EP1086054B1 - Synthetische glasfasermatten und deren herstellung - Google Patents

Synthetische glasfasermatten und deren herstellung Download PDF

Info

Publication number
EP1086054B1
EP1086054B1 EP99917824A EP99917824A EP1086054B1 EP 1086054 B1 EP1086054 B1 EP 1086054B1 EP 99917824 A EP99917824 A EP 99917824A EP 99917824 A EP99917824 A EP 99917824A EP 1086054 B1 EP1086054 B1 EP 1086054B1
Authority
EP
European Patent Office
Prior art keywords
spinner
spinners
batt
web
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99917824A
Other languages
English (en)
French (fr)
Other versions
EP1086054B2 (de
EP1086054A1 (de
Inventor
Peter Larsen
Svend Grove-Rasmussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockwool AS
Original Assignee
Rockwool International AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8234764&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1086054(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rockwool International AS filed Critical Rockwool International AS
Priority to EP99917824A priority Critical patent/EP1086054B2/de
Priority to SI9930715T priority patent/SI1086054T2/sl
Publication of EP1086054A1 publication Critical patent/EP1086054A1/de
Application granted granted Critical
Publication of EP1086054B1 publication Critical patent/EP1086054B1/de
Publication of EP1086054B2 publication Critical patent/EP1086054B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/655Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions characterised by the apparatus for applying bonding agents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • D04H3/004Glass yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form

Definitions

  • This invention relates to the production of man-made vitreous fibre (MMVF) batts, and in particular relates to apparatus and processes by which the construction of the faces of the batt may be optimised independently from optimisation of the construction of the core of the batt. It also relates to the batts.
  • MMVF man-made vitreous fibre
  • a conventional method for making an MMVF batt comprises centrifugally fiberising a mineral melt to form a cloud of MMV fibres entrained in air by using a centrifugal spinner located in a stream of air, and collecting the fibres on a permeable conveyor as a web having first and second opposed edge regions by sucking the air from the cloud through the conveyor while the conveyor is travelling in a first direction, and cross lapping the web so as to make the batt.
  • centrifugal spinners for fiberising mineral melts. Many comprise a disc or cup that spins around a substantially vertical axis. It is then conventional to arrange several of these spinners in-line, i.e. substantially in the first direction, for instance as described in GB-A-926,749, US-A-3,824,086 and WO-A-83/03092. Usually the same melt is fed to all the spinners so that a substantially homogeneous product is made. However it is known to deposit organic fibres on the faces of the product from FR-A-1,321,446 and it is also known to add binder or other materials into the cloud of fibres. It is noted in US-A-3,824,086 that arranging the spinners in two rows, side by side, has the disadvantage of non-conformity along the overlapping centre line.
  • Different centrifugal spinners are those which comprise at least one fiberising rotor mounted for rotation about a substantially horizontal axis.
  • Such spinners can have a single rotor or a pair of rotors onto which the melt is applied and from which fibres are formed, but more usually the spinners are cascade spinners in which the melt is fed onto a first rotor and is thrown from that onto second, third and optionally fourth rotors in sequence, with fiberisation occurring on the second and subsequent rotors, and often also on the first.
  • the properties of the fibres formed on each spinner depend upon the fiberising parameters on that spinner, namely the conditions on that spinner which influence fibre formation.
  • One important fiberising parameter consists of the nature of the melt which is fed to that spinner, in that fibre formation is influenced by varying the physical properties of the melt (especially viscosity, which is dependent on both temperature and chemical composition), and fibre characteristics are varied by varying the chemical analysis of the melt.
  • Another fiberising parameter is the rate of feed of melt to that spinner. In general, longer fibres and stronger wool can be obtained at lower melt feeds than at higher (all other parameters being unchanged).
  • Another fiberising parameter is the position of the fiberising rotor or at least one of the rotors with respect to the position of the feed of melt to the spinner.
  • the melt is usually poured down on to the rotor or the first rotor in the spinner, and the angle the melt stream makes with the surface of that rotor influences the performance of the spinner.
  • the position of each rotor relative to the others can influence performance.
  • Another fiberising parameter is the acceleration field generated by the rotor, or the fields generated by the rotors (when there is more than one rotor).
  • the acceleration field depends on the diameter of a rotor and its speed of revolution.
  • a single cascade or other spinner is arranged to fiberise the mineral melt and the fibres are entrained in air as a cloud of the fibres.
  • the fibres are collected on a permeable conveyor as a web having first and second opposed edge regions and a centre region by sucking the air from the cloud through the conveyor.
  • the web is frequently of variable structure or properties and for this and other reasons it is conventional practice to cross lap the web so as to make a batt whereby a first face section of the batt is formed mainly of the first edge region of the web and the opposed second face section of the batt is formed mainly of the opposed second edge region of the web, and the batt has a core section between its first and second face sections.
  • the batt should have as uniform a composition through its thickness as possible, i.e., it is preferred that there should be no deliberate variations between the first face section, the core section and the second face section of the batt.
  • a batt which has variable properties through its thickness, but traditionally this is made by forming a substantially homogeneous batt and then treating it so as to modify its surface properties. For instance it is known to apply extra binder to one face and/or it is known to split one face section from the main batt, to treat the face section and then recombine it with the main batt, and it is known to laminate a thin batt to a thicker batt having differing properties.
  • first and second spinners in substantially side-by-side relationship, and optionally a third spinner between the first and second spinners.
  • the fibres from all three spinners form a single cloud of fibres entrained in air and when this cloud is collected on the conveyor as a web the first and second spinners form the fibres which predominantly provide the first and second edge regions respectively of the web, and if there is a third (or more than one third) spinner the third spinner (or spinners) provides the fibres which predominantly provide the centre region of the web.
  • the present invention is concerned with two separate problems.
  • An object of the invention is to provide novel batts having controllably different properties through their thickness, and apparatus and a process for making them.
  • the invention also includes the realisation that this problem exists and the desirability of solving this problem so as to avoid unwanted and uncontrolled variations in the fiberising performance of the individual spinners in a set of spinners arranged in side-by-side relationship.
  • Apparatus according to the invention for making an MMVF batt comprises first and second centrifugal spinners arranged in substantially side-by-side relationship, and optionally one or more third centrifugal spinners between the first and second spinners, wherein each centrifugal spinner comprises at least one fiberising rotor mounted for rotation about a substantially horizontal axis wherein the or each rotor provides an acceleration field, means for feeding MMVF melt to each of the spinners, means for entraining the fibres from each spinner in a stream of air around at least one fiberising rotor of each spinner wherein the stream of air has a flow field and thereby forming a single cloud of fibres entrained in air, a permeable conveyor for collecting the fibres as a web having first and second opposed edge regions and a centre region and means sucking the air from the cloud through the conveyor whereby the first and second spinners form the fibres which predominantly provide the first and second edge regions respectively, and means for cross lapping the web to make the batt
  • a process according to the invention of making an MMVF batt comprises centrifugally fiberising mineral melt by feeding the melt to first and second centrifugal spinners arranged in substantially side-by-side relationship, and optionally one or more third centrifugal spinners between the first and second spinners, wherein each centrifugal spinner comprises at least one fiberising rotor mounted for rotation about a substantially horizontal axis wherein the or each rotor provides an acceleration field, entraining the fibres from each spinner in a stream of air around at least one fiberising rotor of each spinner wherein the stream of air has a flow field and thereby forming a single cloud of fibres entrained in air, collecting the fibres on a permeable conveyor as a web having first and second opposed edge regions and a centre region by sucking the air from the cloud through the conveyor whereby the first and second spinners form the fibres which predominantly provide the first and second edge regions respectively, and cross lapping the web to make the batt whereby a first face section of the
  • At least two fiberising parameters are different on one or different spinners.
  • the invention includes apparatus and processes in which at least two parameters are adjustable on one of the spinners, and one or all of the other spinners are not adjusted during the process. Indeed, these other spinners may be constructed so that adjustment of the parameters on these is difficult to achieve (i.e., the spinners and their melt flow are not constructed easily to allow such adjustment).
  • adjustment of at least two parameters is achieved by adjusting one parameter on one spinner and another parameter on a second spinner. Adjustment of any parameter on any other spinners may be difficult to achieve. Further adjustment of second or subsequent parameters may be difficult to achieve on the adjustable spinners, but is usually possible.
  • the adjustment of at least two parameters can be conducted primarily with the intention of obtaining a uniform or more uniform web.
  • the adjustment can be conducted primarily with the intention of varying the yield across the width of the web, for instance so as to obtain edges which have a higher fibre weight than they might otherwise be, for instance so that the fibre weight and shot content of the web is substantially uniform across the width of the web.
  • this aspect of the invention allows, for the first time, optimisation of the operation of known double and triple spinner processes.
  • the invention is of particular value when it is conducted with the deliberate intention of obtaining variations across the width of the web, generally these variations being in mean fibre diameter, mean fibre length, shot content or chemical analysis.
  • novel product as defined in claim 24.
  • the preferred novel products are preferably characterised by observable differences in one or more of fibre diameter, fibre length, shot content and fibre chemical analysis (or sometimes tensile strength).
  • the sections are integral with one another we mean that they have the integral nature which is inherent from air laying a web and cross lapping the web on itself. This fibre distribution is different from the fibre distribution obtained in prior processes where a face section is formed and is then laminated to the remainder of the batt. Even when the lamination is conducted under conditions that are aimed at maximising fibre entanglement, the sections are not integral with one another in the sense that is obtainable when they are made merely by cross lapping as in the process of the invention.
  • the spinners used in the invention may be any centrifugal spinners having one or more fiberising rotors mounted for rotation about a substantially horizontal axis.
  • each spinner is a cascade spinner.
  • each spinner which is used for forming the web is a cascade spinner comprising a first rotor mounted for rotation about a substantially horizontal axis and at least one further rotor mounted for rotation about a substantially horizontal axis and positioned to receive melt thrown off the first rotor and to throw it off as fibres.
  • first rotor off which some fibres may be formed but which serves predominantly to accelerate the melt and to throw the melt onto the second rotor
  • second rotor which conducts fiberisation and throws melt onto a third rotor, and either all the melt on the third rotor is fiberised or the third rotor conducts fiberisation and throws melt onto a fourth rotor off which all the melt is fiberised.
  • Fiberisation on at least the second and subsequent rotors, and optionally on the first rotor is conducted into a stream of air which has a flow field which can influence fibre formation.
  • Suitable cascade spinners are described in GB-A-1,559,117, WO-A-92/06047, WO-A-92/12939 and WO-A-92/12940.
  • One way of varying the fibre properties on different spinners is by varying the amount of melt, and this is particularly significant when the spinners are cascade spinners. It is therefore desirable to be able to control very accurately the amount of melt which is discharged to each individual spinner. It is generally preferred to provide a single melt to all the spinners from a single furnace, and it is then convenient to provide an appropriate gutter arrangement whereby the melt can flow from the furnace to each of the spinners. It is difficult to control accurately the flow of melt once it is flowing along a gutter towards a spinner and in particular it is difficult to do this when a single rigid gutter system is being used to supply melt to three or more spinners. For instance, the provision of adjustable weirs in the outlets from the gutter tends to be inconvenient.
  • the apparatus for forming MMV fibres comprising first, second and third centrifugal (usually cascade) spinners arranged in side by side relationship, and a rigid gutter assembly for receiving melt from a furnace at a receipt position and for feeding melt from first, third and second discharge position to the first, third and second spinners respectively, wherein the gutter assembly has first and second gutter arms extending in generally opposite directions transversely away from the receipt position towards the first and second discharge positions respectively and a third arm extending generally in a forward direction from the receiving position to the third discharge position, and the apparatus includes means for independently tilting the gutter about a substantially horizontal axis that extends in a generally transverse direction and about a substantially horizontal axis that extends in a generally forward direction, whereby the rate of flow at each of the first, second and third discharge positions can be controlled independently of the rate of flow at each of the other positions.
  • centrifugal usually cascade
  • the gutter assembly is substantially T shaped, with the stem of the T acting as the third gutter arm and extending in the forward direction, and the gutter is mounted for pivoting about a substantially horizontal (forward) axis substantially parallel to the stem of the T and for pivoting about a substantially horizontal axis substantially perpendicular to the forward axis.
  • forward direction we mean a substantially horizontal direction substantially perpendicular to the transverse direction, which extends between the first and second discharge positions.
  • this gutter is a preferred apparatus for independent control of the rate of feed of a single melt to three spinners, it is also possible to use other means for controlling the rate of feed of melt to one or more of the spinners independent of adjustment of the rate of feed of melt to the other spinners. Suitable apparatus is described in WO-A-98/35916.
  • each of the spinners should be independently controllable by independent selection of at least two of the defined fiberising parameters.
  • the centrifugal spinners are independently controllable by independent selection of at least two of the fiberising parameters.
  • at least one spinner, and preferably all the spinners is independently controllable by independent selection of three, four or five of the defined parameters.
  • the independent selection may be conducted before the start of a process.
  • one of the spinners may be constructed in such a way that it inherently produces fibres different from the others.
  • the spinners are cascade spinners, one or more of the spinners can be a three rotor spinner while one or more of the other spinners can be a four rotor spinner.
  • all the spinners have the same number of rotors, and in particular usually either all the spinners have three rotors or, more preferably, they all have four rotors.
  • One or more of the spinners may be constructed to have different sizes of rotor or rotors from one or more of the other spinners.
  • one or more of the spinners may be constructed as described in WO-A-92/06047 while one or more of the other spinners may be constructed with particular rotor sizes or speeds as described in WO-A-92/12939 or WO-A-92/12940.
  • the independent control of one or more of the spinners comprises independent selection of two or more fiberising parameters at the start of a particular process run or even during a process run.
  • the fiberising parameters may be selected to a combination which is chosen having regards to the desired end product, or variation may be made during a run.
  • this control and independent selection in the invention may be made in response to spontaneous or other unwanted variations in fibre production. For instance, it may be observed that the fibre yield from one of the spinners is decreasing spontaneously, in which event one or more of the fiberising parameters is adjusted to restore the yield to the desired value.
  • variation during a production run is made so as to change the nature of the product which is being made. For instance it is possible, by the invention, to change production rapidly from one type of product to another.
  • the adjustment of at least two of the fiberising parameters may be conducted automatically or manually.
  • the desired edge region or core region properties may be programmed into a control system operating the overall apparatus whereupon the fiberising parameters are adjusted automatically to achieve the required properties.
  • a suitable control system is described in EP 97309674.6.
  • the parameters can include its physical properties (generally its viscosity) and/or its chemical analysis.
  • the viscosity is influenced both by temperature and by the chemical analysis of the melt, and the viscosity influences the fiberisation process.
  • the spinners are otherwise similar but the melt has a different viscosity when it reaches one spinner from when it reaches another spinner, fibre quality will differ. If there is a deliberate difference in viscosity, as the melt reaches the spinners, the difference is, usually at least 10cps, often at least 20 or 30cps. It can be as much as 200cps or more.
  • melt temperature As the melt reaches the spinners it is usually at least 10°C, for instance at least 20°C and it can be as much as 50°C or even 100°C. If there is a difference in chemical composition this can be a relatively minor difference, for instance a difference of at least 1% or at least 2% by weight (measured as oxides) of at least one component in the melt but it may be much more, for instance a difference of at least 5% or 10% or more in one or more of the components in the melt.
  • Another difference in fiberising parameters that can be used involves differences in the rate of melt flow, especially when the spinners are of otherwise substantially identical construction. For instance if all the spinners are of substantially the same construction increasing (or reducing) the rate of feed (kilos per minute) to one of the spinners by, for instance at least 5% or even at least 10%, and often up to 30 to 60% or more, can make a significant difference in fibre quality from that spinner.
  • Another difference in fiberising parameters that can be used involves selecting the position of the fiberising rotor, or at least one of the fiberising rotors, with respect to the position of the feed of melt to the spinner.
  • the entire spinner can be displaced laterally so as to alter the angle at which the melt strikes the first rotor by at least 5° or 10°, from an angle approaching 90° to an angle which is considerably less.
  • the entire spinner can be pivoted about a horizontal axis, for instance as described in US-A-3,159,475, typically through at least 5°, or the individual rotors can be moved vertically and/or horizontally with respect to each other.
  • One or more of the spinners may be oscillated around a vertical axis or may be adjusted at a fixed angle to the length direction of the direction of movement of the cloud of fibres so as to direct the cloud in a chosen direction. Suitable process and apparatus for adjusting the position of the or each spinner is described in EP-A-825965.
  • the invention also includes processes in which the variation in the fiberising parameter involves terminating the supply of melt to one or more of the spinners, provided that at least two of the spinners still receive melt for fiberisation.
  • the invention includes processes in which the supply of melt to one of the spinners (usually the third spinner) is terminated and when there are four spinners the invention includes processes in which the supply of melt to one or to two of the spinners is terminated, and so forth.
  • This can have the advantage that the terminated spinner may still be used as a vehicle for ejecting primary and optionally secondary air and/or cooling water and/or binder forwards off the spinners, but without adding any fibres to the load which is being collected as the web.
  • This variation can be achieved by replacing one rotor by a rotor having a differing diameter (as discussed above) but in the invention it is usually achieved by varying the speed of rotation.
  • the variation can be made on each of the rotors or on only one or some of the rotors.
  • the increase is usually at least 10% and often at least 20%, and it can be up to 50% or more.
  • the acceleration field on one of them may be at least 10% more than on another, whilst if the spinners are cascade spinners the acceleration fields on the first or second rotors, or on one or more of the subsequent rotors, will generally be at least 10% more on one of the spinners than on the corresponding rotors on one or more of the other spinners.
  • cascade spinners it is preferred in cascade spinners to provide the stream of air on each fiberising spinner by a primary air stream that flows substantially in contact with part or all of the periphery of the or each of the further rotors, and optionally also in contact with part or all of the periphery of the first rotor.
  • a primary air stream that flows substantially in contact with part or all of the periphery of the or each of the further rotors, and optionally also in contact with part or all of the periphery of the first rotor.
  • this primary air is supplemented by a secondary air stream that flows around the primary air stream.
  • the primary air stream may emerge from guide means that are adjacent the periphery of the or each rotor and which are positioned to direct the air stream coaxially or, usually, at an angle ⁇ of 5 to 60° between the velocity vector and the axial direction in such a manner that generally the tangential component is co-rotational with the rotor.
  • the guide means on one or more rotors on one spinner are often arranged so as to impose a greater tangential component to the primary air stream on one or more of the rotors on one or more of the other spinners, generally by an amount of at least 5°.
  • the greatest angle is generally on this.
  • the greatest tangential angle on the third spinner is at least 5° bigger than the greatest tangential angle on the first and second spinners and is usually at least 20°.
  • the guide means for the primary air stream may be arranged at different angles at different parts of any particular rotor so as to be able to optimise, having regard to the construction of the collecting chamber, the tangential angle for maximising tensile strength while minimising the extent of impact of the cloud of fibres on to the walls of the collecting chamber.
  • the variation in fiberising conditions can therefore be in the flow field of the air stream.
  • the air stream may consist solely of a primary air stream or it may consist of primary and secondary air streams, with the second air stream surrounding the primary air stream.
  • the velocity vector of the primary air at a particular point on one of the spinners can be greater, usually at least 10% greater and often 30 to 80% greater, than the velocity vector of the primary air stream at a substantially corresponding point another spinner, and/or the velocity vector of the secondary air stream at a particular point may be at least 10% greater, and often 30 to 80% greater, than the velocity vector of the secondary air stream at substantially corresponding point on another spinner.
  • an adjustable primary air stream together with a secondary air stream which maybe provided by, inter alia, an auxiliary air stream positioned below the spinner and which provides a relatively strong air stream forwards and upwards to influence the flow field in the collecting chamber and to minimise the loss of wool in the pit which is conventionally positioned in front of and below the spinner to collect shot.
  • a secondary air stream which maybe provided by, inter alia, an auxiliary air stream positioned below the spinner and which provides a relatively strong air stream forwards and upwards to influence the flow field in the collecting chamber and to minimise the loss of wool in the pit which is conventionally positioned in front of and below the spinner to collect shot.
  • the velocity vector for the primary air stream may be varied merely by varying the rate of flow of air up to and past the spinner, for instance when some or all of the air flows coaxially with the spinner and parallel to the axis of the spinner however it can be desirable to impose a tangential component on this air stream, as it approaches the spinner.
  • a tangential component is imposed, as described above, on the primary air stream close to the periphery of the or each spinner, so as to modify fibre forming conditions at the surface of the periphery of the or each rotor in the spinner.
  • the velocity vector can be varied.
  • the angle of a velocity vector of one particular value at a particular point on one spinner may be at least 5° different from the angle of a velocity vector of the same value at a corresponding point on another spinner as a result of there being a difference of at least 5° between the orientation of the air stream on one spinner and the orientation of the air stream at a corresponding position on another spinner.
  • Each spinner can be mounted independent of all the other spinners and each can be constructed and mounted as shown in WO-A-96/38391.
  • each spinner can be constructed with its own associated substantially tubular duct as shown in Figure 6 of WO-A-96/38391. These two ducts may merge into a collecting chamber constructed generally as described in WO-A-96/38391. Reference should be made to that for full disclosure of the construction of the substantially tubular duct, the spinner and the entire apparatus.
  • preferred processes of the invention mount the two or more spinners in a single duct which will have a generally oval shape so as to allow for the side-by-side positioning of the two or more spinners in the duct.
  • the other details of the duct and the apparatus may be substantially as described in WO-A-96/38391.
  • guides may be provided on the inner face of the wall of the duct and these guides can be shaped or adjustable to provide different non-axial movement to different axial segments of air flowing past the spinners and thus becoming the secondary air discussed above.
  • the conveyor must be sufficiently wide to receive the fibres from the two or more spinners. Often the sides of the conveyor are defined by walls of a collecting chamber, but air streams or any other suitable arrangement for confining the clouds of fibres can be used.
  • the velocity vector of the primary gas streams then preferably has both an axial component and a corotational tangential component.
  • the web which is formed on the conveyor is subjected to cross lapping to form the batt.
  • This can be by a swinging pendulum technique or by any other technique by which it is possible to lay lengths of web on one another transverse to the direction of travel of the batt, so that all the first edges of the web tend to form one face of the batt and the second edges of the web tend to form the opposite edge of the batt.
  • An example of a cross lapping system which does not involve a pendulum cross lapper is given in WO-A-97/32069.
  • the web may be a continuous length in which event it will adopt a zig-zag configuration in the batt.
  • the angle of each lap to the transverse direction is usually below 15° and preferably below 10°.
  • at least 4, and preferably 8 or more laps, for instance up to 20 laps, of the web are laid upon one another in order to form the total thickness of the batt.
  • the first face section is formed mainly (e.g., at least 80% by weight) of fibres from the first opposed edge of the batt and the second face section is formed from fibres of the second opposed edge of the batt, and the batt is integral in that it is not formed by bonding one batt on to another batt.
  • the core is formed mainly of fibres from the central region of the batt, with the outer parts of the core merging into a zone formed of the same fibres as on the first and second opposed edges respectively.
  • the fibre properties of interest may consist mainly of the yield (grams mineral material per unit area), especially when the web is desired to be as uniform as possible but mere variation in yield will normally result in change in fibre properties unless a compensatory.change in another parameter is made.
  • the purpose of varying the two or more fiberising parameters is to achieve varying properties which are generally selected from mean fibre diameter, mean fibre length, shot content or chemical analysis, in the one or more of the web edge regions or web core region.
  • the web may have an A-B configuration or an A-A-B or an A-B-A or an A-B-C configuration in its width, and similarly the batt may have any such configurations in its thickness.
  • the mean fibre diameter of the core section of the batt and/or the central region of the web may be different from the mean fibre diameter of a face.
  • the core may have a mean fibre diameter which is less than 90% or more than 110% (for instance 20 to 90% or 110 to 200%) of the mean fibre diameter of a face section.
  • the core section of the batt and/or the central region of the web may have a fibre length below 90% or above 110% (for instance 50 to 90% or 110 to 200%) of the mean fibre length of a face.
  • Shot consists of all particles having a diameter above 63 ⁇ m.
  • the core section of the batt or the central region of the web may have a shot content below 90% or above 110% (for instance 50 to 90% or 110 to 200%) of the shot content of a face.
  • the core region has a mean fibre diameter and/or a shot content at least 10% (and usually 20-60%) less the value for either or both face sections and/or for the face sections to have a fibre length which is at least 10% less (and usually 20-60% less) than the core section.
  • the core section has a fibre length at least 10% (often 20-60%) less than the face sections.
  • tensile strength of the batt This can vary across the thickness of the batt, with core typically being below 90% or above 110% (typically 50-90% or 110 to 150%) of the tensile strength of a face.
  • Density is total weight per unit volume of material which is collected into the batt and the core.
  • the production off one of the spinners is at least 5% more or less than the production off one or more of the other spinners, even though they may be of substantially identical construction and set to operate, in theory, under the same conditions, and this can lead to variations in density.
  • Each face section having the defined fibre quality usually occupies at least 5% of the batt thickness extending inwardly from the outermost face, and the core section (when different) usually occupies at least 20% of the thickness. There is a transition in properties between the sections, e.g., between a face section and the core section. Often each face section occupies at least 10% of the thickness but usually not more than 30 to 40% when there is a different core section.
  • the core section (when present) can be as much as 80% of the thickness when the face sections are thin but is often not more than 30 or 40%.
  • the melt can be any fiberisable mineral melt and so can be glass, slag or rock. Often it is slag or rock, for instance having above 15% by weight alkaline earth metal oxide and below 10% by weight alkali metal oxide in its analysis. For instance it can be a conventional slag or rock melt or a high-aluminium melt such as is described in WO-A-96/14274 or a low-aluminium melt such as is disclosed in the prior art discussed in WO-A-96/14274.
  • Binder or other additives may be added to the cloud of fibres by known means.
  • the amount of binder or other additive may be the same for each spinner or it may be different.
  • the batt can be in any conventional configuration, for instance a mat or slab, and can be cut and/or shaped (e.g. into pipe sections) during or after curing the binder.
  • Products made in the invention may be formulated for any of the conventional purposes of MMV fibres, for instance as slabs, sheets, tubes or other shaped products that are to serve as thermal insulation, fire insulation and protection or noise reduction and regulation, or in appropriate shapes for use as horticultural growing media, or as free fibres for reinforcement of cement, plastics or other products or as a filler.
  • three cascade spinner 1, 3 and 2 respectively have rotors 4 off which fibres are thrown centrifugally in conventional manner.
  • the fibres from spinner 1 collect primarily in the web 7 on the conveyer 5 along the edge region R1, while the fibres from the spinner 2 collect primarily along the opposed edge region R2, and the fibres from spinner 3 collect predominantly along the central region R3.
  • Regions R1 and R3 merge with one and other over a diffuse zone 6 and the regions R2 and R3 likewise merge with one and other over a diffuse zone 6.
  • binder or other material different from MMVF may be injected preferentially from one or more of the spinners, for instance solely through spinner 3, so that the central region R3 has a concentration of that additive significantly greater than the concentration in regions R1 or R2.
  • the web 7 is then cross lapped by a pendulum cross lapper 8 and the cross lapped product is a batt which is collected on a conveyer 9.
  • the batt (see Figure 3) has an upper face section 10 formed predominantly of the region R1 of the web and a lower face section 11 formed predominantly from region R2 of the web, and a central core section 12 formed predominantly from region R3 of the web.
  • the face and core sections 10 and 12 and 12 and 11 merge with one another along indistinct merging zones 13 and are integral with one another.
  • Figure 4 is a view from behind of apparatus similar to the apparatus shown (from in front) in Figure 1 except that appropriate ducting is shown. This ducting can be as described above by reference to WO-A-96/38391.
  • a housing 50 is substantially oval and has the shape of 3 cylinders which merge with another and surrounds the spinners 1, 3 and 2. It leads into a single, wide, oval housing 51 which defines the sides and top of the spinning chamber.
  • the remainder of the apparatus can be as shown in Figure 1.
  • the web 7 can be, for example, 2 to 6 metres (often about 4 metres) wide.
  • FIG 2 the gutter assembly used for feeding the melt to the spinners 1, 3 and 2 respectively is shown in Figure 2, in which the cross-hatched area represents the flow of melt.
  • the gutter assembly comprises a T-shaped gutter 20 which has a stem or arm 24 leading in a forward direction towards a discharge 23 which discharges melt onto the spinner 3. It has side arm sections 25 and 26 extending transversely from the point 27 where the melt 28 flows down onto the gutter. Side arm 25 leads to discharge section 21 for discharging melt onto the spinner 1 while arm 26 leads to discharge section 22 for discharging melt onto spinner 2.
  • a plate 29 bridges the stem section 27 and defines a lowermost opening 30 through which melt can flow along the stem 24 and is fixed rigidly to the arms 25 and 26 and the stem 24, as a unitary rigid assembly of the T shaped assembly and of the arm stem and arm gutters and the plate 29.
  • the entire gutter assembly is mounted on a substantially horizontal axis shown by the line 31 on a fixed housing by bearings 32.
  • Rods connect the bearings 32 with an arm 33 which is fixed to the plate 29 at a bearing 34 and which can be made to move (so as to pivot around the axis 31) by means of a control piston 35 which is fixed to a fixed point 36. Accordingly, expansion or contraction of the piston 35 causes the gutter assembly to pivot about the horizontal axis 31.
  • Another control piston 37 is connected by bearing 38 to the plate 29 and through a hinged arm 39 to the rod 33. Expansion or contraction of the piston 37 will therefore cause the gutter assembly to pivot about the axis shown by the line 40 and which is substantially horizontal and substantially perpendicular to the axis shown by the line 31.
  • any conventional method can be used for comparing the density values, in particular for comparing the weight per unit volume.
  • any conventional method can be used for comparing the chemical analysis of the fibres.
  • the batt which is being analysed should be sliced parallel to its face so as to provide samples representative of the face sections and the core sections, and the analysis should then be conducted on these samples.
  • the apparatus comprised three cascade spinners, each having four rotors arranged side by side and with independent control of the melt stream, all as described above by reference to the drawings.
  • Each of the rotors could be changed, with appropriate adjustment of their relative spacings, and the acceleration fields could be varied on each rotor by varying the diameter and/or by varying the speed of rotation.
  • the first rotor always had a size within the range 100 to 250mm, the second rotor within the range 250 to 300mm, and the third and fourth rotors within the range 250 to 400mn.
  • the three spinners, in side-by-side relationship, were each supplied with primary air streams and the fibres formed off the spinners were carried forward and collected in a single spinning chamber either 2.5 or 4 metres wide.
  • Mode A Km/sec 2 Mode B
  • Mode C Km/ssec 2 Mode D
  • the melt flow is the amount in tons per hour fed on to the first rotor of each spinner.
  • the primary air is the air which emerges through the slots immediately adjacent the periphery of each rotor, and the secondary air is the air which is forced through the spinners at other positions, not immediately adjacent to the rotors.
  • the slots which are adjacent the periphery of the fourth rotor are fitted with a stator which includes blades positioned at varying angles, as described in WO-A-92/06047.
  • the values quoted for DE are the range of angles extending from D to E shown in Figure 1 of WO-A-92/06047 while the values for EF are the angles in the region E to F shown in Figure 1 of WO-A-92/06047, both on the fourth rotor.
  • the ignition loss is determined by combustion in conventional manner.
  • the spinners are adjusted with respect to one another so that they comply with the following parameters.
  • Spinner No.1 Spinner No.3
  • Spinner No.2 Meltflow 3,5 t/h 5 t/h 3,5 t/h Melt temperature 1500-1520°C 1500-1520°C 1500-1520°C Acceleration field Mode B Mode C Mode B Velocity primary air 80 m/sec. 120 m/sec. 80 m/sec.
  • This product is a low-density product of optimal quality with good compression and insulation properties corresponding to lambda class 040 with a density of 28 kg/m 3 .
  • Amount primary air 7500 m 3 /h 7500 m 3 /h 7500 m 3 /h 7500 m 3 /h Amount secondary air 4000 m 3 /h 4000 m 3 /h 4000 m 3 /h Stator angles DE 0-18° EF 18-27° DE 0-24° EF 24-42° DE 0-18° EF 18-27° Ignition loss 4,2% 3,3% 4,2%
  • This product is a heavy product which is resistant to pressure on both sides.
  • the apparatus is adjusted as follows.
  • Spinner No.1 Spinner No.3
  • Spinner No.2 Meltflow 5 t/h 4 t/h 3 t/h Melt temperature 1500-1520°C 1500-1520°C 1500-1520°C Acceleration field Mode A Mode B Mode B Velocity primary air 100 m/sec. 120 m/sec. 100 m/sec.
  • Amount primary air 7500 m 3 /h 7500 m 3 /h 7500 m 3 /h 7500 m 3 /h Amount secondary air 4000 m 3 /h 4000 m 3 /h 4000 m 3 /h Stator angles DE 0-18° EF 18-27° DE 0-24° EF 24-42° DE 0-18° EF 18-27° Ignition loss 4,2% 3,3% 3,0%
  • This product is a heavy product resistant to pressure on the surface but has one flexible side which can absorb irregularities in the substrate on which the product is to be mounted, for instance as roof board.
  • the selection of parameters gives a systematic uneven distribution of the wool in the web and this results in a distribution in the final product in which the upper third of the product has a higher density than the remainder of the product.
  • the unsymmetrical strengths through the thickness of the product is promoted by variation in the amount of binder, with the maximum binder being in the upper layer (containing maximum fibre) and minimum binder in the lower layer, which is flexible and formed of finer fibres.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Glass Compositions (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Inorganic Fibers (AREA)

Claims (30)

  1. Verfahren zur Herstellung eines MMVF (künstlichen glasartigen Faser)-Vlieses, umfassend
       Schleuderzerfasern mineralischer Schmelze durch Zuführen der Schmelze zu einer ersten und zweiten Zentrifugalschleudervorrichtung (1, 2), die im Wesentlichen in einer Seite-an-Seite-Beziehung angeordnet sind, und gegebenenfalls einer oder mehreren dritten Zentrifugalschleudervorrichtungen (3) zwischen der ersten und zweiten Schleudervorrichtung, wobei jede Zentrifugalschleudervorrichtung mindestens einen Zerfaserungsrotor (4) umfasst, der zur Rotation um eine im Wesentlichen horizontale Achse montiert ist, wobei der oder jeder Rotor ein Beschleunigungsfeld liefert,
       Mitführen der Fasern von jeder Schleudervorrichtung in einem Luftstrom um mindestens einen Zerfaserungsrotor von jeder Schleudervorrichtung, wobei der Luftstrom ein Strömungsfeld aufweist und dadurch eine einzelne Wolke von in Luft mitgeführten Fasem gebildet wird,
       Sammeln der Fasem auf einer durchlässigen Fördereinrichtung (5) als Bahn (7) mit ersten und zweiten gegenüberliegenden Randbereichen (R1 und R2) und einem Mittelbereich (R3) durch Saugen der Luft von der Wolke durch die Fördereinrichtung, wodurch die erste und zweite Schleudervorrichtung die Fasern bilden, die überwiegend den ersten bzw. zweiten Randbereich liefern, und
       kreuzweises Aufeinanderlegen (8) der Bahn, um das Vlies zu bilden, wodurch ein erster Außenseitenabschnitt (10) des Vlieses hauptsächlich aus dem ersten Randbereich der Bahn gebildet wird und der gegenüberliegende zweite Außenseitenabschnitt (11) des Vlieses hauptsächlich aus dem zweiten Randbereich der Bahn gebildet wird und das Vlies einen Kernabschnitt zwischen dem ersten und dem zweiten Außenseitenabschnitt aufweist,
       dadurch gekennzeichnet, dass die Schleuderzerfaserung an einer oder mehreren Schleudervorrichtungen unabhängig von der Schleuderzerfaserung an einer oder mehreren anderen Schleudervorrichtungen durch unabhängige Einstellung an einer oder unterschiedlichen Schleudervorrichtungen von mindestens zwei Zerfaserungsparametern vor oder während der Herstellung des MMVF-Vlieses steuerbar ist, um eine oder mehrere Eigenschaften des Bahnrandbereichs oder des Bahnkernbereichs zu variieren, die ausgewählt werden aus (1) mittlerem Faserdurchmesser, (2) mittlerer Faserlänge, (3) Shot-Gehalt, (4) Zugfestigkeit der Wolle, (5) Dichte und (6) chemischer Analyse, wobei die Zerfaserungsparameter ausgewählt werden aus (a) den physikalischen Eigenschaften und/oder der chemischen Analyse der Schmelze, die einer Schleudervorrichtung zugeführt wird, (b) der Geschwindigkeit des Schmelzflusses zu einer Schleudervorrichtung, (c) der Position des Zerfaserungsrotors oder mindestens eines der Zerfaserungsrotoren an einer Schleudervorrichtung bezüglich der Position der Schmelzezuführung zu dieser Schleudervorrichtung, (d) dem Beschleunigungsfeld oder den Beschleunigungsfeldern an einer Schleudervorrichtung und (e) dem Strömungsfeld des oder jedes Luftstroms, der mit einer Schleudervorrichtung verbunden ist.
  2. Verfahren nach Anspruch 1, das unter Verwendung mindestens einer dritten Zentrifugalschleudervorrichtung zwischen der ersten und zweiten Schleudervorrichtung ausgeführt wird.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, in welchem jede Schleudervorrichtung eine Kaskadenschleudervorrichtung ist, die einen ersten Rotor, der zur Rotation um eine im Wesentlichen horizontale Achse montiert ist, und mindestens einen weiteren Rotor, der zur Rotation um eine im Wesentlichen horizontale Achse montiert ist und angeordnet ist, um Schmelze, die vom ersten Rotor abgeschleudert wird, zu empfangen und als Fasern abzuschleudern, umfasst.
  4. Verfahren nach Anspruch 3, in welchem ein Luftstrom um jede Schleudervorrichtung bereitgestellt wird, zumindest teilweise durch einen primären Luftstrom, der im Wesentlichen in Kontakt mit einem Teil der oder allen der oder mindestens einem der weiteren Rotoren strömt, und gegebenenfalls auch durch einen sekundären Luftstrom, der um den primären Luftstrom herum strömt.
  5. Verfahren nach Anspruch 4, in welchem der primäre Luftstrom aus einer Leiteinrichtung austritt, die benachbart zur Peripherie des oder jedes weiteren Rotors ist und angeordnet ist, um den Luftstrom im Wesentlichen parallel und in einem Winkel von 5 bis 60° zur Oberfläche des Rotors zu richten.
  6. Verfahren nach Anspruch 5, in welchem die Leiteinrichtung an der oder jeder dritten Schleudervorrichtung den Luftstrom in einem Winkel lenkt, der zumindest in einigen Teilen der Schleudervorrichtung mindestens 20° beträgt und mindestens 5° größer ist als der Winkel in den entsprechenden Teilen von einer der anderen Schleudervorrichtungen.
  7. Verfahren nach irgendeinem der Ansprüche 4 bis 6, in welchem die Schleuderzerfaserung durch unabhängiges Auswählen des Strömungsfelds des oder jedes Luftstroms, der mit einer Schleudervorrichtung verbunden ist, relativ zum Strömungsfeld des oder jedes Luftstroms, der mit einer anderen Schleudervorrichtung verbunden ist, unabhängig gesteuert wird.
  8. Verfahren nach Anspruch 7, in welchem die Auswahl zu einem Unterschied von mindestens 5° zwischen der Orientierung des Luftstroms an einer Schleudervorrichtung und der Orientierung des Luftstroms an einer entsprechenden Position an der anderen Schleudervorrichtung führt.
  9. Verfahren nach irgendeinem der Ansprüche 3 bis 8, in welchem das Beschleunigungsfeld an dem oder einem Teil der oder allen weiteren Rotoren von einer oder mehreren der Schleudervorrichtungen mindestens 10% größer ist als das Beschleunigungsfeld an dem entsprechenden Rotor oder an den entsprechenden Rotoren von einer anderen der Schleudervorrichtungen.
  10. Verfahren nach irgendeinem vorhergehenden Anspruch, in welchem die Menge an Schmelze, die einem der Schleudervorrichtungen zugeführt wird, mindestens 10% größer ist als die Menge, die einer der anderen Schleudervorrichtungen zugeführt wird.
  11. Verfahren nach irgendeinem vorhergehenden Anspruch, in welchem alle Schleudervorrichtungen in einem im Wesentlichen ovalen Kanal in einer Seite-an-Seite-Beziehung angeordnet sind.
  12. Verfahren nach irgendeinem vorhergehenden Anspruch, in welchem die Variation in den Eigenschaften des Bahnrandbereichs und/oder des Kernbereichs durch Auswahl der Zerfaserungsparameter die Wirkung hat, eine Bahn mit im Wesentlichen gleichmäßigen Eigenschaften über ihre Breite zu liefern.
  13. Verfahren nach Anspruch 12, in welchem die Variation in den Eigenschaften des Bahnrandbereichs oder des Bahnkernbereichs die Variation des Gehalts ist, wodurch eine Bahn mit im Wesentlichen gleichmäßigem Mineralgehalt über ihre Breite erhalten wird.
  14. Verfahren nach irgendeinem der Ansprüche 1 bis 12, in welchem die Variation in mindestens zwei der Zerfaserungsparameter ausgeführt wird, wodurch der Bahnrandbereich und/oder der Bahnkernbereich und der Vliesrandabschnitt und/oder der Vlieskernabschnitt variiert werden, um eine Konfiguration A-B, A-A-B, A-B-A oder A-B-C zu ergeben.
  15. Verfahren nach Anspruch 14, in welchem der mittlere Faserdurchmesser in einem der Bahnbereiche und Vliesabschnitte mindestens 10% kleiner ist als der mittlere Faserdurchmesser in mindestens einem anderen der Bahnbereiche und Vliesabschnitte.
  16. Verfahren nach Anspruch 14, in welchem die mittlere Faserlänge in mindestens einem der Vliesabschnitte und Bahnbereiche mindestens 10% kleiner ist als die mittlere Faserlänge in mindestens einem der anderen Vliesabschnitte und Bahnbereiche.
  17. Verfahren nach Anspruch 14, in welchem der Shot-Gehalt in mindestens einem der Vliesabschnitte und Bahnbereiche mindestens 10% kleiner ist als der Shot-Gehalt in mindestens einem der anderen Vliesabschnitte und Bahnbereiche.
  18. Verfahren nach Anspruch 14, in welchem die chemische Analyse der Fasern in mindestens einem der Vliesabschnitte und Bahnbereiche sich um einen Gehalt von mindestens 2% von einem der Elemente aus der Analyse der Fasern in mindestens einem anderen der Vliesabschnitte und Bahnbereiche unterscheidet.
  19. Verfahren nach irgendeinem vorhergehenden Anspruch, in welchem jede Schleudervorrichtung unabhängig von allen anderen Schleudervorrichtungen montiert wird.
  20. Vorrichtung zur Herstellung eines MMVF-Vlieses, die umfasst
       eine erste und zweite Zentrifugalschleudervorrichtung (1, 2), die im Wesentlichen in einer Seite-an-Seite-Beziehung angeordnet sind, und gegebenenfalls eine oder mehrere dritte Zentrifugalschleudervorrichtungen (3) zwischen der ersten und zweiten Schleudervorrichtung, wobei jede Zentrifugalschleudervorrichtung mindestens einen Zerfaserungsrotor (4) umfasst, der zur Rotation um eine im Wesentlichen horizontale Achse montiert ist, wobei der oder jeder Rotor ein Beschleunigungsfeld liefert,
       eine Einrichtung zum Zuführen von MMVF-Schmelze zu jeder der Schleudervorrichtungen,
       eine Einrichtung zum Mitführen der Fasern von jeder Schleudervorrichtung in einem Luftstrom um mindestens einen Zerfaserungsrotor (4) von jeder Schleudervorrichtung, wobei der Luftstrom ein Strömungsfeld aufweist und dadurch eine einzelne Wolke von in Luft mitgeführten Fasem liefert,
       eine durchlässige Fördereinrichtung (5) zum Sammeln der Fasem als Bahn mit ersten und zweiten gegenüberliegenden Randbereichen (R1 und R2) und einem Mittelbereich (R3) und eine Einrichtung zum Saugen der Luft von der Wolke durch die Fördereinrichtung, wodurch die erste und zweite Schleudervorrichtung die Fasern bilden, die überwiegend den ersten bzw. zweiten Randbereich liefern, und
       eine Einrichtung zum kreuzweise Aufeinanderlegen der Bahn, um das Vlies zu bilden, wodurch ein erster Außenseitenabschnitt (10) des Vlieses hauptsächlich aus dem ersten Randbereich der Bahn gebildet wird und der gegenüberliegende zweite Außenseitenabschnitt (11) des Vlieses hauptsächlich aus dem zweiten Randbereich der Bahn gebildet wird und das Vlies einen Kernabschnitt zwischen dem ersten und dem zweiten Außenseitenabschnitt aufweist,
       dadurch gekennzeichnet, dass es Einrichtungen gibt zur unabhängigen Einstellung von mindestens zwei der Zerfaserungsparameter an einer oder unterschiedlichen Schleudervorrichtungen vor oder während der Herstellung des MMVF-Vlieses, wobei die Parameter ausgewählt sind aus (a) den physikalischen Eigenschaften und/oder der chemischen Analyse der Schmelze, die einer Schleudervorrichtung zugeführt wird, (b) der Geschwindigkeit des Schmelzflusses zu einer Schleudervorrichtung, (c) der Position des Zerfaserungsrotors oder mindestens eines der Zerfaserungsrotoren an einer Schleudervorrichtung bezüglich der Position der Schmelzezuführung zu dieser Schleudervorrichtung, (d) dem Beschleunigungsfeld oder den Beschleunigungsfeldern an einer Schleudervorrichtung und (e) dem Strömungsfeld des oder jedes Luftstroms, der mit einer Schleudervorrichtung verbunden ist.
  21. Vorrichtung nach Anspruch 20, enthaltend eine Einrichtung zur unabhängigen Auswahl des Strömungsfelds des oder jedes Luftstroms, der mit einer Schleudervorrichtung verbunden ist, relativ zum Strömungsfeld des oder jedes Luftstroms, der mit einer anderen Schleudervorrichtung verbunden ist.
  22. Vorrichtung nach Anspruch 21, wodurch die Auswahl zu einem Unterschied von mindestens 5° zwischen der Orientierung des Luftstroms an einer Schleudervorrichtung und der Orientierung des Luftstroms an einer entsprechenden Position an der anderen Schleudervorrichtung führt.
  23. Vorrichtung nach irgendeinem der Ansprüche 20 bis 22, in welcher jede Schleudervorrichtung unabhängig von allen anderen Schleudervorrichtungen montiert ist.
  24. Integriertes MMVF-Vlies, erhältlich durch das Verfahren nach Anspruch 1 und mit einem ersten Außenseitenabschnitt (10), der sich von einer Außenseite nach innen erstreckt, einem zweiten Außenseitenabschnitt (11), der sich von der gegenüberliegenden Außenseite nach innen erstreckt, und einem Kernabschnitt (12) zwischen dem ersten und zweiten Außenseitenabschnitt, wobei die Abschnitte untereinander integriert sind und die in dem Verfahren nach Anspruch 1 erhältlichen Fasern mindestens eine Fasereigenschaft aufweisen, die sich in einem der Abschnitte von der Fasereigenschaft in mindestens einem der anderen Abschnitte unterscheidet und wobei die Eigenschaft ausgewählt ist aus mittlerem Faserdurchmesser, mittlerer Faserlänge, Shot-Gehalt, Zugfestigkeit, Dichte und chemischer Analyse der Fasern.
  25. Vlies nach Anspruch 24, in welchem der mittlere Faserdurchmesser in einem Abschnitt mindestens 10% kleiner ist als der mittlere Faserdurchmesser in mindestens einem der anderen Abschnitte.
  26. Vlies nach Anspruch 24, in welchem die mittlere Faserlänge in einem Abschnitt mindestens 10% kleiner ist als die mittlere Faserlänge in mindestens einem der anderen Abschnitte.
  27. Vlies nach Anspruch 24, in welchem der Shot-Gehalt in einem der Abschnitte mindestens 10% kleiner ist als der Shot-Gehalt in mindestens einem der anderen Abschnitte.
  28. Vlies nach Anspruch 24, in welchem die chemische Analyse der Fasern in einem Abschnitt sich um einen Gehalt von mindestens 2% von einem der Elemente aus der Analyse der Fasern in einem oder mehreren der anderen Abschnitte unterscheidet.
  29. Vorrichtung zur Herstellung einer Bahn aus künstlichen glasartigen Fasern, umfassend
       erste, dritte und zweite Zentrifugalschleudervorrichtungen (1, 3, 2), die in einer Seite-an-Seite-Beziehung angeordnet sind,
       ein starres Rinnensystem (20) zur Aufnahme von Schmelze aus einem Ofen an einer Aufnahmestelle (28) und zum Zuführen von Schmelze von einer ersten, dritten und zweiten Abgabestelle (21, 23, 22) an die ersten, dritten bzw. zweiten Schleudervorrichtungen (1, 3, 2),
       wobei das Rinnensystem einen ersten und zweiten Rinnenarm (25, 26), die sich in allgemein entgegengesetzten Richtungen quer von der Aufnahmestelle weg zu der ersten bzw. zweiten Abgabestelle erstrecken, und einen dritten Rinnenarm (24), der sich allgemein in Vorwärtsrichtung von der Aufnahmestelle zu der dritten Abgabestelle erstreckt, aufweist,
       und eine Einrichtung zum unabhängigen Kippen der Rinne um eine im Wesentlichen horizontale Achse, die sich allgemein in Querrichtung erstreckt, und um eine im Wesentlichen horizontale Achse, die sich allgemein in Vorwärtsrichtung erstreckt, wodurch die Strömungsgeschwindigkeit an jeder der ersten, zweiten und dritten Abgabestelle unabhängig von der Strömungsgeschwindigkeit der Schmelze an jeder der anderen Stellen durch das unabhängige Kippen der Rinne unabhängig gesteuert werden kann.
  30. Vorrichtung nach Anspruch 29, in welcher die Rinne im Wesentlichen eine T-Form aufweist, wobei der Stamm des T sich in Vorwärtsrichtung erstreckt und die Rinne zum Drehen um eine im Wesentlichen horizontale Achse im Wesentlichen parallel zum Stamm des T und zum unabhängigen Drehen um eine im Wesentlichen horizontale Achse im Wesentlichen senkrecht zur Achse, die im Wesentlichen parallel zum Stamm des T ist, montiert ist.
EP99917824A 1998-04-06 1999-03-18 Apparat, um ein künstliches Glasfaser-Web zu bilden Expired - Lifetime EP1086054B2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99917824A EP1086054B2 (de) 1998-04-06 1999-03-18 Apparat, um ein künstliches Glasfaser-Web zu bilden
SI9930715T SI1086054T2 (sl) 1998-04-06 1999-03-18 Naprava za oblikovanje koprene iz umetno narejenih steklenih vlaken

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP98302661 1998-04-06
EP98302661 1998-04-06
PCT/EP1999/001806 WO1999051535A1 (en) 1998-04-06 1999-03-18 Man-made vitreous fibre batts and their production
EP99917824A EP1086054B2 (de) 1998-04-06 1999-03-18 Apparat, um ein künstliches Glasfaser-Web zu bilden

Publications (3)

Publication Number Publication Date
EP1086054A1 EP1086054A1 (de) 2001-03-28
EP1086054B1 true EP1086054B1 (de) 2004-11-24
EP1086054B2 EP1086054B2 (de) 2010-04-14

Family

ID=8234764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99917824A Expired - Lifetime EP1086054B2 (de) 1998-04-06 1999-03-18 Apparat, um ein künstliches Glasfaser-Web zu bilden

Country Status (9)

Country Link
EP (1) EP1086054B2 (de)
AT (1) ATE283244T1 (de)
AU (1) AU3597199A (de)
DE (1) DE69922192T3 (de)
ES (1) ES2232129T5 (de)
HU (1) HU228317B1 (de)
PL (1) PL191294B1 (de)
SI (1) SI1086054T2 (de)
WO (1) WO1999051535A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550634C1 (ru) * 2013-01-16 2015-05-10 Парок Ой Аб Способ производства листов из минеральной шерсти
RU2634378C2 (ru) * 2012-10-04 2017-10-26 Сэн-Гобэн Изовер Установка и способ изготовления термо- и/или звукоизолирующего изделия
US11572645B2 (en) 2017-09-01 2023-02-07 Paroc Group Oy Apparatus and method for manufacturing mineral wool as well as a mineral wool product

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777881A1 (fr) 1998-04-24 1999-10-29 Saint Gobain Isover Procede et dispositif de fibrage de laine minerale par centrifugation libre
HU228444B1 (en) 1999-09-28 2013-03-28 Rockwool Int Bonded fibre products
EP1322564B1 (de) * 2000-09-28 2006-10-25 Rockwool International A/S Faservliesstoff
DE10064784A1 (de) * 2000-12-22 2002-06-27 Saint Gobain Isover G & H Ag Fassadendämmplatte und Verfahren zu ihrer Herstellung
SI20812B (sl) * 2001-01-26 2009-10-31 TERMO, d.d., Industrija termičnih izolacij, Škofja Loka Naprava in postopek za tvorbo plasti iz kamenih vlaken in podobnih izolacijskih vlaknastih materialov
DK1444408T4 (en) * 2001-11-14 2018-08-13 Rockwool Int Layered mineral fiber element and process for making it
GB0427725D0 (en) * 2004-12-17 2005-01-19 Rockwool Int Mineral fibre products
DE102007018774A1 (de) * 2007-04-20 2008-10-23 Saint-Gobain Isover G+H Ag Fassadendämmplatte für die Dämmung von Außenfassaden von Gebäuden, Wärmedamm-Verbundsystem mit derartigen Fassadendämmplatten sowie Verfahren zur Herstellung einer Fassadendämmplatte
FI125456B (fi) 2009-04-29 2015-10-15 Paroc Group Oy Mineraalivillaa oleva eristystuotekappale, raakamineraalivillamatto ja näiden valmistusmenetelmät
DE202009012819U1 (de) 2009-09-24 2011-02-10 Matecs Sp. Z.O.O. Anlage zur Herstellung von Faservliesmatten und damit hergestelltes Faservlies
US20130084445A1 (en) 2011-09-30 2013-04-04 Owens Corning Intellectual Capital, Llc Method of forming a web from fibrous material

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159475A (en) 1955-05-05 1964-12-01 Johns Manville Apparatus for forming fibers
US3709670A (en) 1970-09-10 1973-01-09 H Eriksen Method, apparatus and system for fiberizing molten mineral material
US4210432A (en) * 1978-07-03 1980-07-01 Rockwool Aktiebolaget Method for control of the surface weight of a mineral wool mat
FR2621218B1 (fr) 1987-10-02 1989-12-08 Saint Gobain Isover Substrat pour culture hors sol a teneur en eau controlee dans son epaisseur
FI85688C (sv) * 1990-06-13 1992-05-25 Partek Ab Förfarande för att vid mineralfiberframställning reglera en viktrelate rad parameter hos en mineralfiberbana
YU159091A (sh) 1990-09-28 1995-12-04 Rockwool International A/S Postupak i uredjaj za proizvodnju vlakana za mineralnu vunu
GB9100884D0 (en) 1991-01-16 1991-02-27 Rockwool Int Stone wool
GB9100886D0 (en) 1991-01-16 1991-02-27 Rockwool Int Process and apparatus for making mineral wool fibres
GB9100887D0 (en) 1991-01-16 1991-02-27 Rockwool Int Process and apparatus for making mineral wool fibres
ES2111505T3 (es) 1994-11-08 1998-10-01 Rockwool Int Fibras vitreas artificiales.
GB9425020D0 (en) * 1994-12-12 1995-02-08 Rockwool Int Manufacture of vitreous fibre products
WO1996036391A2 (en) 1995-05-01 1996-11-21 Stephen Shapiro High efficiency variable energy and intensity photon radiation source
GB9509782D0 (en) 1995-05-15 1995-07-05 Rockwool Int Man-made vitreous fibre products and processes and apparatus for their production
GB9509813D0 (en) * 1995-05-15 1995-07-05 Rockwool Int Method and apparatus for the manufacture of man-made vitreous fibre products
GB9604241D0 (en) 1996-02-28 1996-05-01 Rockwool Int Production of a lapped product from a web, and apparatus for this

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634378C2 (ru) * 2012-10-04 2017-10-26 Сэн-Гобэн Изовер Установка и способ изготовления термо- и/или звукоизолирующего изделия
RU2550634C1 (ru) * 2013-01-16 2015-05-10 Парок Ой Аб Способ производства листов из минеральной шерсти
US11572645B2 (en) 2017-09-01 2023-02-07 Paroc Group Oy Apparatus and method for manufacturing mineral wool as well as a mineral wool product

Also Published As

Publication number Publication date
DE69922192T3 (de) 2010-10-14
EP1086054B2 (de) 2010-04-14
PL191294B1 (pl) 2006-04-28
DE69922192T2 (de) 2006-02-16
HU228317B1 (en) 2013-03-28
ATE283244T1 (de) 2004-12-15
WO1999051535A1 (en) 1999-10-14
SI1086054T1 (en) 2005-06-30
ES2232129T3 (es) 2005-05-16
PL343457A1 (en) 2001-08-13
HUP0103092A3 (en) 2007-08-28
ES2232129T5 (es) 2010-07-14
EP1086054A1 (de) 2001-03-28
DE69922192D1 (de) 2004-12-30
SI1086054T2 (sl) 2010-08-31
AU3597199A (en) 1999-10-25
HUP0103092A2 (hu) 2002-01-28

Similar Documents

Publication Publication Date Title
EP1086054B1 (de) Synthetische glasfasermatten und deren herstellung
EP0825966B1 (de) Verfahren und vorrichtung zur herstellung von glasfaserprodukten
US7458235B2 (en) Process and device for formation of mineral wool and mineral wool products
EP0825965B1 (de) Verfahren und vorrichtung zum herstellen von glasfaserprodukten
EA028266B1 (ru) Способ изготовления теплоизоляционного материала на основе минеральной ваты
EP1928796B1 (de) Verfahren und vorrichtung zur herstellung von synthetischen glasfaserprodukten
EP1228011B2 (de) Verfahren und vorrichtung zur herstellung von glasfaserprodukten
RU2369568C2 (ru) Способ и устройство для изготовления минеральных волокон и волокнообразующее роторное устройство
US6536241B1 (en) Method and device for drawing out mineral wool fibres by free centrifuging
EP0797547B1 (de) Herstellung von glasfaserprodukten
EP1228012B1 (de) Verfahren und vorrichtungen zur herstellung von glasfaserprodukten
WO1997032068A1 (en) Webs of man-made vitreous fibres
EP1115671A1 (de) Herstellung von mineralfaserprodukten
CA2220362C (en) Man-made vitreous fibre products and processes and apparatus
EP1101746A1 (de) Herstellung von Mineralwolleprodukten
EP1230179A1 (de) Herstellung von produkten aus mineralwolle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR GB NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 20001006

17Q First examination report despatched

Effective date: 20021112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB NL PT SE

AX Request for extension of the european patent

Extension state: SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69922192

Country of ref document: DE

Date of ref document: 20041230

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2232129

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: PAROC GROUP OY AB

Effective date: 20050822

ET Fr: translation filed
NLR1 Nl: opposition has been filed with the epo

Opponent name: PAROC GROUP OY AB

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: PAROC OY AB

Effective date: 20050822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050424

NLR1 Nl: opposition has been filed with the epo

Opponent name: PAROC OY AB

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RTI2 Title (correction)

Free format text: APPARATUS FOR FORMING A MAN-MADE VITREOUS FIBRE WEB

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20100414

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE ES FI FR GB NL PT SE

AX Request for extension of the european patent

Extension state: SI

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20100611

Kind code of ref document: T5

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69922192

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 69922192

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69922192

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160229

Year of fee payment: 18

Ref country code: NL

Payment date: 20160310

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160316

Year of fee payment: 18

Ref country code: AT

Payment date: 20160225

Year of fee payment: 18

Ref country code: BE

Payment date: 20160224

Year of fee payment: 18

Ref country code: FR

Payment date: 20160223

Year of fee payment: 18

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 283244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170318

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170318

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20180328

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180328

Year of fee payment: 20

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180328

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69922192

Country of ref document: DE