EP1079022B1 - Beheizter Zylinder - Google Patents

Beheizter Zylinder Download PDF

Info

Publication number
EP1079022B1
EP1079022B1 EP00106970A EP00106970A EP1079022B1 EP 1079022 B1 EP1079022 B1 EP 1079022B1 EP 00106970 A EP00106970 A EP 00106970A EP 00106970 A EP00106970 A EP 00106970A EP 1079022 B1 EP1079022 B1 EP 1079022B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
heating system
heated cylinder
heated
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00106970A
Other languages
English (en)
French (fr)
Other versions
EP1079022A2 (de
EP1079022A3 (de
Inventor
Robert Wolf
Markus Oechsle
Frank Wegehaupt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Paper Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Paper Patent GmbH filed Critical Voith Paper Patent GmbH
Publication of EP1079022A2 publication Critical patent/EP1079022A2/de
Publication of EP1079022A3 publication Critical patent/EP1079022A3/de
Application granted granted Critical
Publication of EP1079022B1 publication Critical patent/EP1079022B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/14Rollers, drums, cylinders; Arrangement of drives, supports, bearings, cleaning
    • F26B13/18Rollers, drums, cylinders; Arrangement of drives, supports, bearings, cleaning heated or cooled, e.g. from inside, the material being dried on the outside surface by conduction
    • F26B13/183Arrangements for heating, cooling, condensate removal
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • D21F5/021Construction of the cylinders
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F5/00Dryer section of machines for making continuous webs of paper
    • D21F5/02Drying on cylinders
    • D21F5/022Heating the cylinders

Definitions

  • the invention relates to a heated cylinder for drying a fibrous web, in particular a paper, board or tissue web in machines for producing and / or refining thereof, comprising a cylinder jacket whose outer jacket layer has good thermal conductivity, wherein the outer jacket layer for heating at least one Assigned outside the cylinder arranged heating system and is connected within the cylinder jacket to the outer cladding layer, a heat insulating layer (see, for example, US 5,156,086 A).
  • the object of the invention is to influence in this known heated cylinder with heating system profiling the moisture distribution across the fibrous web.
  • the outer metal layer which is preferably made of metal, should be as thin as possible. This also increases the maximum temperature difference between the different heating zones.
  • the thickness of the outer cladding layer is less than 30 mm, preferably less than 5 mm.
  • the outer jacket layer has a thickness of less than 5 mm, preferably less than 1 mm and in particular less than 0.2 mm.
  • the support structure may be made of metal, but the thermal effect of an induction heating is to be considered.
  • the supporting insulating layer and / or the supporting structure are made of a fiber-reinforced thermally insulating plastic. This means that this insulating layer and the support structure can also form a single, possibly structured or multilayered element of the cylinder jacket.
  • the insulating layer and / or the support structure at least a substantial part, preferably fill the entire interior of the cylinder.
  • the diameter of the cylinder on the one hand determines the jacket surface to be heated, which limits the maximum diameter, and on the other hand, however, also has an influence on the contact time with the fibrous web, resulting in a minimum. Particularly good results have been achieved with cylinders whose diameter is in the range of 500 to 3000 mm, preferably between 1200 and 1800 mm.
  • the optimal zone width is determined by the cost of the heating system and the heat flow between the heating zones. Good results are achievable at zone widths in the range of 30 to 100 mm, preferably in the range between 40 and 75 mm.
  • the heat flow between the heating zones can be further reduced by the fact that the outer cladding layer in the region between the heating zones has a reduced thickness. This can be done in a simple manner via a narrow, preferably outwardly extending and not impairing the quality of the fibrous web circumferential groove.
  • the maximum surface temperature of the cylinder should be between 120 and 250 ° C, preferably between 150 and 200 ° C. For this it is usually necessary that the total available heating power up to a cylinder diameter of 1200 mm at least 60 kW / m, with a cylinder diameter between 1200 and 1800 mm at least 80 kW / m and with a cylinder diameter of more than 1800 mm at least 120 KW / m is.
  • the contact time of the cylinder with the fibrous web should be at least 50 ms, preferably at least 80 ms and in particular at least 120 ms.
  • All heated cylinders 1 here consist of a cylinder jacket whose outer metallic cladding layer 3 has a good thermal conductivity.
  • this jacket layer 3 is assigned an outside of the cylinder 1, inductive heating system 4.
  • a heat insulating layer 5 adjoins the outer jacket layer 3 within the cylinder jacket.
  • the outer cladding layer 3 in Figure 2 hardly has a supporting function and can therefore be limited to a thickness of less than 1 mm. This reduces the heat flow along the cylinder 1, so that larger Temperature differences on the mantle surface can be adjusted.
  • the insulating layer 3 consists of a plastic least thermal conductivity and an adjoining within the cylinder jacket support structure 6 made of a fiber-reinforced plastic, wherein the support structure 6 fills a large part of the interior of the cylinder 1. This allows a lightweight and very stable support structure. 6
  • the cylinders 1 also have, by way of example, a diameter of 1500 mm, with a contact time of 120 ms resulting from the guidance of the fibrous web 2.
  • the heating system 4 is divided along the cylinder 1 into a plurality of separately controllable heating zones 7, wherein the zone width is 50 mm. With an available heat output of 100 kW / m surface temperatures of the cylinder 1 of about 200 ° C can be reached.
  • the thickness of the outer jacket layer 3 between the heating zones 7 is reduced. This is done via a very narrow, burned from the outside with a laser circumferential groove 8. This improves the independence of the heating zones. 7

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Paper (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • Die Erfindung betrifft einen beheizten Zylinder zur Trocknung einer Faserstoffbahn, insbesondere einer Papier-, Karton-oder Tissuebahn in Maschinen zur Herstellung und/oder Veredelung derselben, bestehend aus einem Zylindermantel dessen äußere Mantelschicht eine gute Wärmeleitfähigkeit aufweist, wobei der äußeren Mantelschicht zur Heizung wenigstens ein außerhalb des Zylinders angeordnetes Heizsystem zugeordnet ist und sich innerhalb des Zylindermantels an die äußere Mantelschicht eine Wärme- Isolierschicht anschließt (siehe z.B. US 5 156 086 A).
  • Die Aufgabe der Erfindung ist es, bei diesem bekannter beheizten Zylinder die mit Heizsystem Profilierung der Feuchteverteilung quer zur Faserstoffbahn zu beeinflussen.
  • Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Zur Verringerung der Aufwärm-und Abkühlzeiten sollte die vorzugsweise aus Metall bestehende äußere Mantelschicht möglichst dünn sein. Dies erhöht außerdem die maximale Temperaturdifferenz zwischen den verschiedenen Heizzonen.
  • Selbst für den Fall, daß die Formstabilität und Festigkeit des Zylinders noch wesentlich von der äußeren Mantelschicht mitbestimmt werden soll, ist anzustreben, daß die Dicke der äußeren Mantelschicht unter 30 mm, vorzugsweise unter 5 mm liegt.
  • Falls jedoch die Formstabilität und Festigkeit des Zylinders im wesentlichen von der Isolierschicht und/oder einer sich innerhalb des Zylindermantels an die Isolierschicht anschließender Tragstruktur bestimmt wird, so ist es von Vorteil, wenn die äußere Mantelschicht eine Dicke von weniger als 5 mm, vorzugsweise weniger als 1 mm und insbesondere von weniger als 0,2 mm aufweist.
  • Die Tragstruktur kann dabei aus Metall bestehen, wobei jedoch die thermische Wirkung einer Induktionsheizung zu beachten ist.
  • Leichtere Zylinder ergeben sich jedoch im allgemeinen, wenn die tragende Isolierschicht und/oder die Tragstruktur aus einem faserverstärkten, thermisch isolierenden Kunststoff bestehen. Dies bedeutet, daß diese Isolierschicht und die Tragstruktur auch ein einziges, gegebenenfalls strukturiertes oder mehrschichtiges Element des Zylindermantels bilden können.
  • Unter Umständen können sich auch Vorteile hinsichtlich der Stabilität und Festigkeit oder der Fertigung ergeben, wenn die Isolierschicht und/oder die Tragstruktur zumindest einen wesentlichen Teil, vorzugsweise den ganzen Innenraum des Zylinders ausfüllen.
  • Der Durchmesser des Zylinders bestimmt einerseits die zu erwärmende Manteloberfläche, was den maximalen Durchmesser begrenzt, und hat andererseits jedoch auch Einfluß auf die Kontaktzeit mit der Faserstoffbahn, wodurch sich ein Minimum ergibt. Besonders gute Ergebnisse wurden mit Zylindern, deren Durchmesser im Bereich von 500 bis 3000 mm, vorzugsweise zwischen 1200 und 1800 mm liegt, erreicht.
  • Die optimale Zonenbreite wird vom Aufwand für das Heizsystem und vom Wärmefluß zwischen den Heizzonen bestimmt. Gute Ergebnisse sind bei Zonenbreiten im Bereich von 30 bis 100 mm, vorzugsweise im Bereich zwischen 40 und 75 mm realisierbar.
  • In diesem Zusammenhang läßt sich der Wärmestrom zwischen den Heizzonen noch dadurch verringern, daß die äußere Mantelschicht im Bereich zwischen den Heizzonen eine verringerte Dicke besitzt. Dies kann auf einfache Weise über eine schmale, vorzugsweise außen verlaufende und die Qualität der Faserstoffbahn nicht beeinträchtigende Umfangsrille erfolgen.
  • Zur effizienten Beeinflussung der Feuchteverteilung oder Trocknung der Faserstoffbahn insgesamt und unter Vermeidung von Hitzeschäden an der Faserstoffbahnoberfläche sollte die maximale Oberflächentemperatur des Zylinders zwischen 120 und 250 °C, vorzugsweise zwischen 150 und 200 °C liegen. Hierzu ist es meist erforderlich, daß die gesamte, verfügbare Heizleistung bis zu einem Zylinderdurchmesser von 1200 mm mindestens 60 kW/m, bei einem Zylinderdurchmesser zwischen 1200 und 1800 mm mindestens 80 kW/m und bei einem Zylinderdurchmesser von mehr als 1800 mm mindestens 120 KW/m beträgt.
  • Außerdem sollte zur Gewährleistung eines ausreichenden Wärmeflusses zur Faserstoffbahn die Kontaktzeit des Zylinders mit der Faserstoffbahn mindestens 50 ms, vorzugsweise mindestens 80 ms und insbesondere mindestens 120 ms betragen.
  • Nachfolgend soll Erfindung an mehreren Ausführungsbeispielen näher erläutert werden. In der beigefügten Zeichnung zeigt:
    • Figur 1: einen schematischen Querschnitt eines Zylinders 1 mit tragender Isolierschicht 5;
    • Figur 2: einen schematischen Querschnitt eines Zylinders 1 mit Isolierschicht 5 und Tragstruktur 6 und
    • Figur 3: eine schematische Draufsicht eines Zylinders 1.
  • Alle beheizten Zylinder 1 bestehen hier aus einem Zylindermantel dessen äußere, metallische Mantelschicht 3 eine gute Wärmeleitfähigkeit aufweist. Außerdem ist dieser Mantelschicht 3 ein außerhalb des Zylinders 1 angeordnetes, induktives Heizsystem 4 zugeordnet. Zur Begrenzung des Wärmeflusses schließt sich innerhalb des Zylindermantels an die äußere Mantelschicht 3 eine Wärme-Isolierschicht 5 an.
  • In Figur 1 wird die Formstabilität und Festigkeit des Zylinders 1 von der äußeren Mantelschicht 3, die beispielhaft eine Dicke von 4 mm aufweist und der ebenfalls tragenden Isolierschicht 5 gewährleistet. Dies vereinfacht den Aufbau, wobei die Isolierschicht 5 aus faserverstärktem Kunststoff besteht. Die Herstellung des Zylinders 1 erfolgt durch thermisches Aufschrumpfen der metallischen Mantelschicht 3 auf die Isolierschicht 5.
  • Im Gegensatz hierzu hat die äußere Mantelschicht 3 in Figur 2 kaum noch eine tragende Funktion und kann daher auf eine Dicke von weniger als 1 mm beschränkt werden. Dies verringert den Wärmefluß entlang des Zylinders 1, so daß größere Temperaturunterschiede an der Manteloberfläche eingestellt werden können.
  • Die Isolierschicht 3 besteht aus einem Kunststoff geringster Wärmeleitfähigkeit und eine sich innerhalb des Zylindermantels daran anschließende Tragstruktur 6 aus einem faserverstärkten Kunststoff, wobei die Tragstruktur 6 einen großen Teil des Inneren des Zylinders 1 ausfüllt. Dies ermöglicht eine leichte und sehr stabile Tragstruktur 6.
  • Die Zylinder 1 haben ebenfalls beispielhaft einen Durchmesser von 1500 mm, wobei sich durch die Führung der Faserstoffbahn 2 eine Kontaktzeit von 120 ms ergibt.
  • Das Heizsystem 4 ist entlang des Zylinders 1 in mehrere separat steuerbare Heizzonen 7 unterteilt, wobei die Zonenbreite 50 mm beträgt. Bei einer verfügbaren Heizleistung von 100 kW/m sind Oberflächentemperaturen des Zylinders 1 von ca. 200 °C erreichbar.
  • Um den Wärmefluß zwischen den Heizzonen 7 zu beschränken, ist die Dicke der äußeren Mantelschicht 3 zwischen den Heizzonen 7 verringert. Dies erfolgt über eine sehr schmale, von außen mit einem Laser eingebrannte Umfangsrille 8. Dies verbessert die Unabhängigkeit der Heizzonen 7.

Claims (16)

  1. Beheizter Zylinder (1) mit Heizsystem (4) zur Trocknung einer Faserstoffbahn (2), insbesondere einer Papier-, Karton-oder Tissuebahn in Maschinen zur Herstellung und/oder Veredelung derselben, bestehend aus einem Zylindermantel dessen äußere Mantelschicht (3) eine gute Wärmeleitfähigkeit aufweist, wobei der äußeren Mantelschicht (3) zur Beheizung wenigstens ein außerhalb des Zylinders (1) angeordnetes Heizsystem (4) zugeordnet ist und sich innerhalb des Zylindermantels an die äußere Mantelschicht (3) eine Wärme-Isolierschicht (5) anschließt, dadurch gekennzeichnet, dass zur Profilierung der Feuchteverteilung quer zur Faserstoffbahn das Heizsystem (4) entlang des Zylinders (1) mehrere, separat steuerbare Heizzonen (7) besitzt, deren Zonenbreite kleiner als 200 mm ist.
  2. Beheizter Zylinder (1) mit Heizsystem (4) nach Anspruch 1, dadurch gekennzeichnet, dass die Formstabilität und Festigkeit des Zylinders (1) wesentlich von der vorzugsweise aus Metall bestehenden, äußeren Mantelschicht (3) bestimmt wird.
  3. Beheizter Zylinder (1) mit Heizsystem (4) nach Anspruch 2, dadurch gekennzeichnet, dass die äußere Mantelschicht (3) eine Dicke von weniger als 30 mm, vorzugsweise von weniger als 5 mm besitzt.
  4. Beheizter Zylinder (1) mit Heizsystem (4) nach Anspruch dadurch gekennzeichnet, dass die Formstabilität und Festigkeit des Zylinders (1) im wesentlichen von der Isolierschicht (5) und/oder einer sich innerhalb des Zylindermantels an die Isolierschicht (5) anschließenden Tragstruktur (6) bestimmt wird.
  5. Beheizter Zylinder (1) mit Heizsystem (4) nach Anspruch 4, dadurch gekennzeichnet, dass die Tragstruktur (6) aus Metall besteht.
  6. Beheizter Zylinder (1) mit Heizsystem (4) nach Anspruch 4, dadurch gekennzeichnet, dass die tragende Isolierschicht (5) und/oder die Tragstruktur (6) aus einem faserverstärkten Kunststoff bestehen.
  7. Beheizter Zylinder (1) mit Heizsystem (4) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass
    die äußere Mantelschicht (3) eine Dicke von weniger als 5 mm, vorzugsweise weniger als 1 mm und insbesondere von weniger als 0,2 mm aufweist.
  8. Beheizter Zylinder (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    die Isolierschicht (5) und/oder die Tragstruktur (6) zumindest einen wesentlichen Teil, vorzugsweise den ganzen Innenraum des Zylinders (1) ausfüllen.
  9. Beheizter Zylinder (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    der Durchmesser des Zylinders (1) im Bereich von 500 bis 3000 mm, vorzugsweise Bereich von 1200 bis 1800 mm liegt.
  10. Beheizter Zylinder (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    das Heizsystem (4) als Infrarot-und/oder Induktionsheizung aufgebaut ist.
  11. Beheizter Zylinder (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    die Zonenbreite im Bereich von 30 bis 100 mm, vorzugsweise Bereich von 40 bis 75 mm liegt.
  12. Beheizter Zylinder (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    die äußere Mantelschicht (3) im Bereich zwischen den Heizzonen (7) eine verringerte Dicke besitzt.
  13. Beheizter Zylinder (1) mit Heizsystem (4) nach Anspruch 12, dadurch gekennzeichnet, dass
    die Dickenverringerung der äußeren Mantelschicht (3) die Form einer schmalen, vorzugsweise außen verlaufenden Umfangsrille (8) hat.
  14. Anwendung des beheizten Zylinders (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    die maximale Oberflächentemperatur des Zylinders (1) zwischen 120 und 250 °C, vorzugsweise zwischen 150 und 200 °C liegt.
  15. Anwendung des beheizten Zylinders (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    die gesamte, verfügbare Heizleistung bis zu einem Zylinderdurchmesser von 1200 mm mindestens 60 kW/m, bei einem Zylinderdurchmesser zwischen 1200 und 1800 mm mindestens 80 kW/m und bei einem Zylinderdurchmesser von mehr als 1800 mm mindestens 120 kW/m beträgt.
  16. Anwendung des beheizten Zylinders (1) mit Heizsystem (4) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    die Kontaktzeit des Zylinders (1) mit der Faserstoffbahn (2) mindestens 50 ms, vorzugsweise mindestens 80 ms und insbesondere mindestens 120 ms beträgt.
EP00106970A 1999-06-28 2000-04-01 Beheizter Zylinder Expired - Lifetime EP1079022B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19929520A DE19929520A1 (de) 1999-06-28 1999-06-28 Beheizter Zylinder
DE19929520 1999-06-28

Publications (3)

Publication Number Publication Date
EP1079022A2 EP1079022A2 (de) 2001-02-28
EP1079022A3 EP1079022A3 (de) 2001-07-11
EP1079022B1 true EP1079022B1 (de) 2006-07-26

Family

ID=7912785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00106970A Expired - Lifetime EP1079022B1 (de) 1999-06-28 2000-04-01 Beheizter Zylinder

Country Status (3)

Country Link
US (1) US6487789B1 (de)
EP (1) EP1079022B1 (de)
DE (2) DE19929520A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI109713B (fi) * 2001-03-05 2002-09-30 Metso Paper Automation Oy Menetelmä ja laite telan lämmittämiseksi
DE10123809A1 (de) * 2001-05-16 2002-11-21 Voith Paper Patent Gmbh Durchströmzylinder
FI117013B (fi) * 2004-07-28 2006-05-15 Metso Paper Inc Tela käytettäväksi rainanmuodostuskoneen kuivatusosalla
DE102005063563B3 (de) * 2005-12-08 2014-08-28 Sartorius Stedim Biotech Gmbh Vorrichtung zum Entfernen flüchtiger Medien
DE102005058577B4 (de) * 2005-12-08 2014-05-22 Sartorius Stedim Biotech Gmbh Vorrichtung zum Entfernen flüchtiger Medien von Bahnmaterialien
AU2012204057B2 (en) * 2005-12-23 2014-12-18 Asf-Keystone, Inc Railroad train monitoring system
US8826560B2 (en) * 2006-09-01 2014-09-09 Kadant Inc. Support apparatus for supporting a syphon
FR3012822B1 (fr) * 2013-11-07 2016-09-09 Danube Int Dispositif de sechage et de repassage de pieces textiles
CN104990376B (zh) * 2015-06-25 2017-06-20 苏州迪盛织造整理有限公司 一种浆丝机电磁烘干筒
AT525162B1 (de) * 2022-05-03 2023-01-15 Andritz Ag Maschf Zylinder zur trocknung einer faserstoffbahn

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL136073C (de) * 1965-03-22
FI71375C (fi) * 1982-12-14 1986-12-19 Valmet Oy Arrangemang foer upphettning av en vals som anvaends vid pappersframstaellning i synnerhet en kalandervals
DE3525950A1 (de) * 1985-06-18 1986-12-18 Sulzer-Escher Wyss AG, Zürich Walze zur thermischen behandlung einer warenbahn und deren verwendung
US5156086A (en) * 1988-11-11 1992-10-20 Valmet Paper Machinery Inc. Method of calendering a paper web
DE9016548U1 (de) * 1990-12-06 1991-02-21 J.M. Voith Gmbh, 7920 Heidenheim Kalanderwalze
DE4101354A1 (de) * 1991-01-18 1992-07-23 Kuesters Eduard Maschf Vorrichtung zur indukativen beheizung von walzen
DE4321061B4 (de) * 1993-06-24 2007-10-18 Voith Patent Gmbh Verfahren und Vorrichtung zur Beeinflussung von Dicke und Glanz und/oder Glätte bei der Behandlung von Faserstoffbahnen

Also Published As

Publication number Publication date
EP1079022A2 (de) 2001-02-28
EP1079022A3 (de) 2001-07-11
DE19929520A1 (de) 2001-01-04
DE50013218D1 (de) 2006-09-07
US6487789B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
DE68923898T2 (de) Verfahren und Vorrichtungen zur Druckbehandlung einer Papierbahn.
EP1079022B1 (de) Beheizter Zylinder
DE3920171A1 (de) Walze mit einem rotierbaren walzenmantel und verfahren zu deren betrieb
DE3819391A1 (de) Vorrichtung mit einer mit einem waermetraegermedium beheizten arbeitsflaeche
EP0802277A2 (de) Maschine zur Herstellung einer Materialbahn
CH657396A5 (de) Walzenaggregat fuer papier- und andere materialbahnen.
DE19511145C2 (de) Kalander für die zweiseitige Papierbehandlung
EP0732445B2 (de) Kalander für die Behandlung einer Papierbahn
EP1041198B1 (de) Elastische Walze und Verfahren zum Herstellen einer solchen
DE19919569B4 (de) Elastische Walze und Verfahren zum Herstellen einer solchen
EP1634994B1 (de) Kalanderanordnung
EP1057928B1 (de) Elastische Walze und Verfahren zum Herstellen einer solchen
EP1041196B1 (de) Walze, insbesondere zum Glätten von Papierbahnen, sowie Verfahren zur Herstellung einer solchen Walze
DE29924883U1 (de) Beheizter Zylinder
DE4321061B4 (de) Verfahren und Vorrichtung zur Beeinflussung von Dicke und Glanz und/oder Glätte bei der Behandlung von Faserstoffbahnen
DE202010002835U1 (de) Walze für eine Faserbahnmaschine
WO2002093096A1 (de) Durchströmzylinder
EP1057929B1 (de) Elastische Walze und Verfahren zum Herstellen einer solchen
DE68906498T2 (de) Schnellaufendes turbinenrad aus verbundwerkstoff.
DE19957795B4 (de) Heizbare Walze
DE9016548U1 (de) Kalanderwalze
EP0616073B1 (de) Vorrichtung zur Behandlung einer Materialbahn
DE19723532A1 (de) Beheizter Trockenzylinder
DE9410372U1 (de) Elektrisch beheizbare Leichtbauwalze
DE3820933A1 (de) Beheizbare glaettwerk- oder kalanderwalze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020111

AKX Designation fees paid

Free format text: DE FI SE

17Q First examination report despatched

Effective date: 20050428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI SE

REF Corresponds to:

Ref document number: 50013218

Country of ref document: DE

Date of ref document: 20060907

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOITH PATENT GMBH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110414

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130419

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130411

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013218

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013218

Country of ref document: DE

Effective date: 20141101