクロプロセッサ・アクセス可能データとして記憶される。これは、補正率テーブルに加えて、操作ピペット・モードに対する流体効果補正に関して参照されるデータである。
【0098】
放出する間に、ディスプレイがリセットされていなければ、ディスプレイは、(元の位置から採取された)先端内の液体の量を指示するように減分する。これは、オーバシュートし、次いで所望量へ復帰してよいようにする。
【0099】
もしディスプレイが(リセット・ボタンを長持続時間の間押すことによって)リセットされているならば、ディスプレイは、その後は、その時点から採取した液体の量を正の数として、又はその時点から放出した量を負の数として指示する。最も右の区切よい量の中央横棒は「マイナス」記号である。上に注意したように、モータ方向にいずれかの変化があると、オフセット・ステップの適正量がその量範囲に対して加えられる。
【0100】
放出トリガの連続押しは、「元の」位置に達するまで液体を放出させることになる。この時点で、モータは停止することになる。これは、ユーザが偶発的に吹消しに入るのを防止し、かつ程よく手動ピペットの操作による(ユーザは手動で混合をすることもできる等)。元の位置で、放出トリガの「ダブル・クリック」は、ユニットに吹き消しさせかつ元の位置に復帰させる。
【0101】
(手動モード・オプション)
モード・キーの長持続時間押しで以てオプション・メニューを活性化する際、次のオプションは、正規持続時間モード・キー押しで以て選択するとができる。すなわち、
a. 速度
b. サイクル・カウンタ
これらのオプションは、操作ピペット・モードの下に説明したように編集することができる。
【0102】
手動モードでのキー押しの作用の要約は、次の通り。
元の位置で、
Figure 0003785321
採取の後、
Figure 0003785321
【0103】
(多放出モード)
ピペット操作の多放出モードに対するマイクロプロセッサ38ソフトウェア流れ図を図16A及び16Bに示す。モード・キーを活性化することによってこのモードにトグルするとき、放出量は、能動的でありかつ矢印キー28a、28bで以て編集することができる。ユニットが「元の位置」にいるときばかりでなくユニットが放出を待機している間に放出量を変えることができる。放出量を変えるとき、区切りよい量の個数を再計算し、かつ「X」記号に隣接した2つの小さい専用数字でディスプレイ22上に表示する。ピペットが「元の位置」にあるならば、区切りよい量の個数をそれが取り得る最大であるように、かつなお充分に大きい残留量を持つように(すなわち、最大目盛採取)計算する。残留量は、EEPROMメモリU8に記憶されているから、それを容易に計算できる。放出している間に放出量値を変えるならば、区切りよい量の個数「X」を先端内の在留約数を表するように再計算する(残留約数については放出量は不変のままであると仮定する)。放出段階にある間(先端にある残留量の制限内で)量を休止点のいずれかでかつ全てで変えることができる。各放出量を分散した後に区切りよい量の個数は1つだけ減分しそれであるからディスプレイはいくつの区切りよい量が先端に残留しているかを常に示す。「X」が零に達すると、ディスプレイは、「リセット」記号をフラッシュしてユーザに「リセット」キーを押すように喚起する。
【0104】
ユーザが先端内に全目盛負荷を吸い込むのを欲しないならば、採取前にまだ「元の位置」にある間にユーザは、区切りよい量の計算した個数を減らすことができる。これを行うために、ユーザは「リセット」キーを押し、これが編集するために区切りよい量のフィールドを活性化する。区切りよい量の個数数字及び「X」記号は、フラッシュして矢印キーが区切りよい量の個数を変えることになる旨を指示する。「リセット」キーが押されるか又はトリガが押されるかどちらかが行われるまで、区切りよい量の個数フィールドは活性化されたままであり、どちらの場合にも放出量は活性化する(しかし、トリガが押されたならば、液体はまた吸い込まれる)。「元の」位置にあるとき、「リセット」キーを押すと、放出量と約数の個数フィールドを交互に活性化する。「X」値を省略時計算から減らしてあるならば、ユーザがその値を再び変えるか又は放出量を変えるまでその値は不変のままである。モードを変え(又はリセットを押し)ても設定を変えることはない。多放出モードでの放出量を変えるときは常に、新全目盛「X」値を自動的に計算することになる。
【0105】
図16Aに示したように、上に説明したように矢印キー及びリセット・キーの活性化によってピペットをプリセットしてあり、かつ先に説明した矢印キー・ルーチン及びリセット・キー・ルーチンを使用するとき、ユーザは、トリガ・スイッチ(30、32)のうちの1つを活性化する。プリセッティングが記憶されてある間、マイクロプロセッサ38は、モータ40を制御して、区切りよい量の個数倍した量(選択合計量)に等しい量を超える液体の量を先端60内へ採取する。モータは、逆転して液体のいくらかを分散して先端に液体の正しい選択合計量及び残留量を残す。その時点で、もしそう望むならば、区切りよい量を修正するために矢印キーを活性化することができ、これに伴って区切りよい量の個数についてのいずれかの必要なマイクロプロセッサ再計算が行われる。リセット・キー26bの活性化は、ピペットにその多モード操作を無効にして先端内の全液体を放出させる。
【0106】
しかしながら、トリガ・スイッチのうちの1つの活性化に応答して、ピペットは図1Bに示したマイクロプロセッサ制御放出ルーチンに入り、これと共に、マイクロプロセッサは、ピペット操作ピペット・モードについて説明した図9及び9a〜9fの補正曲線及びテーブルに類似した補正データのようなEEPROMメモリU8に記憶されたデータに従うオフセット補正を導入する。この操作は、全ての区切りよい量が放出されるまでトリガ・スイッチのそれぞれのその後の活性化について繰り返される。その時点で、リセット・キーの活性化又はトリガ・スイッチのダブルクリックのどちらかは、マイクロプロセッサにモータを吹消しルーチンに入るように駆動させ、このルーチンでプランジャ90は「元の位置」を過ぎて駆動されて先端から全ての残留液体を吹き、それからプランジャは「元の位置」に復帰させられ、かつプリセッティングが回復されて、ピペットを第2多放出操作に対して準備させる。
【0107】
多放出モードで、オプション・メニュー上の唯一のオプションは速度設定であって、これは先に説明した方法で操作する。
【0108】
したがって、要約すると、
元の位置で、
Figure 0003785321
採取の後、
Figure 0003785321
最終の区切りよい量が放出されており(かつユーザがリセットするようにプロンプトされる)とき、
Figure 0003785321
ピペットが3低電池状態のいずれかにあることを指示するために表示される。それはフラッシュしない。というのは、フラッシュすると、ピペットが充電中のとき発光ボルトがフラッシュすることがあればそれと混同される潜在性があるからである。
【0109】
(電池電力管理及び再充電回路部106)
ピペット10に入れる電池36は、400mA時間定格を有するリチウムイオン電池である。それゆえ、電池への平均充電電流は、電池への潜在的損傷を回避するために最大400mA(すなわち、1C率)に制限されるものとする。モータ40は、動作中800mAより大きい最大電流を引き出す。ピペット10は電池をこの装置に設置しないで壁電源37(図22)からで操作できることが望まれるから、壁電源は、リプルを起こす過電圧を生じないでmAよりも多く供給する能力がなければならない。壁電源をピペット10にプラグ接続しているときピペットに設置した電池を充電するために同じ壁電源を使用することがまた望まれる。更に、図22に示したように、オプショナル充電スタンド(図示してない)であって、2つ又は3つのピペット(10、10’)を格納し、かつこの充電スタンドに置かれ充電される必要のある電池を備えたいずれかのピペットを自動的に充電するために使用することができる充電スタンドを充電するために同じ壁電源37を使用することが望まれる。
【0110】
ピペット内の利用可能な小さな空間は、モータがピペットの操作中に消散するもの以外にピペット内で起こるいずれかの顕著な熱消散を見込んでいない。
【0111】
壁電源からの利用可能な電流は、電池に許される最大充電電流よりも相当に大きい。充電電流を制限するために使用されることがある通例の方法は、電池を充電する間に1C率(400mA)に電流を制限するために壁電源と電池との間に線形電流源を置くことである。しかしながら、このような回路はピペット内に位置させる必要があろうし、それでその回路は電池を充電中であるときに限り電流を制限しかつモータを電池なしで使用中であるとき電流を制限しないことが保証され得よう。典型的に、このような回路は、それの両端間に2から3ボルトの電圧降下を有し、かつそれを通して400mAを流すことで以て約1ワットの電力消散を生じることになる。電池を1時間まで充電中である間に1ワットの熱をピペット電子部に消散することは、電子ピペットの寸法を持つコンパクト・ピペット内の利用可能な空間よりも大きなヒート・シンクを要求するであろう。更に、熱は、ピペット本体及び電池の温度を望ましくないレベルへ上げるであろう。
【0112】
しかしながら、本発明のピペット10では、上に説明した線形電流制限回路に関連した熱消散問題を克服するために、スイッチング回路が使用される。このスイッチング回路は、ピペット内のマイクロプロセッサのポートP50からのパルス幅変調(PWM)スイッチ制御信号による「オン」時間対「オフ」時間に基づいて制御されるU7内PチャネルFETを含む。壁電源37からの電流制限にPMW信号のデューティ・サイクルを乗じたものは、電池への平均充電電流を表す。PWMスイッチ制御信号が充分に高いならば、壁電源から電池への電流の「オン」パルスは充分に短い持続時間のものであり、それであるからピーク振幅は電池によって平均される「オン」時間と「オフ」時間の平均ほど重要でないことになる。本発明のピペットに使用されるリチウムイオン36電池は、電池が偶発的に過充電されるならば電池を開放する(切る)保護回路を組み込んでいる。電池36内の組込み保護回路は、リチウムイオン電池に標準的であって、過電圧及び過充電電流ばかりでなく過電流負荷条件及び不足電圧条件に対して保護するやや複雑な回路である。ピペット10に使用される電池に出入するピーク電流は、組込み保護回路の引外しがなければ約2Aを超えることはできない。壁電源FET(U7内のPチャネルFET)がターンオンされるとき、電流制限がその定格値(すなわち、1.04A)で直ちに行われる結果壁電源から直ちに電圧降下を生じて電池を大きな電流スパイクに晒さないように、壁電源は、充分に高速な電流制限を持たなければならない。商用的に入手可能な電流制限付き壁電源は、一般にそれらの出力を充分高速に制限しない。ほとんどのオフ・ザ・シェルフ(off the shelf)電源は、それらの回路に比較的大形のフィルタ・コンデンサを有するものであって、負荷(電池)が電源出力上で突然スイッチされるとき大きな電流スパイクを生じる。大きな電流スパイクは、最長1ミリ秒程度の間には電流制限値に降下しないことがある。このような電源は、電池を充電するPWM制御スイッチ内の使用に許容不能である。
【0113】
したがって、ピペット10に使用される壁電源37は、公称1.04Aで高速電流制限を有するように、かつ電池がU7内のPチャネルFET(図3A)を含む1kHzの繰返し数(rate)PWM制御スイッチ(PWMスイッチ)によって充電されるとき電流オーバシュートを生じないように設計される。1C率で充電するとき、電池が400mAのちょうど下の平均充電電流を見るというように、PWMデューティ・サイクルを約36%「オン」時間(360μsオンかつ640μsオフにセットする。調整壁電源電圧は、公称5.6ボルトである。無負荷電池電圧は、4.1ボルト以下である。したがって、PWMスイッチをターン「オン」するとき、(壁接続点で測定された)壁電源電圧は、電池電圧にPWMスイッチ及びダイオードD1上の降下ばかりでなく充電電流に因る電池の内部抵抗上の電圧降下を加えたものに降下することになる。図3Aの壁接続点で測定された壁電源電圧及びポートAN2でのマイクロプロセッサ38の入力は、全て一緒にして、PWMスイッチをターンオンするときの無負荷電池電圧より典型的に約0.4から0.5ボルト高い。図3A、3B、3Dに示したように、測定された電池電圧は、ポートAN0でのマイクロプロセッサへの入力である。PWMスイッチをターン「オフ」するとき、壁電源電圧は、直ちに調整5.6ボルトに復帰する。電池を1C率で充電中のとき、壁接続点(ポートAN2)の電圧は、図17に示したもののように見えることになる。PHは調整電圧(典型的に5.6ボルト)でありかつPLは電池を充電中のとき典型的に3.4から4.6ボルトであり、これは3.0から4.1ボルトの無負荷電池電圧に相当する。
【00114】
再充電可能リチウムイオン電池の製造者は、一般に、C/10率の事前充電電流で3.0ボルトより下である単一4.1ボルト・セル電池(cell battery)を推奨する。3.0Vより上しかし4.1ボルトより下で、この電池は、1C率を超えない電流で充電することができる。(充電電流で測定された)4.1ボルトで、電圧が4.1ボルトを超えないというように電流を除々に減少させるものとする。これは、充電の定電圧段階(constant voltage charging phase)として知られている。この電圧制限を所与の量だけ超えるならば、組込み保護回路部が電池を開路することになる。充電率がC/10からC/20率に降下するか又は4時間の充電が経過するか、どちらかが早く起こるまで、定電圧充電段階を継続するものとする。最終充電電圧制限(4.1ボルト)は、約1パーセントの正確さで以て決定される必要がある。壁電源をこの電圧及び精度に調整することは、不必要な出費を加えることにもなる。
【0115】
先に説明したように、ピペット10内のマイクロプロセッサ38は、A・D変換器を組み込まれており、この変換器は要求1パーセントの正確さを持つ精密電圧基準としてU2を使用する。オンボードA・D変換器を使用することによって、壁電源37は、電池を充電するために必要であるよりも高い電圧を供給することができ、かつ4.1ボルト充電制限はマイクロコントローラ及びそのA・D変換器によって監視され制御される
【0116】
特に、マイクロプロセッサ38は、小さい充電電流にスイッチするとき決定するために、多数の電圧しきい値を使用することによって、アナログ定電圧充電段階をシミュレートするようにプログラムされる。マイクロプロセッサ38は、それによって、モータが運転中でないとき電力管理ルーチン内で毎秒1回、A・D変換器を用いて電池(ポートAN0)電圧及び壁電源(ポートAN2)電圧を測定する。マイクロプロセッサ38にプログラムされる電力管理ルーチンは、図21a、b、cに示してある。図示したように、PWMスイッチ(壁電源FET)をターンオフする間に測定を行い、それであるから電池電圧は無負荷電池電圧を表し、また他のピペットが壁電源に接続されておらずかつ充電中でないと仮定して、壁電源電圧はその調整値である。電池を1Cで充電中である間の電池電圧の(電池の内部インピーダンスに因る)平均上昇は、約0.15ボルトである。したがって、第1しきい値電圧は、3.95ボルトにセットされる。開路電圧が3.95ボルトと測定されるとき、1C率で充電している間の電池上の平均電圧は、4.1ボルトである。この時点で、充電電流は、PWMデューティ・サイクルを約20%に縮小することによって減少させられる(これは、充電の定電圧段階の開始を表す)。オン時間の充電パルスは0.36ミリ秒で一定にされるのに対して、周期はオフ時間に充電することによって1.75ミリ秒に調節される。
【0117】
平均充電電流に因る電池の平均電圧の上昇を説明する定電圧アナログ充電回路を近似するために、いくつかのしきいレベルが要求される。特定「オン」時間と「オフ」時間、周期、デューティ・サイクル、電流、充電率、及び電圧しきい値を図19に示す。電池36の典型的経時充電特性を5レベルの各々について図20に示す。指示したように、第1シフト(PWMデューティ・サイクル・レベル0からレベル1へ、すなわち、1msから1.75ms周期へ)は、3.950ボルトにセットされる。次いで、レベル1充電は4.025ボルトまで続き、その後にレベル2充電(3.2ms周期)へシフトする。レベル2充電は4.075ボルトまで続き、その後にレベル3(約6ms周期)へシフトし、それからレベル3以上の充電は、残りのレベル・シフトの間に4.100ボルトへ移行する。これらの多数しきいレベルは、定電圧充電段階を近似する間に組込み電池保護回路部が引き外すのを防止する。レベル5は、最小最終充電レベル、かつ約1.5%のPWMデューティ・サイクル(24ms周期)を有する。
【0118】
各レベル変化で、4.100ボルト以下の電圧に対してデューティ・サイクルをカットバックする前に2分最短充電時間が使用される。4.100ボルト以下では、敏速充電の開始から測定された240分の総合充電時間制限に対してを除き、いずれのデューティ・サイクルにも最短充電時間制限はない。
【0119】
フィルタした電池電圧測定が4.125ボルトよりも高くへ移行するならば、充電デューティ・サイクルは、かなり低い遷移電圧(4.025から4.100ボルト)で使用される最短2分遅延ではなくて、5秒内に1レベル上げられる。デューティ・サイクルを縮小した後に電圧が4.125ボルト以上に留まっているならば、(レベル5の後に)電圧が4.125ボルトより低く下がるか又は充電が完全にターンオフするまで(各デューティ・サイクルで5秒よりも短い充電時間で以て)デューティ・サイクルを再びまた再び縮小するものとする。
【0120】
充電は、次の条件のどちらかを満たすまで続けられ、次いで終結する。すなわち、
・ 充電デューティ・サイクルが1.5%(レベル5)に縮小されており、かつ電池電圧が4.1VDCに達する。
・ 敏速充電の開始からの経過時間が240分に達している。
・ 充電スタンド上の他のユニットが充電中であると検出される。
【0121】
電池は、それが3.95VDCにまで放電させられるか又はこのレベルに自己放電するまで再び充電されないことになる。
【0122】
図21a〜cに示した電力管理ルーチンは、モータが運転中でなくかつPWMスイッチ(壁電源FET)がターンオフしているとき、毎秒1回電圧測定を行う。電池電圧は少なくとも16回測定されかつ計算された平均はマイクロプロセッサ38内のメモリ場所「BA」に記憶される。
【0123】
壁電源電圧について、毎秒20連続測定が行われる。マイクロコントローラ内のサンプル・ホールド回路は、各測定の開始に電圧をサンプルかつホールドする。各測定は256マイクロ秒を要し、それで20連続測定は完了するのに約5ミリ秒を要する。この20測定のうちの最高はメモリに記憶されかつ「PH」と呼ばれ及び最低読取りは記憶されかつ「PL」と呼ばれる。
【0124】
その電池を充電中であるピペット10が図22におけるように共用壁電源を備えた共用充電スタンド(図示してない)上にあるとき、その充電中のピペットが充電のその定電圧段階でレベル2を超えて進んでまだいないとするならば、共用充電スタンド上のいずれか他のピペット(例えば、10’)によってPLは、4.6ボルトよりも低いと毎秒測定されることが保証される。レベル3充電は6ミリ秒充電周期を有するから、PLがいずれか1つの5ミリ秒測定周期に4.6ボルトよりも低いと測定されないことは、可能である。
【0125】
2つ以上のピペットが共用充電スタンド上に置かれ、かつ各々が充電される必要のある電池を有するならば、各ピペット内のファームウェアは、そのPH及びPL測定値と一緒に、一度に1ピペットに限りその電池を充電することを、正規には、許すことになる。共用スタンドに置かれた第1ピペットがまずその電池を充電する。共用スタンドに置かれた第2及び第3ピペット(例えば、10’)は、それが4.6ボルト以下でPL値を(及び壁電力が事実接続されていることを指示する、4.9より上でPH値を)測定する事実によって或る1つのユニットが既に充電中であることを検出することになる。ファームウェアは、ピペットが4.6ボルト以下でPLを検出するならば、そのピペットがそれ自身の電池を充電しないように、コード化される。ピペットが4.6ボルトより上とPLを測定するとき、そのピペットは、それ自身の電池の充電を開始することは許容可能であると想定する。そのピペットが充電を開始した後、電力管理ルーチンは、他のユニットが充電中であるかどうか知るために再びPH、PL、及びBAを見るようにそのピペットに毎秒1回充電を短く休止させることになる。そのピペットが他のピペットの充電中を検出するならば、検出したそのピペットは、自分が充電を回復する前に、PLが4.6ボルトの上へ移行するまで充電を停止しかつ待機する。ユニットは、毎秒1回割り込むようにセットされた内部割込みタイマに基づいて、毎秒1回検査する。最初に自分が充電を開始してよいと判定するユニットは、同じスタンド上の他のユニットが或る1つのユニットのそのスタンド上での充電中を検出するのでそれら他のユニットが充電から自動的に締め出されている間に、自分の電池の充電を開始することになる。或る1つのスタンド上の2つの個別ピペット内の割込みタイマが同時に(互いについて0.25ミリ秒以内に)割り込み中である公算は、極めて低い。これが起こるならば、両ユニットは、同時に充電を開始することができる。最も低い電池電圧のユニットは、充電中の第2ユニットに整合する電圧に充電するまで壁ユニットから電流のほどんどを取ることになる。2つの電池電圧が互いに等しくなり始めるに連れて、1つに限りユニットが充電中であるとした場合に充電にかかる長さの約2倍をかけて電流は2つの電池間に分裂することになる。この条件が起こるのに対して、個別クロックを備えた2つの独立タイマは、それらの状態で同期していることかつ極めて公算の低い(おそらく10,000の1の可能性よりも低い)であろう長時間間隔中同期を維持する必要があることになる。しかし、それが起こったとしても別に危害はない。正規には、上に説明した共用アルゴリズムは、ピペットが交替して全充電まで充電しかつ一度に1つずつでのみ充電するという洗練した方法で働く。
【0126】
それゆえ、第1ピペットがその定電圧段階のレベル3にあるとき待機ピペットは、通常、充電を開始し、第1ピペットの充電サイクルを終結することになる。この時点で、第1ピペットの電池はほとんど全充電(全充電の90%を超え、おそらく約95%)にある。もし充電中の他のユニットについての検出パラメータが第1ユニットにその定電圧段階のレベル5(100%全充電を考慮している)を通して済ますことを許すようにもっと敏感に作られていたとしたならば、待機ピペットは、更に30分以上を待機しなければならないことになる。検出パラメータ(PL及び5ミリ秒サンプリング時間持続)は、充電されるためにかつ再び使用される準備をするために共用充電スタンドに置かれた全てのピペットに対して、全電池充電を遂げることと合計時間との間の妥協案として選択された。完全に放電しているピペット電池は約1時間で全容量の90%を超えて充電できるのに対して、最後の10%はより以上の更に時間を要することもあり得る。
【0127】
本発明の特定好適実施の形態を本明細書に詳細に説明したが、承知のように、本発明の精神に反しないで変形及び修正を例示の実施の形態に施すこともできる。したがって、本発明は、前掲の特許請求の範囲の請求項によってのみ範囲を限定される。
【図面の簡単な説明】
【図1】 本発明の電子ピペットの好適実施の形態の透視図である。
【図2】 図1のピペットの内部構造及びその構成部品を示す同ピペットの側断面図である。
【図3】 本発明のピペットの電子回路の回路図であって、A、B、C、D、Eは、それぞれ異なる部分を示す。
【図4】 本発明の電子ピペットにおけるステッパモータのコイルを駆動するための電界効果トランジスタ(FET)のゲートに印加されるPWM信号のタイミング線図である。
【図4a】 モータの駆動回路における2台のモータHブリッジ制御ゲートへ供給されるモータ駆動信号の1パルス幅変調周期を示すタイミング線図である。
【図4b】 モータ・マイクロ・ステップ位置の関数としてモータ駆動パルス幅変調信号に対する4つの異なった電力範囲を示す数値テーブルであり、図4b−1および図4b−2からなる。
【図5】 ピペットに対する10操作速度の各々に対する各マイクロステップのパルス幅変調モータ駆動信号繰返しパターンを示すテーブルである。
【図6】 零から速度10までピペットが傾斜する際の時間の関数としてのモータ速度を示すグラフ図である。
【図7】 図6及び図8にグラフ表示されている零から速度10までの加速度/速度傾斜に対するモータ駆動マイクロステップ・パルス幅変調繰返しパターンについての数値を表すテーブルであって、a、b、c、d、e、fは、続き合う部分をそれぞれ示す。
【図8】 零から速度10までピペットが傾斜する際の時間の関数としてのモータ加速度を示すグラフ図である。
【図9】 ピペットに対する各異なった量設定に応答して選択されてメモリ及びマイクロプロセッサに記憶された、空気圧力効果及び液体表面張力効果に対する補正率の適用によって補正される前及び後の典型的ピペット応答を示すグラフ図であって、a、b、c、d、e、fは、グラフ図に使用されている100マイクロリットル範囲ピペット内の各量設定に対するグラフ図のグラフによって示された200典型的補正値のテーブルの続き合う部分をそれぞれ示し、かつ図5もテーブルを示す
【図10】 本発明の電子ピペットの操作手動モードを示すソフトウェア流れ図であって、Aは開始を含む一部、Bは残りの部を示す。
【図11】 本発明の電子ピペットの操作ピペット・モードを示すソフトウェア流れ図であって、Aは開始を含む一部、Bは残りの部を示す。
【図12】 本発明の電子ピペットの操作手動モード、ピペット・モード、及び多モードでのピペットの操作に含まれるモード・キー・ルーチンを示すソフトウェア流れ図である。
【図13】 本発明の電子ピペットの操作手動モード、ピペット・モード、及び多モードでのピペットの操作に含まれるリセット・キー・ルーチンを示すソフトウェア流れ図である。
【図14】 本発明の電子ピペットの操作手動モード、ピペット・モード、及び多モードでのピペットの操作に含まれる矢印キー・ルーチンを示すソフトウェア流れ図である。
【図15】 本発明の電子ピペットの操作ピペット・モードでのピペットの操作に含まれる混合キー・ルーチンを示すソフトウェア流れ図である。
【図16】 本発明の電子ピペットの操作多モードを示すソフトウェア流れ図であって、Aは開始を含む一部、Bは残りの部である。
【図17】 本発明の好適電子ピペットに含まれるマイクロプロセッサ及びステッパ・モータを附勢する電池を充電するために使用されている電源からの、時間の関数としての、電圧のグラフ図である。
【図18】 本発明の好適電子ピペットに含まれるマイクロプロセッサ及びステッパ・モータを附勢する電池を充電するために使用された電源からの、時間の関数としての、電流のグラフ図である。
【図19】 本発明の好適電子ピペットに含まれるマイクロプロセッサ及びステッパ・モータを附勢する電池を充電するために使用された種々の充電レベルに対するパルス幅変調デューティ・サイクルのタイミングを示すテーブルである。
【図20】 本発明のピペットの好適方法によって充電される電池に対する、時間の関数としての、充電率、開路電池電圧、及び充電容量を示すグラフ図である。
【図21】 本発明のピペットの電源管理操作の電池充電部分を示すソフトウェア流れ図であって、aは開始を含む一部、bはaに続く一部、cは残りの部である。
【図22】 本発明の電池充電ルーチンに従ってピペット内の電池の順次充電のために1つの電源に接続された2つのピペットを示すブロック図である。

Claims (39)

  1. 電子ピペット(10)において、
    ピペット先端(60)内へ流体を吸い込み及び先端から流体を放出するためにシリンダ(59)内で縦にプランジャ(90)を駆動する線形アクチュエータ(41)を有し、該線形アクチュエータは前記プランジャに縦運動を伝えるために回転子を電磁的に駆動する電流受取り巻線を備えたモータ(40)を有し、
    前記モータに対する駆動信号を発生するようにプログラムされたユーザ制御可能マイクロプロセッサ(38)を含む前記ピペットに対する制御回路(100)を有し、
    前記マイクロプロセッサに電気的に接続されたディスプレイ(22)を有し、
    前記マイクロプロセッサに電気的に接続され、前記マイクロプロセッサ内ピペット・モード操作制御信号と、液体採取量制御信号と、液体放出制御信号と、ピペット操作速度信号と、前記ピペット(10)の操作を制御しかつ前記ディスプレイ上の英数字ユーザ読取可能表示を制御するディスプレイ制御信号に対応のピペット・リセット制御信号とを発生するためのユーザ操作可能制御キー(26a,26b,28a,28b)を有し、
    前記マイクロプロセッサに電気的に接続され、データを有するテーブルを記憶しかつ前記各制御信号により前記ピペットの操作を制御するために前記マイクロプロセッサによってアクセス可能かつ使用可能なメモリ(116)を有し、
    前記マイクロプロセッサに電気的に接続された前記制御キーのユーザ操作によって選択されたピペット動作をトリガするように前記マイクロプロセッサに電気的に接続された少なくとも1つのユーザ操作可能スイッチ(30,32)
    を更に含み、
    前記マイクロプロセッサは、プログラムされて「モード」キーを定義している前記制御キーのうち逐次ユーザによる第 1 操作に応じて前記マイクロプロセッサに発生した前記ピペット・モード操作制御信号により前記ピペットが操作の逐次ユーザ選択モードに順次移り、かつ各選択モード毎に前記ピペットの動作を制御し、よって
    (a) 前記マイクロプロセッサに電気的に接続されたオプション・キーの操作は、前記モード・キーの第2操作または他の前記制御キーの操作により、前記マイクロプロセッサが前記選択モードだけに対して第1操作オプションを表示するように前記ディスプレイを制御するための第1ディスプレイ制御信号を発生するようにし、かつ、続く前記オプション・キーの操作は、前記選択モードだけに対して他の操作オプションを前記ディスプレイに順次表示するようにし、
    (b) 「上向き」キーを定義している前記制御キーのうちの第2操作は、前記マイクロプロセッサが第2ディスプレイ制御信号を発生させ前記ディスプレイを制御して、前記ディスプレイ(22)による表示として、前記メモリに格納されたテーブルからのデータに応じて前記操作オプションの活性化または不活性化を指示するようにし、また前記操作オプションに関連した数値表示について増える値を指示するようにし、
    (c) 「下向き」キーを定義している前記制御キーのうちの第3操作は、前記マイクロプロセッサが第3ディスプレイ制御信号を発生し前記ディスプレイを制御して、前記ディスプレイによる表示として、前記メモリに格納されたテーブルからのデータに応じて前記操作オプションの活性化または不活性化を指示するようにし、また前記操作オプションに関連した数値表示について減る値を指示するようにし、
    (d) 前記マイクロプロセッサに電気的に接続されたトリガ・スイッチ(30,32)の逐次ユーザ操作は、前記マイクロプロセッサが前記駆動信号を発生させ、かつ前記(b)および(c)に従って、かつ液体を前記先端内へ採取するように上向き方向に、かつ前記ピペット先端(60)から液体を放出させるように下向き方向へ前記操作オプションによって拡大された前記選択モードで前記プランジャ(90)を駆動するように前記モータ(40)を動作させる、ことを備えた電子ピペット。
  2. 請求項1記載のピペットにおいて、前記マイクロプロセッサは、各選択モード毎に前記オプション・キーの逐次ユーザ操作が前記マイクロプロセッサ(38)により選択モードのみに対する逐次操作オプションを順次表示するように前記ディスプレイを制御するディスプレイ制御信号を発生させ、請求項1の(b)と(c)に従って制御可能であるように、更にプログラムされる、ピペット。
  3. 請求項1記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記モード・キーが前記オプション・キーとして機能し、前記モード・キーの逐次瞬時押しに続く瞬時押しよりも長い時間の間、前記モード・キーの初期持続押しに応答して逐次操作オプション間に、前記ピペットを段階動作させるための前記マイクロプロセッサに制御信号の発生を初期化するように、プログラムされる、ピペット。
  4. 請求項記載のピペットにおいて、前記マイクロプロセッサ(38)は、「リセット」キーを定義する前記制御キーのうちのユーザ操作による第4操作および前記モード・キーの引続く持続押し、またはそのいずれかに応答して、前記選択モードに留まっている間に前記操作オプションの表示を出すために前記ディスプレイ(22)を制御するディスプレイ制御信号を発生させるように、更にプログラムされる、ピペット。
  5. 請求項1記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記制御キーのうちのユーザ操作による前記第4操作が「リセット」キーを定義するように、プログラムされる、ピペット。
  6. 請求項5記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記リセット・キーの瞬時押しよりも長い時間の間の前記リセット・キーの初期持続押しに応答して前記ディスプレイ(22)が零を読むようにするためのディスプレイ制御信号を発生させるように、更にプログラムされる、ピペット。
  7. 請求項5記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記リセット・キーの瞬時ユーザ操作に応答して前記ピペット先端(60)から流体を吹出すように前記シリンダ内で前記プランジャ(90)を駆動する、前記モータ(40)の駆動信号を発生するように、更にプログラムされる、ピペット。
  8. 請求項5記載のピペットにおいて、前記マイクロプロセッサ(3 8 )は、前記リセット・キーの各逐次瞬時ユーザ操作が前記マイクロプロセッサにより前記上向きキー又は下向きキーのユーザ操作による編集用複数の逐次操作パラメータの異なった1つを順次に表示する前記ディスプレイを制御するためのディスプレイ制御信号を発生するように、更にプログラムされる、ピペット。
  9. 請求項1記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記ピペット操作選択モードで前記ピペットの操作の逐次サイクルをカウントするように増分し、かつ前記ピペット操作選択モードで前記ピペットの操作の逐次サイクルに対して異なった表示をピペット・ユーザに明瞭に表示するために前記ディスプレイ(22)を制御するディスプレイ制御信号を発生させ、よって、前記ユーザがピペット操作のいずれかの周期に対して前記ピペットの操作サイクルを決定できるように、更にプログラムされる、ピペット。
  10. 前記制御キー(26a,26b,28a,28b)のユーザ操作によって選択されたピペット操作をトリガする2つのユーザ操作可能スイッチ(30,32)を備えた請求項1記載のピペットにおいて、
    前記マイクロプロセッサ(38)は、更にプログラムされて、前記モード・キーのユーザ操作によって選択された操作手動モードに入りかつ前記手動モードで、
    (i) 前記ピペットの操作を制御し、よって、
    (a) ユーザによって操作された前記トリガスイッチのうちの第1操作は「上向き」トリガ操作を定義し、該上向きトリガ操作は前記マイクロプロセッサ前記先端(60)内へ液体を採取する上向き方向に前記プランジャ(90)を駆動するように前記モータ(40)を制御するモータ駆動信号を発生させ
    (b) ユーザによって制御される前記トリガ・スイッチのうちの第2操作は「下向き」トリガ操作を定義し、該下向きトリガ操作は前記マイクロプロセッサ前記先端(60)から液体を放出する下向き方向に前記プランジャ(90)を駆動するように前記モータ(40)を制御するモータ駆動制御信号を発生させ
    (ii) 前記先端内の液体の量を指示するように前記ディスプレイ(22)を制御するディスプレイ制御信号を発生させるようにする
    ピペット。
  11. 請求項10記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記手動モードについて更にプログラムされ、よって
    (i) 前記ピペットが液体を吸い込み即ち採取を開始しようとする場所について、前記プランジャ(90)が元の位置にあるとき、前記ディスプレイが採取可能な最大量を表示するように前記ディスプレイに対してディスプレイ制御信号を発生させ、かつ
    (a) 「上向き」キー操作は、前記マイクロプロセッサにより前記上向きキーがユーザによって操作されるに連れて前記先端によって採取される液体の選択最大量について増える値を指示するように前記ディスプレイを制御するディスプレイ制御信号を発生させるようにし
    (b) 「下向き」キー操作は、前記マイクロプロセッサにより前記先端によって採取される液体の選択最大量について減る値を指示するように前記ディスプレイを制御するディスプレイ制御信号を発生させるようにする、ピペット。
  12. 請求項10記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記上向きトリガと前記下向きトリガとが、それぞれ、ユーザによって操作されるに連れて液体採取と放出の速度を上げるモータ駆動制御信号を発生させるように、更にプログラムされる、ピペット。
  13. 請求項10記載のピペットにおいて、前記メモリ(116)に記憶されたデータを有する前記テーブルのうちの1つは、前記ピペットによる液体の採取と放出とに関連した液体量誤りを減少させるために前記ピペット先端(60)に関連した最大採取量に対する補正率を含み、かつ前記補正率は前記量誤りを補正するために前記モータ(40)の採取動作と放出動作に加えられる、ピペット。
  14. 請求項10記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記ピペットの手動操作モードで前記ピペットの操作の逐次サイクルに対して異なった表示をピペット・ユーザに明瞭に表示するために前記ディスプレイ(22)をカウントしかつ制御するようにサイクル・カウンタを増分し、よって、前記ユーザがピペット操作のいずれかの周期に対して前記ピペットの操作サイクルを決定できるように、更にプログラムされる、ピペット。
  15. 請求項10記載のピペットにおいて、前記マイクロプロセッサ(38)は、「吹消し」に入るように前記モータに対する駆動制御信号を発生させ、前記モータ(40)は前記プランジャ(90)が元の位置に達した後に前記先端(60)内に残留している液体を吹き消すために前記元の位置を超えて前記プランジャを駆動するように、更にプログラムされる、ピペット。
  16. 請求項15記載のピペットにおいて、前記マイクロプロセッサ(38)は、ユーザ操作又は前記制御キーのうちの1つ又は前記放出トリガの多重作動に応答して「吹消し」に入るように、プログラムされる、ピペット。
  17. 請求項16記載のピペットにおいて、前記マイクロプロセッサ(38)は、「リセット」キーを定義する前記制御キーのうちの第4操作の瞬時ユーザ操作に応答して「吹消し」操作に入るように、プログラムされる、ピペット。
  18. 請求項17記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記瞬時押しよりも長い時間の間の前記リセット・キーの初期持続押しに応答して前記ディスプレイ(22)が零と読めるようにするディスプレイ制御信号を発生するように、更にプログラムされ
    前記ディスプレイ(22)が零である位置から前記プランジャ(90)の更に上向き移動は前記量読出しを増やしかつ前記零位置から前記プランジャの更に下向き移動は負量を表示する、ピペット。
  19. 請求項1記載の前記制御キー(26a,26b,28a,28b)のユーザ操作により選択されたピペット操作をトリガさせるための複数のユーザ操作可能トリガスイッチ(30,31)を有するピペットにおいて、前記マイクロプロセッサ(38)は、更にプログラムされて、前記マイクロプロセッサに電気的に接続された前記モード・キーのユーザ操作によって選択された操作ピペット・モードに入りかつ前記ピペット・モードで、
    (i) 前記ピペットの操作を制御し、よって
    (a) 上向きキー操作は、前記マイクロプロセッサにより前記先端によって採取される液体の選択量について増える値を指示するように前記ディスプレイ(22)を制御するディスプレイ制御信号を発生させ
    (b) 下向きキー操作は、前記マイクロプロセッサにより前記先端によって採取される液体の選択量について減る値を指示するように前記ディスプレイを制御するディスプレイ制御信号を発生させ
    (c) 前記トリガ・スイッチのいずれかの第1ユーザ操作は、前記先端(60)内へ液体の選択量を採取する上向き方向に前記プランジャ(90)を駆動するように前記モータ(40)起動するモータ駆動制御信号を前記マイクロプロセッサにより発生させ
    (d) 前記トリガ・スイッチのいずれかの第2ユーザ操作は、前記先端から液体の選択量を放出する下向き方向に前記プランジャを駆動するように前記モータを起動するモータ駆動制御信号を発生させる、ピペット。
  20. 請求項19記載のピペットにおいて、前記メモリ(116)に記憶されたデータの前記テーブルのうちの1つは、前記制御キーのユーザ操作によって選択された動作速度設定に従って前記モータ(40)の動作速度を制御するために前記線形アクチュエータ(41)に印加される前記駆動信号を制御するインストラクション命令を含む、ピペット。
  21. 請求項19記載のピペットにおいて、前記メモリ(116)に記憶されたデータを有する前記テーブルのうちの他のテーブルは、前記ピペットによる液体の採取と放出とに関連した液体量誤りを制御しかつ除去するために前記制御キーのユーザ操作によって選択された液体採取量設定の種々に対する補正率を含む、ピペット。
  22. 請求項19記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記ピペット操作選択・モードで前記ピペットの操作の逐次サイクルをカウントするように増分し、かつ前記ピペット操作・モードで前記ピペットの操作の逐次サイクルに対して異なった表示をピペット・ユーザに明瞭に表示するために前記ディスプレイを制御するディスプレイ制御信号を発生させ、よって、前記ユーザがピペット操作のいずれかの周期に対して前記ピペットの操作サイクルを決定できるように、プログラムされる、ピペット。
  23. 請求項19記載のピペットにおいて、前記マイクロプロセッサ(38)は、更にプログラムされて、
    (i)前記プランジャが元の位置に到達するとき、前記先端(60)に液体の第2選択量を採取するために、上向き方向に前記モータ(40)を駆動する第1モータ制御駆動信号を発生させ、
    (ii)前記先端から液体の前記第2選択量を放出するために下向き方向に前記モータを駆動する第2モータ制御駆動信号を発生させ、
    (iii)前記プランジャが液体の前記選択量を放出するために元の位置に接近するに連れて、前記トリガ・スイッチのうちの1つのユーザ操作に応答して第3モータ制御駆動信号を発生させ、
    (iv)液体の前記第2選択量を放出しかつ液体の前記選択量と混合するようにする、ピペット。
  24. 請求項23記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記(i)項から(iv)項を繰返し、その後前記先端から液体を吹き消すように前記元の位置を超えて前記プランジャを延ばすために前記モータを駆動するモータ制御駆動信号を発生するように、更にプログラムされる、ピペット。
  25. 請求項1記載の前記制御キーのユーザ操作により選択されたピペット操作を起動させるための複数のユーザ操作可能トリガスイッチ(30、32)を有するピペットにおいて、前記マイクロプロセッサ(38)は、更にプログラムされて、前記モード・キーのユーザ操作によって選択された操作多モードに入りかつ前記多モードで、
    (i) 前記ピペットの操作を制御し、よって
    (a) 上向きキー操作は、前記マイクロプロセッサにより前記先端によって採取される液体の選択量について増える値を指示するように前記ディスプレイを制御するディスプレイ制御信号を発生するようにし
    (b) 下向きキー操作は、前記マイクロプロセッサにより前記先端によって放出される液体の選択量について減る値を指示するように前記ディスプレイを制御するディスプレイ制御信号を発生するようにし
    (c) 前記制御キーのうちの第3操作は「リセット・キー」を定義し、該リセット・キーの動作は前記マイクロプロセッサにより前記ピペットが放出することのできる選択量の液体の区切りよい量のであって前記「上向き」キーと前記「下向き」キーの動作によって調節可能の前記数に相当するを指示するように前記ディスプレイを制御するディスプレイ制御信号を発生するようにし
    (d) 前記トリガ・スイッチのいずれかの第1ユーザ操作は、前記マイクロプロセッサにより前記ピペットの液体の全目盛量に対応する液体の量を前記先端内に採取するように上向き方向に前記プランジャを駆動する前記モータを起動するためのモータ制御駆動信号を発生するようにし
    (e) 前記トリガ・スイッチのいずれかの第2ユーザ操作は、前記マイクロプロセッサにより前記先端から液の前記選択量を放出するために下向き方向に前記プランジャを駆動するように前記モータを起動するためのモータ制御駆動信号を発生させ前記区切りよい量の数が前記ピペットによって放出されるまで前記トリガ・スイッチのいずれかの各第2操作の間繰り返される、ピペット。
  26. 請求項25記載のピペットにおいて、前記メモリ(116)に記憶されたデータの前記テーブルのうちの1つは、前記制御キーのユーザ操作によって選択された動作速度設定に従って前記モータ(40)の動作速度を制御するために前記線形アクチュエータ(41)に印加される駆動信号を制御するためのインストラクション命令を含む、ピペット。
  27. 請求項25記載のピペットにおいて、前記メモリ(116)に記憶されたデータを有する前記テーブルのうちの他のテーブルは、前記ピペットによる液体の採取と放出とに関連した液体量誤りを制御しかつ除去するために前記制御キー(26a,26b,28a,28b)のユーザ操作によって選択された種々の選択液体量設定に対する補正率を含む、ピペット。
  28. 請求項25記載のピペットにおいて、前記マイクロプロセッサ(38)は、「吹消し」モードに入るように前記モータ(40)を制御する制御信号を発生し、前記モータは前記プランジャ(90)が元の位置に達した後に前記先端(60)内に残留している液体を吹き消すために前記元の位置を超えて前記プランジャを駆動するように、更にプログラムされる、ピペット。
  29. マイクロプロセッサ制御携帯電子ピペット(10)において、
    シリンダ(59)内で縦にプランジャ(90)を駆動する線形アクチュエータ(41)を支持する握り可能ハウジング(12)を有し、前記握り可能ハウジングから延びるピペット先端(60)内へ液体を吸い込みかつ前記先端から液体を放出し、
    前記ハウジングに内蔵された電池(36)又は外部電源によって附勢される前記線形アクチュエータ(41)を有し、該線形アクチュエータは一連のマイクロステップを通して制御された速度で前記プランジャに縦運動を伝えるために回転子を電磁的に駆動する駆動信号を受信する電流受取り巻線を備えたステッパ・モータ(40)を有し、かつ前記ピペットのための制御回路(100)を有し、
    該制御回路は、
    前記電池または外部電源によって附勢されたユーザ制御可能マイクロプロセッサ(38 )を有し、
    前記ハウジングにより支持されかつ前記マイクロプロセッサ(38)に電気的に接続されたディスプレイ(22)を有し、
    前記ハウジングに支持されかつ前記マイクロプロセッサ(38)に電気的に接続され、前記マイクロプロセッサ内でピペット・モード操作制御信号と、液体採取量制御信号と、液体放出制御信号と、ピペット操作速度信号と、前記ピペットの操作を制御しかつ前記ディスプレイ(22)上の英数字ユーザ読取可能表示を制御するディスプレイ制御信号に対応のピペット・リセット制御信号とを発生するためのユーザ操作可能制御キー(26a,26b,28a,28b)を有し、
    第1および第2テーブルを含むデータをその中に記憶したテーブルをもち、かつ前記ピペットの操作を制御するために前記マイクロプロセッサ(38)によりアクセス可能でかつ使用可能なメモリ(116)を有し、
    前記制御キーのユーザ操作により選択されるピペット操作を起動するように前記ハウジングに支持されたユーザ操作可能スイッチ(30)を有し、
    前記液体採取量制御信号および放出制御信号に応答するようにプログラムされた前記マイクロプロセッサを有し、よって、
    前記メモリ(116)に記憶されたデータのうち前記第1テーブルから前記マイクロプロセッサにより取出された前記ステッパ・モータのための異なったマイクロステップ位置に対応するデューティ・サイクルを有し、かつモータ回転速度を決定するために前記メモリに記憶されたデータのうちの前記第2テーブルから前記マイクロプロセッサにより取出された繰返しパターンを有するパルス幅変調(PWM)信号である前記ステッパ・モータのための前記駆動信号を発生するようにする、ピペット。
  30. 請求項29記載のピペットにおいて、前記マイクロプロセッサ(38)は、前記PWM駆動信号がオーバラップしない位相を有するようにプログラムされ、よって、前記ステッパ・モータの前記電流受取り巻線に印加される前記PWM駆動信号のオーバラップがない、ピペット。
  31. 請求項29記載のピペットにおいて、前記電池(36)又は前記外部電源は供給電圧を発生し、かつ前記マイクロプロセッサ(38)は前記供給電圧を測定する手段を有しかつ前記メモリに記憶されたデータを有するうちのどの前記テーブルの選択により前記測定した供給電圧に応答するのかプログラムされて、前記マイクロプロセッサが前記PWM駆動信号のデューティ・サイクルを取出す、ピペット。
  32. 電池式マイクロプロセッサ制御携帯電子ピペット(10)において、
    電池(36)と、シリンダ(59)内で縦にプランジャ(90)を駆動する線形アクチュエータ(41)とを支持する握り可能ハウジング(12)を有し、前記ハウジングから延びるピペット先端(60)内へ液体を吸い込みかつ前記先端から液体を放出し、
    前記電池(36)によって附勢される前記線形アクチュエータ(41)を有し、該線形アクチュエータは前記プランジャに縦運動を伝えるために回転子を電磁的に駆動する駆動信号を受信するための電流受取り巻線を備えたモータ(40)を含み、
    前記電池(36)によって附勢されかつ前記モータに対する前記駆動信号を発生するようにプログラムされたユーザ制御可能マイクロプロセッサ(38)を含む前記ピペットに対する制御回路(100)を有し、前記マイクロプロセッサは、前記電池(36)の充電状態と、前記電池に対する最大充電電流以上の電流制限を有する前記電池を充電するための電源(37)とを検査するために周期に基づいて電力管理ルーチンを初期化し、かつ前記電源と前記電池との間のスイッチ(47)を開閉するために初期化するスイッチ制御信号を周期的に発生するように、更にプログラムされ、前記電源によって発生された電圧が調整値より下にある間前記閉じたスイッチは前記電池を充電するために前記電源から前記電流制限内で前記電池へ電流を通過させる、ことを備えたピペット。
  33. 請求項32記載のピペットにおいて、前記マイクロプロセッサ(38)により発生した前記スイッチ制御信号は、前記電源からの制限電流に対して倍数分の前記パルス幅変調制御信号のデューティ・サイクルに等しい平均電流で前記電池が充電されるように前記スイッチ(47)が開閉するためのパルス幅変調スイッチ制御信号である、ピペット。
  34. 請求項33記載のピペットにおいて、前記制御回路(100)は、前記マイクロプロセッサ(38)に供給するための前記電池(36)の充電状態を測定する手段を有し、前記マイクロプロセッサは前記パルス幅変調スイッチ制御信号のデューティ・サイクルを前記電池の充電状態により決定される値に、更にプログラムされる、ピペット。
  35. 第1の請求項32に記載のピペットと第2の請求項32に記載のピペットが同じ電源(37)に接続され、この電源は前記第1および第2のピペット内の前記電池(36)の最大充電電流と等しいか大きい電流制限を有するピペットにおいて、
    前記第1および第2のピペットのそれぞれの前記制御回路(100)は、前記電源供給電圧を測定する回路手段を有し、かつ前記第1および第2のピペットのそれぞれの前記マイクロプロセッサは、測定された前記電源供給電圧を受け、かつ前記スイッチ(47)が開いている間の定められた時間に関連した電源電圧の最高値(P)と最低値(P)を決定するようにプログラムされ、かつ前記ピペットの電力管理ルーチンにある間に、前記第1および第2のピペットが前記ピペットの測定した最高値(P 最低値(P を前記ピペットのマイクロプロセッサに記憶されたしきい値と比較して前記電源から前記第1および第2のピペットの電池を充電することができるかどうか判定する、ピペット。
  36. 請求項35記載のピペットにおいて、前記制御回路は、前記電圧PHとPL の測定値前記マイクロプロセッサに記憶されたそれぞれのしきい値より高いときだけ、前記電池充電する手段を有する、ピペット。
  37. 請求項36記載のピペットにおいて、前記電池がリチウムイオン電池であり、 L およびP H のためのしきい値に対する最小値は、電池充電を起こすのにそれぞれ4.6ボルトと4.9ボルトである、ピペット。
  38. 請求項37記載のピペットにおいて、前記第1および第2ピペットの前記マイクロプロセッサは、1ms以上、100ms以下の時間の間、P L とP H を決定するように、プログラムされる、ピペット。
  39. 請求項25記載のピペットにおいて、前記マイクロプロセッサ(38)は、ステップ(d)の先または後のいずれか、またはステップ(e)の先またはステップ(e)による操作後のいずれかで起動できるように、ステップ(a)およびステップ(b)またはそのいずれかがプログラムされている、ピペット
JP2000602397A 1999-03-05 2000-03-03 改良電池式マイクロプロセッサ制御携帯電子ピペット Expired - Lifetime JP3785321B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26313299A 1999-03-05 1999-03-05
US09/264,389 US6254832B1 (en) 1999-03-05 1999-03-08 Battery powered microprocessor controlled hand portable electronic pipette
US09/263,132 1999-03-08
US09/264,389 1999-03-08
PCT/US2000/005873 WO2000051738A1 (en) 1999-03-05 2000-03-03 Improved battery powered microprocessor controlled hand portable electronic pipette

Publications (2)

Publication Number Publication Date
JP2002537980A JP2002537980A (ja) 2002-11-12
JP3785321B2 true JP3785321B2 (ja) 2006-06-14

Family

ID=26949677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000602397A Expired - Lifetime JP3785321B2 (ja) 1999-03-05 2000-03-03 改良電池式マイクロプロセッサ制御携帯電子ピペット

Country Status (7)

Country Link
EP (1) EP1087839B1 (ja)
JP (1) JP3785321B2 (ja)
CN (1) CN1267192C (ja)
BR (1) BR0005229A (ja)
PL (1) PL343833A1 (ja)
TW (1) TW460334B (ja)
WO (1) WO2000051738A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10038569C2 (de) 2000-08-03 2002-07-04 Brand Gmbh & Co Kg Repetierend manuell zu betätigende Abgabe- und/oder Aufnahmeeinrichtung für Flüssigkeiten
JP2004337108A (ja) * 2003-05-16 2004-12-02 Hitachi High-Technologies Corp 核酸精製装置、核酸捕捉用チップ、及び核酸精製方法
FR2862889B1 (fr) * 2003-11-27 2006-09-22 Gilson Sas Pipette a main pour le prelevement d'un echantillon liquide sans derive de temperature
US7976793B2 (en) 2003-11-27 2011-07-12 Gilson S.A.S. Electronic pipette
FI116612B (fi) 2004-07-05 2006-01-13 Biohit Oyj Imulaite
DE102006024051A1 (de) 2006-05-23 2007-12-06 Eppendorf Ag Elektronische Dosiervorrichtung zum Dosieren von Flüssigkeiten
DE102006032859A1 (de) * 2006-07-14 2008-01-17 Eppendorf Ag Elektronische Dosiervorrichtung zum Dosieren von Flüssigkeiten
DE102006037213A1 (de) * 2006-08-09 2008-02-14 Eppendorf Ag Elektronische Dosiervorrichtung zum Dosieren von Flüssigkeiten
US8033188B2 (en) * 2007-09-17 2011-10-11 Integra Biosciences Corp. Pipettor software interface
TWI393905B (zh) * 2009-08-17 2013-04-21 Wistron Corp 用來測試一充電電路的測試系統及測試方法
FR2986718B1 (fr) * 2012-02-13 2014-03-28 Gilson Sas Pipette de prelevement permettant de detecter, de maniere simplifiee, le passage du piston par une position predeterminee
FI125310B (fi) * 2012-03-30 2015-08-31 Sartorius Biohit Liquid Handling Oy Sähköpipetin jarrumekanismi
DE102016121816A1 (de) * 2016-11-14 2018-05-17 Ika-Werke Gmbh & Co. Kg Fluidabgabeeinheit und Handdosiervorrichtung mit wenigstens einer Fluidabgabeeinheit
CN108410714B (zh) * 2018-03-16 2021-05-04 苏州亚通生物医疗科技有限公司 一种细胞混匀移液枪

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US263131A (en) 1882-08-22 Thomas a
US4369665A (en) * 1978-01-11 1983-01-25 Indicon Inc. Manually holdable automatic pipette
US4475666A (en) * 1981-08-31 1984-10-09 American Hospital Supply Corporation Automated liquid dispenser control
US4671123A (en) * 1984-02-16 1987-06-09 Rainin Instrument Co., Inc. Methods and apparatus for pipetting and/or titrating liquids using a hand held self-contained automated pipette
US5187990A (en) * 1984-02-16 1993-02-23 Rainin Instrument Co., Inc. Method for dispensing liquids with a pipette with compensation for air pressure and surface tension
US4567780A (en) * 1984-03-12 1986-02-04 American Hospital Supply Corporation Hand-held pipette with disposable capillary
FI852704L (fi) * 1985-07-08 1987-01-09 Labsystems Oy Eldriven pipett.
US4821586A (en) * 1988-02-25 1989-04-18 Medical Laboratory Automation, Inc. Programmable pipette
US4967606A (en) * 1988-04-29 1990-11-06 Caveo Scientific Instruments, Inc. Method and apparatus for pipetting liquids
US5090255A (en) * 1990-03-27 1992-02-25 Drummond Scientific Company Programmable pipet apparatus
FI87740C (fi) * 1990-05-04 1994-04-08 Biohit Oy Pipett
FI922939A0 (fi) * 1992-06-24 1992-06-24 Labsystems Oy Knappipett.
US5614153A (en) 1995-05-26 1997-03-25 Rainin Instrument Co., Inc. Pipette tip ejector
US5892161A (en) * 1997-09-09 1999-04-06 Tyco Group S.A.R.L. Transducer assembly for an electronically monitored mechanical pipette

Also Published As

Publication number Publication date
EP1087839A4 (en) 2006-06-28
TW460334B (en) 2001-10-21
PL343833A1 (en) 2001-09-10
CN1300239A (zh) 2001-06-20
EP1087839A1 (en) 2001-04-04
CN1267192C (zh) 2006-08-02
BR0005229A (pt) 2001-01-02
WO2000051738A1 (en) 2000-09-08
JP2002537980A (ja) 2002-11-12
EP1087839B1 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
US6254832B1 (en) Battery powered microprocessor controlled hand portable electronic pipette
JP3785321B2 (ja) 改良電池式マイクロプロセッサ制御携帯電子ピペット
EP2709764B1 (en) Electronic pipette with two-axis controller
EP0428500B1 (en) Method for pipetting and/or titrating liquids using a hand held self-contained automated pipette
JP2007524509A (ja) 電子式ピペット
CN106998168B (zh) 电动工作机
CN1010909B (zh) 电池组供电的设备
JPH10311781A (ja) 電子ピペッターを制御する方法、電子ピペッターをプログラミングする方法、および該方法によりプログラミングされた電子ピペッター
JPS62272827A (ja) バッテリ−の充電状態表示装置
JP2006288403A (ja) 高電圧電流プロファイルを送るトランスフェクション制御装置
JP2007526116A (ja) 較正ピペット
US20230040685A1 (en) Handheld tattoo device with integrated battery power source, control circuitry, and user interface with touch sensor
US7972575B2 (en) Two-phase pipette
JPH0524511A (ja) ワイパー制御装置
JP4981200B2 (ja) 電子式計量装置
US7524461B2 (en) Motorized pipette
JP4127944B2 (ja) 充電式小型電気機器
MXPA00010801A (en) Improved battery powered microprocessor controlled hand portable electronic pipette
WO2015071957A1 (ja) 事前吐出機能を備えた電動ピペット
WO1984002263A1 (en) Pneumatically controlled, power-driven tool
KR200307696Y1 (ko) 다중 모터 정밀 제어기
JPS6230475Y2 (ja)
JPH0655235B2 (ja) 電気かみそり
JPS6419979A (en) Device for driving piezoelectric actuator for precision positioning

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3785321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term