EP1082364A1 - Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate - Google Patents

Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate

Info

Publication number
EP1082364A1
EP1082364A1 EP99915669A EP99915669A EP1082364A1 EP 1082364 A1 EP1082364 A1 EP 1082364A1 EP 99915669 A EP99915669 A EP 99915669A EP 99915669 A EP99915669 A EP 99915669A EP 1082364 A1 EP1082364 A1 EP 1082364A1
Authority
EP
European Patent Office
Prior art keywords
compound
thermolabile
styrene
polymerization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99915669A
Other languages
English (en)
French (fr)
Inventor
Guiscard Glück
Klaus Hahn
Roland Gellert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1082364A1 publication Critical patent/EP1082364A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons

Definitions

  • the invention relates to a process for the preparation of water-expandable styrene polymers (WEPS) by polymerizing styrene in aqueous suspension, the suspended styrene droplets containing water in a finely dispersed manner emulsified.
  • WEPS water-expandable styrene polymers
  • EPS Particulate expandable styrene polymers
  • Common blowing agents are hydrocarbons, especially pentane.
  • pentane emitted during the production and processing of EPS must be collected again. This is complex and costly. It therefore makes sense to replace these organic substances with harmless blowing agents in the longer term, for example with water.
  • This process has the disadvantage that it is carried out in two stages: first water is emulsified in the styrene / polystyrene mixture, then the organic phase is suspended in water with phase reversal.
  • the object of the invention was therefore to develop a simpler, one-step process for the production of WEPS.
  • thermolabile organic compound 0.1 to 5% by weight, based on the monomers, of a thermolabile organic compound is added at the beginning or in the course of the suspension polymerization 2 amphiphilic and / or hydrophilic compounds decompose or hydrolyze, and that the maximum polymerization temperature is above the temperature at which the decomposition of the thermolabile compound begins (decomposition temperature).
  • Thermolabile compounds in the sense of the present invention are organic compounds which break down at elevated temperatures, preferably above 60 ° C., and in particular above 80 ° C., into amphiphilic and / or hydrophilic compounds which can act as emulsifying agents.
  • Halogen compounds such as hexabromocyclododecane with a decomposition temperature of 125 ° C. (in the polymerization medium), 1, 1,2,2-tetrabromethane with a decomposition temperature of 128 ° C. or chlorinated paraffins with a decomposition temperature of about 130 ° C. are suitable.
  • amphiphilic hydrocarbon compounds which carry a hydrophilic hydroxyl group and, in addition, hydrophilic hydrogen halides.
  • Peroxides are also suitable, e.g. Dibenzoyl peroxide with a decomposition temperature of 80 ° C, tert. -Butylperoxy-2-ethylhexanoate with a decomposition temperature of 80 ° C, and dicumyl peroxide with a decomposition temperature of 110 ° C.
  • amphiphilic hydrocarbon compounds bearing carboxyl groups or hydroxyl groups are formed again.
  • Organic phosphorus compounds such as e.g. Aryl phosphates and their derivatives.
  • thermolabile compounds are preferably added to the styrene phase right at the start of the suspension polymerization, but they can also be metered in during the polymerization up to a conversion of 90%.
  • the amounts metered in should be so high that the effective amphiphilic compounds are formed to a sufficient extent, i.e. generally higher than the amounts of peroxide initiators usually added. Quantities of 0.2 to 8, in particular 0.8 to 4,% by weight are therefore preferred.
  • styrene alone is preferably used as the monomer. However, it can be up to 20% of its weight by other ethylenically unsaturated 3
  • Monomers such as alkylstyrenes, divinylbenzene, acrylonitrile, 1,1-diphenylethene or ⁇ -methylstyrene can be replaced.
  • the usual auxiliaries such as Suspension stabilizers, flame retardants, chain transfer agents, expansion aids, nucleating agents and plasticizers are added.
  • inorganic Pickering dispersants e.g. Magnesium pyrophosphate or tricalcium phosphate
  • Preferred flame retardants are organic bromine compounds which are added in amounts of 0.1 to 2% by weight.
  • the suspension polymerization is expediently carried out in two temperature stages, two peroxide initiators which decompose at different temperatures being used in amounts of 0.01 to 0.1% by weight.
  • the first peroxide e.g. Dibenzoyl peroxide
  • disintegrates and initiates the polymerization Then the temperature is allowed to rise slowly to 100 to 150 ° C.
  • the second peroxide then breaks down, e.g. Dicumyl peroxide or di-tert. butyl perbenzoate. If the peroxides are used in larger amounts, their amphiphilic decomposition products additionally act as emulsifiers in the sense of the present invention.
  • the maximum polymerization temperature should be at least 2 ° C., preferably at least 5 ° C. and in particular more than 8 ° C. higher than the decomposition temperature of the thermolabile compound. At this temperature, the system is held until an effective amount of the thermolabile compound has broken down, i.e. generally more than 60 min. As a rule, higher polymerization temperatures than usual have to be used to accelerate the decomposition of the thermolabile compound. If a bromine compound is also to act as a flame retardant later, then somewhat larger amounts are used, e.g. 0.5 to 8% by weight. The decomposition is generally not complete, so that sufficient amounts of flame retardant remain in the polymer.
  • the WEPS particles formed in the suspension polymerization contain 2 to 20, in particular 5 to 15% by weight of water, depending on the amount of EPS recyclate used and their content of coating agent. Their particle size is 0.2 to 5, preferably 0.5 to 2 mm. They can be foamed into foam particles with 110 to 140 ° C hot air or superheated steam. A particularly elegant foaming process, which 4
  • German patent application P 198 12 854.1 Particles with very low bulk density is described in German patent application P 198 12 854.1.
  • the WEPS foam particles can be welded to form foam sheets, blocks or molded parts that can be used as insulation or packaging materials.
  • the product could be expanded using air heated to over 100 ° C.
  • the product expanded to 10 times its original bulk density of approx. 600 g / 1.
  • the pre-expanded product was then dried and foamed in a second and third expansion step with steam to a bulk density of 10 g / l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Wasser als einzigem Treibmittel enthaltenden Styrolpolymerisaten durch Polymerisation von Styrol in wässriger Suspension in Gegenwart von 0,1 bis 5 Gew.-% einer thermolabilen organischen Verbindung, die bei erhöhter Temperatur in amphiphile und/oder hydrophile Verbindungen zerfällt, wobei die maximale Polymerisationstemperatur höher ist als die Zerfallstemperatur der thermolabilen Verbindung.

Description

Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate (WEPS) durch Polymerisation von Styrol in wässriger Suspension, wobei die suspendierten Styrol- tröpfchen Wasser in feiner Verteilung emulgiert enthalten.
Teilchenförmige expandierbare Styrolpolymerisate (EPS) werden normalerweise hergestellt durch Polymerisation von Styrol in wässriger Suspension in Gegenwart eines flüchtigen organischen Treibmittels. Übliche Treibmittel sind Kohlenwasserstoffe, ins- besondere Pentan. Aus Umweltschutzgründen muß bei der Herstellung und Verarbeitung von EPS emittierte Pentan wieder aufgefangen werden. Dies ist aufwendig und kostenintensiv. Es ist daher sinnvoll, diese organischen Substanzen längerfristig durch unbedenklichere Treibmittel zu ersetzen, beispielsweise durch Wasser.
In einer Dissertation der Universität Eindhoven "Water Expandable Polystyrene" von J.J. Crevecoeur aus dem Jahr 1997 ist ein Verfahren zur Herstellung von WEPS beschrieben, bei dem zunächst Wasser in feiner Verteilung in Styrol mit Hilfe von oberflächen- aktiven Substanzen emulgiert, das Styrol bis zu einem Umsatz von 50 % poly erisiert, die Mischung unter Phasenumkehr in Wasser suspendiert und das Styrol schließlich mit Hilfe von Peroxid-Initiatoren auspolymerisiert wird. Als oberflächenaktive Substanzen werden amphiphile Emulgatoren eingesetzt, z.B. Natrium- Bis- (2 -ethylhexyl) -sulfosuccinat oder Natrium-Styrolsulfonat oder Blockcopolymere aus Polystyrol-Blöcken und Polystyrolsulfonat- Blöcken. Alle diese Substanzen weisen sowohl einen hydrophilen als auch einen hydrophoben Rest auf und sind daher in der Lage, Wasser in Styrol zu emulgieren.
Dieses Verfahren hat den Nachteil, daß es in zwei Stufen durchgeführt wird: Erst wird Wasser in der Styrol/Polystyrol-Mischung emulgiert, dann wird unter Phasenumkehr die organische Phase in Wasser suspendiert.
Aufgabe der Erfindung war es daher, ein einfacheres, einstufiges Verfahren zur Herstellung von WEPS zu entwickeln.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zu Beginn oder im Verlauf der Suspensionspolymerisation 0,1 bis 5 Gew.-%, bezogen auf die Monomeren, einer thermolabilen organischen Verbindung zugesetzt werden, die bei erhöhter Temperatur in 2 amphiphile und/oder hydrophile Verbindungen zerfällt bzw. hydrolysiert wird, und daß die maximale Polymerisationstemperatur über der Temperatur liegt, bei der gerade der Zerfall der thermolabilen Verbindung einsetzt (Zerfallstemperatur) .
Thermolabile Verbindungen im Sinne der vorliegenden Erfindung sind organische Verbindungen, die bei erhöhten Temperaturen, vorzugsweise oberhalb von 60°C, und insbesondere oberhalb von 80°C in amphiphile und/oder hydrophile Verbindungen zerfallen, welche als Emulgierhilfsmittel wirken können. Geeignet sind Halogenverbindungen, wie Hexabromcyclododecan mit einer Zerfallstemperatur von 125°C (im Polymerisationsmedium) ferner 1 ,1,2,2 -Te- trabromethan mit einer Zerfallstemperatur von 128°C oder Chlorparaffine mit einer Zerfallstemperatur von etwa 130°C.
Beim Zerfall bzw. bei der Hydrolyse dieser Halogenverbindungen bilden sich amphiphile KolenwasserstoffVerbindungen, die eine hydrophile Hydroxylgruppe tragen, und daneben hydrophile Halogenwasserstoffe.
Geeignet sind auch Peroxide, wie z.B. Dibenzoylperoxid mit einer Zerfallstemperatur von 80°C, tert. -Butylperoxy-2-ethylhexanoat mit einer Zerfallstemperatur von 80°C, sowie Dicumylperoxid mit einer Zerfallstemperatur von 110°C.
Beim Zerfall dieser Peroxide bilden sich wieder amphiphile Kohlenwasserstoffverbindungen, die Carboxylgruppen oder Hydroxylgruppen tragen.
Ferner sind geeignet organische Phosphorverbindungen, wie z.B. Arylphosphate und deren Derivate.
Die thermolabilen Verbindungen werden bevorzugt gleich zu Beginn der Suspensionspolymerisation der Styrol-Phase zugesetzt, man kann sie aber auch im Verlauf der Polymerisation bis zu einem Umsatz von 90 % zudosieren. Die zudosierten Mengen sollten so hoch sein, daß sich in ausreichendem Maße die wirksamen amphiphilen Verbindungen bilden, d.h., in der Regel also höher als die üblicherweise zugesetzten Mengen an Peroxid-Initiatoren. Bevorzugt sind daher Mengen von 0,2 bis 8, insbesondere 0,8 bis 4 Gew.-%.
Bei der erfindungsgemäßen Suspensionspolymerisation wird als Monomer bevorzugt Styrol allein eingesetzt. Es kann jedoch zu bis zu 20 % seines Gewichts durch andere ethylenisch ungesättigte 3
Monomere, wie Alkylstyrole, Divinylbenzol, Acrylnitril, 1,1-Di- phenylethen oder α-Methylstyrol ersetzt sein.
Bei der Suspensionspolymerisation können die üblichen Hilfs- mittel, wie z.B. Suspensionsstabilisatoren, Flammschutzmittel, Kettenüberträger, Expandierhilfsmittel, Keimbildner und Weichmacher zugesetzt werden. Es ist vorteilhaft, als Suspensionsstabilisatoren anorganische Pickering-Dispergatoren, z.B. Magnesium- pyrophosphat oder Tricalciumphosphat, in Kombination mit geringen Mengen Alkylsulfonaten einzusetzen. Bevorzugte Flammschutzmittel sind organische Bromverbindungen, die in Mengen von 0,1 bis 2 Gew. -% zugesetzt werden.
Die Suspensionspolymerisation wird zweckmäßigerweise in zwei Temperaturstufen durchgeführt, wobei zwei bei unterschiedlichen Temperaturen zerfallende Peroxid-Initiatoren in Mengen von 0,01 bis 0,1 Gew.-% eingesetzt werden. Zunächst wird die Suspension auf 80° bis 90°C, wobei das erste Peroxid, z.B. Dibenzoylperoxid, zerfällt und die Polymerisation einleitet. Dann läßt man die Temperatur langsam auf 100 bis 150°C ansteigen. Dabei zerfällt dann das zweite Peroxid, z.B. Dicumylperoxid oder Di-tert . -butyl- perbenzoat. Wenn man die Peroxide in größeren Mengen einsetzt, wirken ihre amphiphilen Zerfallsprodukte zusätzlich als Emulgier- hilfsmittel im Sinne der vorliegenden Erfindung. Die maximale Po- lymerisationstemperatur sollte mindestens 2°C, vorzugsweise mindestens 5°C und insbesondere mehr als 8°C höher sein als die Zerfallstemperatur der thermolabilen Verbindung. Bei dieser Temperatur wird das System so lange gehalten bis eine wirksame Menge der thermolabilen Verbindung zerfallen ist, d.h. im allge- meinen mehr als 60 min. In der Regel muß bei höheren Polymerisationstemperaturen als allgemein üblich gearbeitet werden, um den Zerfall der thermolabilen Verbindung zu beschleunigen. Soll eine Bromverbindung außerdem später als Flammschutzmittel wirken, dann werden etwas größere Mengen eingesetzt, z.B. 0,5 bis 8 Gew.-%. Der Zerfall ist im allgemeinen nicht vollständig, so daß immer noch ausreichende Mengen Flammschutzmittel im Polymerisat verbleiben.
Die bei der Suspensionspolymerisation entstandenen WEPS-Partikel enthalten je nach der eingesetzten EPS-Recyclatmenge und deren Gehalt an Beschichtungsmittel 2 bis 20, insbesondere 5 bis 15 Gew. -% Wasser. Ihre Partikelgröße beträgt 0,2 bis 5, vorzugsweise 0,5 bis 2 mm. Sie können mit 110 bis 140°C heißer Luft oder überhitzten Wasserdampf zu Schaumstoffpartikeln geschäumt werden. Ein besonders elegantes Schäumverfahren, welches zu Schaum- 4
Partikeln mit sehr niedriger Schüttdichte führt, ist in der Deutschen Patentanmeldung P 198 12 854.1 beschrieben.
Die WEPS-Schaumpartikel können wie herkömmliche EPS-Schaumparti- kel zu Schaumstoff-Platten, -Blöcken oder -Formteilen verschweißt werden, die als Isolier- oder Verpackungsmaterialien verwendet werden können .
Beispiel
In 17,03 kg Styrol werden 170 g Hexabromcyclododecan (Zersetzungstemperatur 125°C) unter Beimischung von 59,6 g Dicumylperoxid und 20,4 g Dibenzoylperoxid gegeben. Die organische Phase wird in 19,5 1 vollentsalztes Wasser in einem 50 1 Rührkessel einge- bracht. Die wassrige Phase enthält 69,8 g Natriumpyrophosphat und 129,5 g Magnesiumsulfat. Man erhitzt die Suspension unter Rühren auf 80°C und setzt dann 3,51 g sec. -Natrium-Cis-Alkylsulfonat zu, wobei sich das Suspensionsstabilisatorsystem bildet. Schließlich wird bei 138°C auspolymerisiert . Nach dem Abtrennen der wäßrigen Phase erhält man ein perlförmiges Granulat, welches 11 % Wasser enthält.
Das Produkt konnte mittels auf über 100°C erhitzter Luft expandiert werden. Dabei expandierte das Produkt auf das 10-fache sei- nes ursprünglichen Schüttgewichtes von ca. 600 g/1. Das vorgeschäumte Produkt wurde anschließend getrocknet und in einem zweiten und dritten Expansionsschritt mit Wasserdampf auf eine Schüttdichte von 10 g/1 geschäumt.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Wasser als einzigem Treibmittel enthaltenden Styrolpolymerisaten durch Polymerisation von
Styrol, gegebenenfalls zusammen mit Comonomeren, in wässriger Suspension, wobei die suspendierten Styroltröpfchen Wasser in feiner Verteilung emulgiert enthalten und ein Emulgierhilfs- mittel anwesend ist, dadurch gekennzeichnet, daß zu Beginn oder im Verlauf der Suspensionspolymerisation 0,1 bis
8 Gew.-%, bezogen auf die Monomeren, einer in Styrol löslichen oder dispergierbaren, thermolabilen organischen Verbindung zugesetzt werden, die bei erhöhter Temperatur in amphiphile und/oder hydrophile Verbindungen teilweise oder ganz zerfällt bzw. hydrolysiert wird, und daß mindestens die maximale Polymerisationstemperatur über der Temperatur liegt, bei der gerade der Zerfall der zugesetzten thermolabilen organischen Verbindung einsetzt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die thermolabile Verbindung eine Halogenverbindung ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Halogenverbindung Hexabromcyclododecan, 1,1,2, 2-Tetrabrome- than oder Chlorparaffin ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die thermolabile Verbindung ein organisches Peroxid ist.
5. Verfahren nach Anspruch 4, daß das Peroxid Dibenzoylperoxid, tert . -Butylperoxy-2-ethylhexanoat oder Dicumylperoxid ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die thermolabile Verbindung eine organische Phosphorverbindung ist.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die thermolabile Verbindung bei einem Umsatz zwischen 0 und 90 % dem Polymerisationsansatz zugesetzt wird.
Verwendung der nach Anspruch 1 hergestellten, 2 bis 20 Gew. Wasser enthaltenden Styrolpolymerisate zur Herstellung von Schaumstoffen.
EP99915669A 1998-03-24 1999-03-19 Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate Withdrawn EP1082364A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19812857 1998-03-24
DE1998112857 DE19812857A1 (de) 1998-03-24 1998-03-24 Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate
PCT/EP1999/001839 WO1999048936A1 (de) 1998-03-24 1999-03-19 Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate

Publications (1)

Publication Number Publication Date
EP1082364A1 true EP1082364A1 (de) 2001-03-14

Family

ID=7862088

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99915669A Withdrawn EP1082364A1 (de) 1998-03-24 1999-03-19 Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate

Country Status (4)

Country Link
EP (1) EP1082364A1 (de)
JP (1) JP2002507638A (de)
DE (1) DE19812857A1 (de)
WO (1) WO1999048936A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10101403A1 (de) 2001-01-13 2002-07-18 Basf Ag Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate
DE10101402A1 (de) 2001-01-13 2002-07-18 Basf Ag Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1106143A (en) * 1964-03-03 1968-03-13 Wolff Expandable thermoplastic polymeric particles
FR1567484A (de) * 1967-05-22 1969-05-16
US3766189A (en) * 1972-10-05 1973-10-16 Sinclair Koppers Co Fire retardant latex containing chlorinated paraffin wax
DE3928284A1 (de) * 1989-08-26 1991-02-28 Basf Ag Schwerentflammbare expandierbare styrolpolymerisate und schaumstoffe sowie flammschutzmittel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9948936A1 *

Also Published As

Publication number Publication date
WO1999048936A1 (de) 1999-09-30
DE19812857A1 (de) 1999-09-30
JP2002507638A (ja) 2002-03-12

Similar Documents

Publication Publication Date Title
EP1082382A1 (de) Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate
DE69703742T2 (de) Verfahren zur herstellung polymerer teilchen
DE69703114T2 (de) Verfahren zur herstellung polymere teilchen
EP1023368B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymerisaten
EP1366110A1 (de) Kohlenstoffpartikel enthaltende expandierbare styrolpolymerisate
EP1137701B1 (de) Graphitpartikel enthaltende expandierbare styrolpolymerisate
WO1998051734A1 (de) Verfahren zur herstellung graphitpartikel enthaltender expandierbarer styrolpolymerisate
WO2013092322A2 (de) Verfahren zur herstellung von expandierbaren, graphit- und flammschutzmittelhaltigen styrolpolymerisaten
EP0821028A2 (de) Expandierbare Styrolgraftcopolymerisate
EP0915126A2 (de) Verfahren zur Herstellung von perlformigen expandierbaren Styrolpolymerisaten
DE2546356C3 (de) Verfahren zur Herstellung von verschäumbaren Styrolpolymerisatteilchen
EP1082364A1 (de) Verfahren zur herstellung wasserexpandierbarer styrolpolymerisate
EP2794739A1 (de) Hochtemperaturperoxid-haltige styrolpolymerisatperlen für die saatpolymerisation
EP1082383B1 (de) Verfahren zur herstellung wasserexpandierbarer recyclat enthaltender styrolpolymerisate
EP1223180B1 (de) Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate
EP1223179B1 (de) Verfahren zur Herstellung wasserexpandierbarer Styrolpolymerisate
EP1994085B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymerisaten
EP1432757B1 (de) Verfahren zur herstellung von expandierbarem polystyrol
WO2007144273A1 (de) Verfahren zur herstellung von expandierbaren styrolpolymerisaten
WO2013092468A1 (de) Verfahren zur herstellung von expandierbaren, partikelförmige additive enthaltenden styrolpolymeren
DE2727022C2 (de) Verfahren zur Herstellung von feuerfestem Polystyrol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030305