EP1078160B1 - Fuel injection system - Google Patents

Fuel injection system Download PDF

Info

Publication number
EP1078160B1
EP1078160B1 EP00910561A EP00910561A EP1078160B1 EP 1078160 B1 EP1078160 B1 EP 1078160B1 EP 00910561 A EP00910561 A EP 00910561A EP 00910561 A EP00910561 A EP 00910561A EP 1078160 B1 EP1078160 B1 EP 1078160B1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection
fuel
valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00910561A
Other languages
German (de)
French (fr)
Other versions
EP1078160A1 (en
Inventor
Bernd Mahr
Martin Kropp
Hans-Christoph Magel
Wolfgang Otterbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1078160A1 publication Critical patent/EP1078160A1/en
Application granted granted Critical
Publication of EP1078160B1 publication Critical patent/EP1078160B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements

Definitions

  • the invention relates to a fuel injection device according to the preamble of claim 1
  • the fuel injection device according to the invention may be formed both stroke-controlled and pressure-controlled.
  • a stroke-controlled fuel injection device is understood to mean that the opening and closing of the injection opening takes place by means of a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle space and in a control space.
  • a pressure reduction within the control chamber causes a stroke of the valve member.
  • the deflection of the valve member by an actuator take place.
  • a pressure-controlled fuel injection device In a pressure-controlled fuel injection device according to the invention, the pressure prevailing in the nozzle chamber of an injector fuel pressure, the valve member against the action of a closing force (spring) is moved, so that the injection port for injection of the fuel from the nozzle chamber is released into the cylinder.
  • injection pressure The pressure with which fuel exits the nozzle chamber into a cylinder of an internal combustion engine
  • system pressure is understood to mean the pressure below which fuel is available or stored in the fuel injector.
  • a stroke-controlled injection is, for example, by OE 196 19 523 A1 known.
  • the achievable injection pressure is here by the Pressure accumulator (rail) and the high pressure pump to about 1600 to 1800 bar limited.
  • a pressure booster unit is possible, as is known for example from US 5,143,291 or US 5,522,545.
  • the disadvantage of these pressure-translated systems is a lack of Flexibility of injection and a poor quantity tolerance in the Metering of small amounts of fuel.
  • JP 08277762 A In a fuel injection device described in JP 08277762 A are to increase the flexibility of the injection and the metering accuracy of Pre-injection two pressure accumulation chambers with different pressures intended. These two pressure storage rooms require a high Production costs and high production costs, with the maximum Injection pressure continues through the fuel pump and the accumulator chamber is limited.
  • a pressure booster unit arranged in the injector is known from EP 0 691 471 A1 known.
  • a bypass line for a pressure injection and a Pressure chamber of the pressure booster unit are in series, so that the bypass line is only continuous, as long as a sliding piston of the Pressure booster unit is not moved and completely retracted.
  • Each injector one Common Rail Systems is assigned a hydraulic pressure booster unit, the both increasing the maximum injection pressure to high pressures, e.g. greater 1800 bar, as well as the provision of a second injection pressure allows.
  • the bypass line leads to the supply line at the end of the pressure chamber of the pressure booster unit Nozzle space or in the supply line from the pressure booster unit to the nozzle chamber.
  • a Injection of lower pressure fuel can be independent of the position of the Pressure medium of the pressure booster unit done.
  • the pressure booster unit are the accumulator chamber and the injector with a lower stand pressure (rail pressure) acted upon and thus have a longer life.
  • the High pressure pump less stressed.
  • By switching between the injection pressures can be a flexible Post-injection or multiple post-injections at high or low Realize injection pressure.
  • first embodiment of a stroke-controlled fuel injection device 1 is a volume-controlled fuel pump 2 fuel 3 from a storage tank 4 via a feed line 5 in a central pressure reservoir 6 (common rail), from which a plurality of the number of individual cylinders corresponding pressure lines 7 to the individual, in the combustion chamber of the engine to be supplied protruding injectors 8 (injector) dissipate.
  • a first system pressure is generated and stored in the pressure storage chamber 6.
  • This first system pressure is used for pre-injection and, if necessary and post-injection (HC enrichment for exhaust aftertreatment or soot reduction) and for displaying a course of injection with plateau (boat injection).
  • each injector 8 is assigned a respective local pressure booster unit 9, which is located within an injector 8.
  • the pressure booster unit 9 comprises a valve unit for pressure transmission control (3/2-way valve) 10, a check valve 11 and a pressure means 12 in the form of a displaceable piston member.
  • the pressure medium 12 can be connected at one end to the pressure line 7 with the aid of the valve unit 10, so that the pressure medium 12 can be pressurized at one end.
  • a differential space 12 ' is depressurized by means of a leakage line 13, so that the pressure medium 12 can be moved to reduce the volume of a pressure chamber 14.
  • the pressure means 12 is moved in the compression direction, so that the fuel located in the pressure chamber 14 compressed and a control chamber 15 and a nozzle chamber 16 is supplied.
  • the check valve 11 prevents the return of compressed fuel into the accumulator 6.
  • a suitable area ratio in a primary chamber 14 'and the pressure chamber 14 a second higher pressure can be generated. If the primary chamber 14 'connected by means of the valve unit 10 to the leakage line 13, the return of the pressure medium 12 and the refilling of the pressure chamber 14 takes place.
  • the injection takes place via a fuel metering with the help of one in one Guide bore axially displaceable piston-shaped valve member 18 with a conical Valve sealing surface 19 at one end, with which it has a valve seat surface on Injector housing of the injector 8 cooperates.
  • injection openings are provided at the valve seat surface of the Injector housing.
  • Within the nozzle chamber 16 is an in the opening direction of the valve member 18 facing pressure surface which prevails there Exposed to pressure which is supplied via a pressure line 20 to the nozzle chamber 16.
  • Coaxial to a valve spring 21 also engages the valve member 18 to a pressure piece 22 which with its end facing away from the valve sealing surface 19 end face 23 delimits the control chamber 15.
  • the Control chamber 15 has an inlet from the fuel pressure connection with a first throttle 24th and a drain to a pressure relief line 25 with a second throttle 26, the is controlled by a 2/2-way valve 27.
  • the nozzle chamber 16 is placed over an annular gap between the valve member 18 and the Guide bore continues to the valve seat surface of the injector. About the pressure in the Control chamber 15, the pressure member 22 is pressurized in the closing direction.
  • the end of the injection is achieved by pressing (closing) the 2/2-way valve again Introduced 27, which decouples the control chamber 15 again from the leakage line 13, so that in the control chamber 15, a pressure builds up again, the pressure piece 22 in the closing direction can move.
  • the valve units are powered by electromagnets for opening or closing or Switching operated.
  • the electromagnets are controlled by a control unit, the various operating parameters (engine speed, .%) of the supplied Monitor and process internal combustion engine.
  • piezo-actuator elements instead of the solenoid-controlled valve units, piezo-actuator elements (actuator, Actuator) are used, the necessary temperature compensation and possibly a have required force or displacement ratio.
  • the fuel injection device 1 has the between the pressure accumulator chamber 6 and the Nozzle space 16 arranged pressure booster unit 9, whose pressure chamber 14 via the pressure line 20 is connected to the nozzle chamber 16, Furthermore, the to the Pressure accumulator 6 connected bypass line 28 is provided.
  • the bypass line 28 is connected directly to the pressure line 20.
  • the bypass line 28 is for a Injection with rail pressure usable and is arranged parallel to the pressure chamber 14, so that the bypass line 28 regardless of the movement and position of the displaceable Pressure medium 12 of the pressure booster unit 9 is continuous. The flexibility of Injection is increased.
  • the pressure booster unit 9 is arranged in a modification of the fuel injection device 1 outside of the injector 8. This can be anywhere between accumulator chamber 6 and injector 8. The size of the injector 8 decreases. In this case, an integration of the pressure booster unit 9 with associated valve arrangement and the pressure storage chamber 6 in one component is possible.
  • the valve arrangement can also be arranged outside the pressure booster unit 9.
  • a fuel injector 50 of FIG. 3 has a pressure accumulator 51 for fuel at a first system pressure.
  • a higher system pressure is made possible by a pressure booster unit 52, which can be switched on by means of a valve unit 59.
  • the pressure-controlled fuel metering takes place via a valve unit 55, for example a 3/2-way valve.
  • a valve member 56 can be moved against the force of a valve spring 57 when the pressure applied to pressure surfaces 58 pressure exceeds the spring force of the valve spring 57.
  • the 3/2-way valves 55 and 59 are located within an injector 60.
  • FIG. 4 shows a fuel injector 61 similar to FIG. 3, whose fuel metering 62 (3/2-way valve) and pressure-increasing drive 63 (3/2-way valve) are disposed outside the injector 64.
  • fuel injector 61 it is also possible to arrange both valves separately from each other.
  • a simplified and loss-optimized control of a pressure booster unit 70 results from FIG. 5 .
  • the pressure in the differential space 71 formed by a transition from a larger to a smaller piston cross section is used.
  • this differential space is acted upon by a supply pressure (rail pressure).
  • a supply pressure rail pressure
  • the piston 72 is pressure balanced.
  • the piston 72 is pressed into its initial position.
  • this differential space 71 is depressurized and the pressure booster unit generates a pressure boost according to the area ratio.
  • a throttle 75 and a simple 2/2-way valve 76 may be used.
  • the Throttle 75 connects the differential chamber 71 with under supply pressure standing Fuel from a pressure accumulator 77.
  • the 2/2-way valve closes the Difference space 71 to a leakage line 78 at.
  • the throttle 75 should be as small as possible be designed, but still so large that the piston 72 between the injection cycles returns to its original position. As a throttle can also be a pilot leak of the Piston 72 can be used. With closed 2/2-way valve 76 is no Leakage in the guides of the piston 72, since the differential space 71 is pressurized.
  • the throttle can also be integrated in the piston.
  • the injector is under pressure of the accumulator 77.
  • the pressure booster unit is located in the Starting position. Now can be done by the valve 79 an injection with rail pressure. If an injection with higher pressure is desired, the 2/2-way valve 76 triggered (opened) and thus achieved a pressure boost.
  • a 3/2-way valve can also be used.
  • Fig. 6 shows the control via a 3/2-way valve in a stroke-controlled injection system.
  • Fig. 7 shows the control via a 3/2-way valve in a pressure-controlled injection system.
  • the pressure booster unit is activated simultaneously with the valve 27, so there is an injection starting at the rail pressure level with a ramp rising edge to the translated pressure (in the Figure 8 not shown). If the connection of the pressure booster unit is further delayed, it is first injected with rail pressure and by connecting the pressure booster unit results in a boot-shaped injection curve when activating the pressure booster unit. The length of the high-pressure part depends on the activation time of the pressure booster unit. The main injection is terminated by closing the valve 27. If the pressure booster unit is deactivated prior to closing the valve 27, the result is a ramp-down of the injection pressure up to the rail pressure level, as is known from pressure-controlled systems. In the case of post-injection, it is possible to choose between a high and a low injection pressure level. Thus, at a close distance after the main injection, a post-injection with high pressure for reducing soot or a remote post-injection at low injection pressure for exhaust aftertreatment can take place.
  • connection of the pressure booster unit is delayed, it is first injected with rail pressure and by connecting the pressure booster unit results in a boat-shaped injection course.
  • the length of the high-pressure part depends on the activation time of the pressure booster unit.
  • the main injection is stopped by closing the valve 55, whereby the injection pressure decays in turn ramped by relieving the nozzle chamber to the leakage pressure level and the injection is terminated.
  • post-injection it is possible to choose between a high and a low injection pressure level.
  • a post-injection with high pressure for reducing soot or a remote post-injection at low injection pressure for exhaust aftertreatment can take place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Kraftstoffeinspritzeinrichtung gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a fuel injection device according to the preamble of claim 1

Zum besseren Verständnis der Beschreibung und der Patentansprüche werden nachfolgend einige Begriffe erläutert: Die Kraftstoffeinspritzeinrichtung gemäß der Erfindung kann sowohl hubgesteuert als auch druckgesteuert ausgebildet sein. Im Rahmen der Erfindung wird unter einer hubgesteuerten Kraftstoffeinspritzeinrichtung verstanden, dass das Öffnen und Schließen der Einspritzöffnung mit Hilfe eines verschieblichen Ventilglieds aufgrund des hydraulischen Zusammenwirkens der Kraftstoffdrücke in einem Düsenraum und in einem Steuerraum erfolgt. Eine Druckabsenkung innerhalb des Steuerraums bewirkt einen Hub des Ventilglieds. Alternativ kann das Auslenken des Ventilglieds durch ein Stellglied (Aktor, Aktuator) erfolgen. Bei einer druckgesteuerten Kraftstoffeinspritzeinrichtung gemäß der Erfindung wird durch den im Düsenraum eines Injektors herrschenden Kraftstoffdruck das Ventilglied gegen die Wirkung einer Schließkraft (Feder) bewegt, so daß die Einspritzöffnung für eine Einspritzung des Kraftstoffs aus dem Düsenraum in den Zylinder freigegeben wird. Der Druck, mit dem Kraftstoff aus dem Düsenraum in einen Zylinder einer Brennkraftmaschine austritt, wird als Einspritzdruck bezeichnet, während unter einem Systemdruck der Druck verstanden wird, unter dem Kraftstoff innerhalb der Kraftstoffeinspritzeinrichtung zur Verfügung steht bzw. bevorratet ist. Kraftstoffzumessung bedeutet, eine definierte Kraftstoffmenge zur Einspritzung bereitzustellen. Unter Leckage ist eine Menge an Kraftstoff zu verstehen, die beim Betrieb der Kraftstoffeinspritzeinrichtung entsteht (z.B. eine Führungsleckage), nicht zur Einspritzung verwendet und zum Kraftstofftank zurückgefördert wird. Das Druckniveau dieser Leckage kann einen Standdruck aufweisen, wobei der Kraftstoff anschließend auf das Druckniveau des Kraftstofftanks entspannt wird.For a better understanding of the description and the claims, some terms are explained below: The fuel injection device according to the invention may be formed both stroke-controlled and pressure-controlled. In the context of the invention, a stroke-controlled fuel injection device is understood to mean that the opening and closing of the injection opening takes place by means of a displaceable valve member due to the hydraulic interaction of the fuel pressures in a nozzle space and in a control space. A pressure reduction within the control chamber causes a stroke of the valve member. Alternatively, the deflection of the valve member by an actuator (actuator, actuator) take place. In a pressure-controlled fuel injection device according to the invention, the pressure prevailing in the nozzle chamber of an injector fuel pressure, the valve member against the action of a closing force (spring) is moved, so that the injection port for injection of the fuel from the nozzle chamber is released into the cylinder. The pressure with which fuel exits the nozzle chamber into a cylinder of an internal combustion engine is referred to as injection pressure , while a system pressure is understood to mean the pressure below which fuel is available or stored in the fuel injector. Fuel metering means to provide a defined amount of fuel for injection. Leakage is understood to mean an amount of fuel that arises during operation of the fuel injection device (eg a pilot leakage ), is not used for injection and is conveyed back to the fuel tank. The pressure level of this leakage may have a steady state pressure, with the fuel subsequently being expanded to the pressure level of the fuel tank.

Eine hubgesteuerte Einspritzung ist beispielsweise durch die OE 196 19 523 A 1 bekanntgeworden. Der erreichbare Einspritzdruck ist hier durch den Druckspeicherraum (rail) und die Hochdruckpumpe auf ca. 1600 bis 1800 bar begrenzt.A stroke-controlled injection is, for example, by OE 196 19 523 A1 known. The achievable injection pressure is here by the Pressure accumulator (rail) and the high pressure pump to about 1600 to 1800 bar limited.

Zur Erhöhung des Einspritzdruckes ist eine Druckübersetzungseinheit möglich, wie sie beispielsweise aus der US 5,143,291 oder der US 5,522,545 bekannt ist. Der Nachteil dieser druckübersetzten Systeme liegt in einer mangelnden Flexibilität der Einspritzung und einer schlechten Mengentoleranz bei der Zumessung kleiner Kraftstoffmengen.To increase the injection pressure, a pressure booster unit is possible, as is known for example from US 5,143,291 or US 5,522,545. The disadvantage of these pressure-translated systems is a lack of Flexibility of injection and a poor quantity tolerance in the Metering of small amounts of fuel.

Bei einer in der JP 08277762 A beschriebenen Kraftstoffeinspritzeinrichtung sind zur Erhöhung der Flexibilität der Einspritzung und der Zumeßgenauigkeit der Voreinspritzung zwei Druckspeicherräume mit unterschiedlichen Drücken vorgesehen. Diese beiden Druckspeicherräume erfordern einen hohen Fertigungsaufwand und hohe Herstellungskosten, wobei der maximale Einspritzdruck weiterhin durch die Kraftstoffpumpe und den Druckspeicherraum begrenzt ist.In a fuel injection device described in JP 08277762 A are to increase the flexibility of the injection and the metering accuracy of Pre-injection two pressure accumulation chambers with different pressures intended. These two pressure storage rooms require a high Production costs and high production costs, with the maximum Injection pressure continues through the fuel pump and the accumulator chamber is limited.

Gemäß der Lehre der US 5,803,028 muss ein aufwendig ausgestaltetes Ventil zur Befüllung einer Druckkammer der Druckübersetzungseinheit betätigt werden. Eine ständige Befüllung der Druckkammer mit unter Raildruck stehendem Kraftstoff ist nicht vorgesehen.According to the teaching of US 5,803,028 a consuming ausgestaltetes valve for Filling a pressure chamber of the pressure booster unit to be actuated. A constant filling of the pressure chamber with standing under rail pressure Fuel is not provided.

Eine im Injektor angeordnete Druckübersetzungseinheit ist aus der EP 0 691 471 A1 bekannt. Eine Bypass-Leitung für eine Druckeinspritzung und eine Druckkammer der Druckübersetzungseinheit liegen in Reihe, so daß die Bypass-Leitung nur durchgängig ist, solange ein verschieblicher Kolben der Druckübersetzungseinheit nicht bewegt wird und vollständig zurückgezogen ist. A pressure booster unit arranged in the injector is known from EP 0 691 471 A1 known. A bypass line for a pressure injection and a Pressure chamber of the pressure booster unit are in series, so that the bypass line is only continuous, as long as a sliding piston of the Pressure booster unit is not moved and completely retracted.

Vorteile der ErfindungAdvantages of the invention

Zur Erhöhung der Flexibilität und des maximalen Einspritzdruckes wird eine Kraftstoffeinspritzeinrichtung gemäß Patentanspruch 1 vorgeschlagen. Jedem Injektor eines Common Rail Systems wird eine hydraulische Druckübersetzungseinheit zugeordnet, die sowohl eine Erhöhung des maximalen Einspritzdruckes auf hohe Drücke, wie z.B. größer 1800 bar, als auch die Bereitstellung eines zweiten Einspritzdruckes ermöglicht. Die Bypass-Leitung führt am Ende der Druckkammer der Druckübersetzungseinheit in die Zuleitung zum Düsenraum oder in die Zuleitung von der Druckübersetzungseinheit zum Düsenraum. Eine Einspritzung von Kraftstoff geringeren Druckes kann unabhängig von der Stellung des Druckmittels der Druckübersetzungseinheit erfolgen. Durch die Druckübersetzungseinheit sind der Druckspeicherraum und der Injektor mit einem geringeren Standdruck (Raildruck) beaufschlagt und besitzen somit eine größere Lebensdauer. Ebenso ist die Hochdruckpumpe weniger beansprucht. Es besteht die Möglichkeit einer dosierbaren Voreinspritzung mit geringen Toleranzen durch geringen (nichtübersetzten) Einspritzdruck. Durch ein Umschalten zwischen den Einspritzdrücken läßt sich eine flexible Nacheinspritzung oder mehrere Nacheinspritzungen bei hohem bzw. geringem Einspritzdruck realisieren.To increase the flexibility and the maximum injection pressure is a Fuel injection device according to claim 1 proposed. Each injector one Common Rail Systems is assigned a hydraulic pressure booster unit, the both increasing the maximum injection pressure to high pressures, e.g. greater 1800 bar, as well as the provision of a second injection pressure allows. The bypass line leads to the supply line at the end of the pressure chamber of the pressure booster unit Nozzle space or in the supply line from the pressure booster unit to the nozzle chamber. A Injection of lower pressure fuel can be independent of the position of the Pressure medium of the pressure booster unit done. By the pressure booster unit are the accumulator chamber and the injector with a lower stand pressure (rail pressure) acted upon and thus have a longer life. Likewise, the High pressure pump less stressed. There is the possibility of a dosable Pre-injection with low tolerances due to low (untranslated) injection pressure. By switching between the injection pressures can be a flexible Post-injection or multiple post-injections at high or low Realize injection pressure.

Zeichnungdrawing

Sieben Beispiele einer Kraftstoffeinspritzeinrichtung, davon die gemäß den Figuren 5 and 6 erfindungsgemäß, sind in der schematischen Zeichnung dargestellt und werden in der nachfolgenden Beschreibung erläutert. Es zeigen:

Fign. 1 und 2 Fign. 5 und 6
hubgesteuerte Kraftstoffeinspritzeinrichtungen;
Fign. 3 und 4 Fig. 7
druckgesteuerte Kraftstoffeinspritzeinrichtungen;
Fig. 8 und 9
Beispiele möglicher schematischer Kraftstoffeinspritzdruckverläufe.
Seven examples of a fuel injection device, of which the according to the figures 5 and 6 according to the invention, are shown in the schematic drawing and are explained in the following description. Show it:
FIGS. 1 and 2 Figs. 5 and 6
stroke controlled fuel injectors;
FIGS. 3 and 4 Fig. 7
pressure controlled fuel injectors;
8 and 9
Examples of possible schematic fuel injection pressure curves.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Bei dem in der Fig. 1 dargestellten ersten Ausführungsbeispiel einer hubgesteuerten Kraftstoffeinspritzeinrichtung 1 fördert eine mengengeregelte Kraftstoffpumpe 2 Kraftstoff 3 aus einem Vorratstank 4 über eine Förderleitung 5 in einen zentralen Druckspeicherraum 6 (Common-Rail), von dem mehrere, der Anzahl einzelner Zylinder entsprechende Druckleitungen 7 zu den einzelnen, in den Brennraum der zu versorgenden Brennkraftmaschine ragenden Injektoren 8 (Einspritzvorrichtung) abführen. In der Fig. 1 ist lediglich einer der Injektoren 8 eingezeichnet. Mit Hilfe der Kraftstoffpumpe 2 wird ein erster Systemdruck erzeugt und im Druckspeicherraum 6 gelagert. Dieser erste Systemdruck wird zur Voreinspritzung und bei Bedarf und Nacheinspritzung (HC-Anreicherung zur Abgasnachbehandlung oder Rußreduktion) sowie zur Darstellung eines Einspritzverlaufs mit Plateau (Bootinjektion) verwendet. Zur Einspritzung von Kraftstoff mit einem zweiten höheren Systemdruck ist jedem Injektor 8 jeweils eine lokale Druckübersetzungseinheit 9 zugeordnet, die sich innerhalb eines Injektors 8 befindet. Die Druckübersetzungseinheit 9 umfaßt eine Ventileinheit zur Druckübersetzungsansteuerung (3/2-Wege-Ventil) 10, ein Rückschlagventil 11 und ein Druckmittel 12 in Gestalt eines verschieblichen Kolbenelements. Das Druckmittel 12 kann einenends mit Hilfe der Ventileinheit 10 an die Druckleitung 7 angeschlossen werden, so daß das Druckmittel 12 einenends druckbeaufschlagt werden kann. Ein Differenzraum 12' ist mittels einer Leckageleitung 13 druckentlastet, so daß das Druckmittel 12 zur Verringerung des Volumens einer Druckkammer 14 verschoben werden kann. Das Druckmittel 12 wird in Kompressionsrichtung bewegt, so daß der in der Druckkammer 14 befindliche Kraftstoff verdichtet und einem Steuerraum 15 und einem Düsenraum 16 zugeführt wird. Das Rückschlagventil 11 verhindert den Rückfluß von komprimierten Kraftstoffs in den Druckspeicherraum 6. Mittels eines geeigneten Flächenverhältnisses in einer Primärkammer 14' und der Druckkammer 14 kann ein zweiter höherer Druck erzeugt werden. Wird die Primärkammer 14' mit Hilfe der Ventileinheit 10 an die Leckageleitung 13 angeschlossen, so erfolgt die Rückstellung des Druckmittels 12 und die Wiederbefüllung der Druckkammer 14. Aufgrund der Druckverhältnisse in der Druckkammer 14 und der Primärkammer 14' öffnet das Rückschlagventil 11, so daß die Druckkammer 14 unter Raildruck (Druck des Druckspeicherraums 6) steht und das Druckmittel 12 hydraulisch in seine Ausgangsstellung zurückgefahren wird. Zur Verbesserung des Rückstellverhaltens können eine oder mehrere Federn in den Räumen 12, 14 und 14' angeordnet sein. Mittels der Druckübersetzung kann somit ein zweiter Systemdruck erzeugt werden. In the example shown in Fig. 1 first embodiment of a stroke-controlled fuel injection device 1 is a volume-controlled fuel pump 2 fuel 3 from a storage tank 4 via a feed line 5 in a central pressure reservoir 6 (common rail), from which a plurality of the number of individual cylinders corresponding pressure lines 7 to the individual, in the combustion chamber of the engine to be supplied protruding injectors 8 (injector) dissipate. In Fig. 1, only one of the injectors 8 is located. With the aid of the fuel pump 2, a first system pressure is generated and stored in the pressure storage chamber 6. This first system pressure is used for pre-injection and, if necessary and post-injection (HC enrichment for exhaust aftertreatment or soot reduction) and for displaying a course of injection with plateau (boat injection). For injecting fuel with a second higher system pressure, each injector 8 is assigned a respective local pressure booster unit 9, which is located within an injector 8. The pressure booster unit 9 comprises a valve unit for pressure transmission control (3/2-way valve) 10, a check valve 11 and a pressure means 12 in the form of a displaceable piston member. The pressure medium 12 can be connected at one end to the pressure line 7 with the aid of the valve unit 10, so that the pressure medium 12 can be pressurized at one end. A differential space 12 'is depressurized by means of a leakage line 13, so that the pressure medium 12 can be moved to reduce the volume of a pressure chamber 14. The pressure means 12 is moved in the compression direction, so that the fuel located in the pressure chamber 14 compressed and a control chamber 15 and a nozzle chamber 16 is supplied. The check valve 11 prevents the return of compressed fuel into the accumulator 6. By means of a suitable area ratio in a primary chamber 14 'and the pressure chamber 14, a second higher pressure can be generated. If the primary chamber 14 'connected by means of the valve unit 10 to the leakage line 13, the return of the pressure medium 12 and the refilling of the pressure chamber 14 takes place. Due to the pressure conditions in the pressure chamber 14 and the primary chamber 14' opens the check valve 11, so that the Pressure chamber 14 is under rail pressure (pressure of the pressure accumulator chamber 6) and the pressure fluid 12 is hydraulically returned to its initial position. To improve the restoring behavior, one or more springs in the spaces 12, 14 and 14 'may be arranged. By means of the pressure intensification, a second system pressure can thus be generated.

Die Einspritzung erfolgt über eine Kraftstoff-Zumessung mit Hilfe eines in einer Führungsbohrung axial verschiebbaren kolbenförmigen Ventilglieds 18 mit einer konischen Ventildichtfläche 19 an seinem einen Ende, mit der es mit einer Ventilsitzfläche am Injektorgehäuse der Injektoreinheit 8 zusammenwirkt. An der Ventilsitzfläche des Injektorgehäuses sind Einspritzöffnungen vorgesehen. Innerhalb des Düsenraums 16 ist eine in Öffnungsrichtung des Ventilglieds 18 weisende Druckfläche dem dort herrschenden Druck ausgesetzt, der über eine Druckleitung 20 dem Düsenraum 16 zugeführt wird. Koaxial zu einer Ventilfeder 21 greift ferner an dem Ventilglied 18 ein Druckstück 22 an, das mit seiner der Ventildichtfläche 19 abgewandten Stirnseite 23 den Steuerraum 15 begrenzt. Der Steuerraum 15 hat vom Kraftstoffdruckanschluß her einen Zulauf mit einer ersten Drossel 24 und einen Ablauf zu einer Druckentlastungsleitung 25 mit einer zweiten Drossel 26, die durch ein 2/2-Wege-Ventil 27 gesteuert wird.The injection takes place via a fuel metering with the help of one in one Guide bore axially displaceable piston-shaped valve member 18 with a conical Valve sealing surface 19 at one end, with which it has a valve seat surface on Injector housing of the injector 8 cooperates. At the valve seat surface of the Injector housing injection openings are provided. Within the nozzle chamber 16 is an in the opening direction of the valve member 18 facing pressure surface which prevails there Exposed to pressure which is supplied via a pressure line 20 to the nozzle chamber 16. Coaxial to a valve spring 21 also engages the valve member 18 to a pressure piece 22 which with its end facing away from the valve sealing surface 19 end face 23 delimits the control chamber 15. Of the Control chamber 15 has an inlet from the fuel pressure connection with a first throttle 24th and a drain to a pressure relief line 25 with a second throttle 26, the is controlled by a 2/2-way valve 27.

Der Düsenraum 16 setzt sich über einen Ringspalt zwischen dem Ventilglied 18 und der Führungsbohrung bis an die Ventilsitzfläche des Injektorgehäuses fort. Über den Druck im Steuerraum 15 wird das Druckstück 22 in Schließrichtung druckbeaufschlagt.The nozzle chamber 16 is placed over an annular gap between the valve member 18 and the Guide bore continues to the valve seat surface of the injector. About the pressure in the Control chamber 15, the pressure member 22 is pressurized in the closing direction.

Unter dem ersten oder zweiten Systemdruck stehender Kraftstoff füllt ständig den Düsenraum 16 und den Steuerraum 15. Bei Betätigung (Öffnen) des 2/2-Wege-Ventils 27 kann der Druck im Steuerraum 15 abgebaut werden, so daß in der Folge die in Öffnungsrichtung auf das Ventilglied 18 wirkende Druckkraft im Düsenraum 16 den in Schließrichtung auf das Ventilglied 18 wirkende Druckkraft übersteigt. Die Ventildichtfläche 19 hebt von der Ventilsitzfläche ab und Kraftstoff wird eingespritzt. Dabei läßt sich der Druckentlastungsvorgang des Steuerraums 15 und somit die Hubsteuerung des Ventilglieds 18 über die Dimensionierung der Drossel 24 und der Drossel 26 beeinflussen.Under the first or second system pressure standing fuel constantly fills the Nozzle chamber 16 and the control chamber 15. When operating (opening) of the 2/2-way valve 27th the pressure in the control chamber 15 can be reduced, so that in the sequence in Opening direction on the valve member 18 acting pressure force in the nozzle chamber 16 in Closing direction on the valve member 18 acting pressure force exceeds. The valve sealing surface 19 lifts off the valve seat surface and fuel is injected. This can be the Pressure relief process of the control chamber 15 and thus the stroke control of the valve member 18 on the dimensioning of the throttle 24 and the throttle 26 influence.

Das Ende der Einspritzung wird durch erneutes Betätigen (Schließen) des 2/2-Wege-Ventils 27 eingeleitet, das den Steuerraum 15 wieder von der Leckageleitung 13 abkoppelt, so daß sich im Steuerraum 15 wieder ein Druck aufbaut, der das Druckstück 22 in Schließrichtung bewegen kann.The end of the injection is achieved by pressing (closing) the 2/2-way valve again Introduced 27, which decouples the control chamber 15 again from the leakage line 13, so that in the control chamber 15, a pressure builds up again, the pressure piece 22 in the closing direction can move.

Die Ventileinheiten werden von Elektromagneten zum Öffnen oder Schließen bzw. Umschalten betätigt. Die Elektromagnete werden von einem Steuergerät angesteuert, das verschiedene Betriebsparameter (Motordrehzahl, ....) der zu versorgenden Brennkraftmaschine überwachen und verarbeiten kann. The valve units are powered by electromagnets for opening or closing or Switching operated. The electromagnets are controlled by a control unit, the various operating parameters (engine speed, ....) of the supplied Monitor and process internal combustion engine.

An Stelle der magnetgesteuerten Ventileinheiten können auch Piezostellelemente (Aktuator, Aktor) verwendet werden, die einen notwendigen Temperaturausgleich und evtl. eine erforderliche Kraft- bzw. Wegübersetzung besitzen.Instead of the solenoid-controlled valve units, piezo-actuator elements (actuator, Actuator) are used, the necessary temperature compensation and possibly a have required force or displacement ratio.

Die Kraftstoffeinspritzeinrichtung 1 weist die zwischen dem Druckspeicherraum 6 und dem Düsenraum 16 angeordnete Druckübersetzungseinheit 9 auf, deren Druckkammer 14 über die Druckleitung 20 mit dem Düsenraum 16 verbunden ist, Weiterhin ist die an den Druckspeicherraum 6 angeschlossene Bypass-Leitung 28 vorgesehen. Die Bypass-Leitung 28 ist direkt mit der Druckleitung 20 verbunden. Die Bypass-Leitung 28 ist für eine Einspritzung mit Raildruck verwendbar und ist parallel zur Druckkammer 14 angeordnet, so daß die Bypass-Leitung 28 unabhängig von der Bewegung und Stellung des verschieblichen Druckmittels 12 der Druckübersetzungseinheit 9 durchgängig ist. Die Flexibilität der Einspritzung wird erhöht.The fuel injection device 1 has the between the pressure accumulator chamber 6 and the Nozzle space 16 arranged pressure booster unit 9, whose pressure chamber 14 via the pressure line 20 is connected to the nozzle chamber 16, Furthermore, the to the Pressure accumulator 6 connected bypass line 28 is provided. The bypass line 28 is connected directly to the pressure line 20. The bypass line 28 is for a Injection with rail pressure usable and is arranged parallel to the pressure chamber 14, so that the bypass line 28 regardless of the movement and position of the displaceable Pressure medium 12 of the pressure booster unit 9 is continuous. The flexibility of Injection is increased.

Nachfolgend werden in der Beschreibung zu den Figuren 2 bis 9 lediglich Unterschiede zur Kraftstoffeinspritzeinrichtung nach Figur 1 behandelt. Identische Bauteile werden nicht näher erläutert.Hereinafter, only differences in the description of Figures 2 to 9 Fuel injection device treated according to Figure 1. Identical components will not be closer explained.

Aus der Figur 2 ist ersichtlich, daß die Druckübersetzungseinheit 9 bei einer Abänderung der Kraftstoffeinspritzeinrichtung 1 außerhalb des Injektors 8 angeordnet ist. Dies kann eine beliebige Stelle zwischen Druckspeicherraum 6 und Injektor 8 sein. Die Baugröße des Injektors 8 verringert sich. Dabei ist eine Integration der Druckübersetzungseinheit 9 mit zugehöriger Ventilanordnung und des Druckspeicherraums 6 in einem Bauteil möglich. Die Ventilanordnung kann auch außerhalb der Druckübersetzungseinheit 9 angeordnet sein.From the figure 2 it can be seen that the pressure booster unit 9 is arranged in a modification of the fuel injection device 1 outside of the injector 8. This can be anywhere between accumulator chamber 6 and injector 8. The size of the injector 8 decreases. In this case, an integration of the pressure booster unit 9 with associated valve arrangement and the pressure storage chamber 6 in one component is possible. The valve arrangement can also be arranged outside the pressure booster unit 9.

Eine Kraftstoffeinspritzeinrichtung 50 nach Fig. 3 besitzt einen Druckspeicherraum 51 für Kraftstoff mit einem ersten Systemdruck. Ein höherer Systemdruck wird durch eine Druckübersetzungseinheit 52 ermöglicht, die mit Hilfe der einer Ventileinheit 59 zugeschaltet werden kann. Die druckgesteuerte Kraftstoffzumessung erfolgt über eine Ventileinheit 55, z.B. ein 3/2-Wege-Ventil. Ein Ventilglied 56 kann gegen die Kraft einer Ventilfeder 57 bewegt werden, wenn der an Druckflächen 58 anliegende Druck die Federkraft der Ventilfeder 57 übersteigt. Die 3/2-Wege-Ventile 55 und 59 befinden sich innerhalb eines Injektors 60.A fuel injector 50 of FIG. 3 has a pressure accumulator 51 for fuel at a first system pressure. A higher system pressure is made possible by a pressure booster unit 52, which can be switched on by means of a valve unit 59. The pressure-controlled fuel metering takes place via a valve unit 55, for example a 3/2-way valve. A valve member 56 can be moved against the force of a valve spring 57 when the pressure applied to pressure surfaces 58 pressure exceeds the spring force of the valve spring 57. The 3/2-way valves 55 and 59 are located within an injector 60.

Fig. 4 zeigt ein zu Fig. 3 ähnliche Kraftstoffeinspritzeinrichtung 61, deren Ventileinheiten zur Kraftstoffzumessung 62 (3/2-Wege-Ventil) und zur Druckübersetzungsansteuerung 63 (3/2-Wege-Ventil) außerhalb des Injektors 64 angeordnet sind. Bei der Kraftstoffeinspritzeinrichtung 61 ist es ebenso möglich, beide Ventile getrennt voneinander anzuordnen. FIG. 4 shows a fuel injector 61 similar to FIG. 3, whose fuel metering 62 (3/2-way valve) and pressure-increasing drive 63 (3/2-way valve) are disposed outside the injector 64. In the fuel injector 61, it is also possible to arrange both valves separately from each other.

Eine vereinfachte und verlustoptimierte Ansteuerung einer Druckübersetzungseinheit 70 ergibt sich aus Fig. 5. Zur Steuerung der Druckübersetzungseinheit 70 wird der Druck im durch einen Übergang von einem größeren zu einem kleineren Kolbenquerschnitt ausgebildeten Differenzraum 71 verwendet. Zur Wiederbefüllung und Deaktivierung der Druckübersetzungseinheit wird dieser Differenzraum mit einem Versorgungsdruck (Raildruck) beaufschlagt. Dann herrschen an allen Druckflächen eines Kolbens 72 die gleichen Druckverhältnisse (Raildruck). Der Kolben 72 ist druckausgeglichen. Durch eine zusätzliche Feder 73 wird der Kolben 72 in seine Ausgangsstellung gedrückt. Zur Aktivierung der Druckübersetzungseinheit 70 wird dieser Differenzraum 71 druckentlastet und die Druckübersetzungseinheit erzeugt eine Druckverstärkung gemäß dem Flächenverhältnis. Durch diese Art der Steuerung kann erreicht werden, daß zur Rückstellung der Druckübersetzungseinheit 70 und zum Wiederbefüllen einer Druckkammer 74 eine große Primärkammer 70' nicht druckentlastet werden muß. Bei einer kleinen hydraulischen Übersetzung können damit die Entspannungsverluste stark reduziert werden.A simplified and loss-optimized control of a pressure booster unit 70 results from FIG. 5 . In order to control the pressure booster unit 70, the pressure in the differential space 71 formed by a transition from a larger to a smaller piston cross section is used. For refilling and deactivating the pressure booster unit, this differential space is acted upon by a supply pressure (rail pressure). Then prevail at all pressure surfaces of a piston 72, the same pressure conditions (rail pressure). The piston 72 is pressure balanced. By an additional spring 73, the piston 72 is pressed into its initial position. In order to activate the pressure booster unit 70, this differential space 71 is depressurized and the pressure booster unit generates a pressure boost according to the area ratio. By this type of control can be achieved that for resetting the pressure booster unit 70 and for refilling a pressure chamber 74, a large primary chamber 70 'does not have to be depressurized. With a small hydraulic ratio, the relaxation losses can be greatly reduced.

Zur Steuerung der Druckübersetzungseinheit 70 kann anstelle eines aufwendigen 3/2-Wege-Ventils eine Drossel 75 und ein einfaches 2/2-Wege-Ventil 76 verwendet werden. Die Drossel 75 verbindet den Differenzraum 71 mit unter Versorgungsdruck stehendem Kraftstoff aus einem Druckspeicherraum 77. Das 2/2-Wege-Ventil schließt den Differenzraum 71 an eine Leckageleitung 78 an. Die Drossel 75 sollte möglichst klein ausgelegt werden, aber dennoch so groß, daß der Kolben 72 zwischen den Einspritzzyklen in seine Ausgangslage zurückkehrt. Als Drossel kann auch eine Führungsleckage des Kolbens 72 verwendet werden. Bei geschlossenem 2/2-Wege-Ventil 76 entsteht keine Leckage in den Führungen des Kolbens 72, da der Differenzraum 71 druckbeaufschlagt ist. Die Drossel kann auch im Kolben integriert sein.To control the pressure booster unit 70 may instead of a complex 3/2-way valve a throttle 75 and a simple 2/2-way valve 76 may be used. The Throttle 75 connects the differential chamber 71 with under supply pressure standing Fuel from a pressure accumulator 77. The 2/2-way valve closes the Difference space 71 to a leakage line 78 at. The throttle 75 should be as small as possible be designed, but still so large that the piston 72 between the injection cycles returns to its original position. As a throttle can also be a pilot leak of the Piston 72 can be used. With closed 2/2-way valve 76 is no Leakage in the guides of the piston 72, since the differential space 71 is pressurized. The throttle can also be integrated in the piston.

Sind die 2/2-Wege-Ventile 76 und 79 geschlossen, so steht der Injektor unter dem Druck des Druckspeicherraums 77. Die Druckübersetzungseinheit befindet sich in der Ausgangsstellung. Nun kann durch das Ventil 79 eine Einspritzung mit Raildruck erfolgen. Wird eine Einspritzung mit höherem Druck gewünscht, so wird das 2/2-Wege-Ventil 76 angesteuert (geöffnet) und damit eine Druckverstärkung erreicht.If the 2/2-way valves 76 and 79 are closed, the injector is under pressure of the accumulator 77. The pressure booster unit is located in the Starting position. Now can be done by the valve 79 an injection with rail pressure. If an injection with higher pressure is desired, the 2/2-way valve 76 triggered (opened) and thus achieved a pressure boost.

Zur Steuerung des Drucks im Differenzraum kann auch ein 3/2-Wege-Ventil eingesetzt werden. Fig. 6 zeigt die Steuerung über ein 3/2-Wege-Ventil bei einem hubgesteuerten Einspritzsystem. Fig. 7 zeigt die Steuerung über ein 3/2-Wege-Ventil bei einem druckgesteuerten Einspritzsystem.To control the pressure in the differential space, a 3/2-way valve can also be used. Fig. 6 shows the control via a 3/2-way valve in a stroke-controlled injection system. Fig. 7 shows the control via a 3/2-way valve in a pressure-controlled injection system.

Für die hubgesteuerten Systeme ergibt sich ein Einspritzdruckverlauf gemäß Fig. 8 ausgehend vom Ruhezustand (Druckübersetzungseinheit deaktiviert und in Ausgangsstellung). Durch Beschalten der Ventileinheit 27 und deaktiviertem Schaltventil 10 der Druckübersetzungseinheit wird zu Beginn des Einspritzzyklusses eine Voreinspritzung mit geringem (Rail-) Druck über den Bypass eingeleitet. Durch Schließen von Ventil 27 (siehe Fig. 1) wird die Voreinspritzung beendet. Durch mehrfaches Beschalten sind auch mehrfache Voreinspritzungen möglich. Für die Haupteinspritzung kann die vor der Druckübersetzungseinheit angeordnete Ventileinheit 10 bestromt werden, so daß sich im Injektor ein dem Übersetzungsverhältnis entsprechender erhöhter Druck im Düsenraum und Steuerraum ergibt. Durch Öffnen des Ventils 27 wird nun eine Haupteinspritzung eingeleitet (strichpunktierte Linie). Die Beendigung der Haupteinspritzung erfolgt dann wiederum durch Schließen des 2/2-Wege-Ventils 27. Wird die Druckübersetzungseinheit gleichzeitig mit dem Ventil 27 aktiviert, so ergibt sich eine Einspritzung beginnend auf Raildruckniveau mit einer rampenförmig ansteigenden Flanke bis auf den übersetzten Druck (in der Figur 8 nicht gezeigt). Wird die Zuschaltung der Druckübersetzungseinheit noch weiter verzögert, so wird zunächst mit Raildruck eingespritzt und durch Zuschalten der Druckübersetzungseinheit ergibt sich ein bootförmiger Einspritzverlauf bei Aktivieren der Druckübersetzungseinheit. Die Länge des Hochdruckanteils ist abhängig von der Aktivierungszeit der Druckübersetzungseinheit. Die Haupteinspritzung wird durch Schließen des Ventils 27 beendet. Wird die Druckübersetzungseinheit vor dem Schließen des Ventils 27 deaktiviert, so ergibt sich ein rampenförmiger Abfall des Einspritzdruck bis auf Raildruckniveau, wie er von druckgesteuerten Systemen bekannt ist. Bei Nacheinspritzung kann zwischen einem hohen und einem geringen Einspritzdruckniveau gewählt werden. So kann in einem engen Abstand nach der Haupteinspritzung eine Nacheinspritzung mit hohem Druck zur Rußreduktion oder eine abgesetzte Nacheinspritzung bei geringem Einspritzdruck zur Abgasnachbehandlung erfolgen.For the stroke-controlled systems results in an injection pressure curve according to FIG. 8, starting from the idle state (pressure booster unit deactivated and in the starting position). By connecting the valve unit 27 and deactivated switching valve 10 of the pressure booster unit, a pre-injection with low (rail) pressure is initiated via the bypass at the beginning of the injection cycle. By closing valve 27 (see Fig. 1), the pilot injection is terminated. By multiple wiring and multiple pilot injections are possible. For the main injection, the upstream of the pressure booster unit valve unit 10 can be energized, so that there is a corresponding ratio in the injector increased pressure in the nozzle chamber and control chamber. By opening the valve 27 now a main injection is initiated (dash-dotted line). The completion of the main injection is then again by closing the 2/2-way valve 27. If the pressure booster unit is activated simultaneously with the valve 27, so there is an injection starting at the rail pressure level with a ramp rising edge to the translated pressure (in the Figure 8 not shown). If the connection of the pressure booster unit is further delayed, it is first injected with rail pressure and by connecting the pressure booster unit results in a boot-shaped injection curve when activating the pressure booster unit. The length of the high-pressure part depends on the activation time of the pressure booster unit. The main injection is terminated by closing the valve 27. If the pressure booster unit is deactivated prior to closing the valve 27, the result is a ramp-down of the injection pressure up to the rail pressure level, as is known from pressure-controlled systems. In the case of post-injection, it is possible to choose between a high and a low injection pressure level. Thus, at a close distance after the main injection, a post-injection with high pressure for reducing soot or a remote post-injection at low injection pressure for exhaust aftertreatment can take place.

Für die druckgesteuerten Systeme ergibt sich ein Einspritzdruckverlauf gemäß Fig. 9 ausgehend vom Ruhezustand (Druckübersetzungseinheit deaktiviert und in Ausgangsstellung). Durch Beschalten der Ventileinheit 55 und deaktiviertem Schaltventil der Druckübersetzungseinheit wird zu Beginn des Einspritzzyklusses eine Voreinspritzung mit geringem Raildruck über den Bypass eingeleitet. Durch mehrfaches Beschalten sind auch mehrfache Voreinspritzungen möglich. Es ergibt sich durch den Druckanstieg im Düsenraum ein rampenförmiger Einspritzdruckverlauf in allen Teilbereichen der Einspritzung. Für die Haupteinspritzung kann die vor der Druckübersetzungseinheit angeordnete Ventileinheit 59 gleichzeitig mit dem Ventil 55 bestromt werden, so daß sich ein rampenförmiger Verlauf des Einspritzdrucks bis zum übersetzten Maximaldruck ergibt (strichpunktierte Linie). Die Beendigung der Haupteinspritzung erfolgt dann wiederum durch Schließen des Ventils 55. Wird die Zuschaltung der Druckübersetzungseinheit verzögert, so wird zunächst mit Raildruck eingespritzt und durch Zuschalten der Druckübersetzungseinheit ergibt sich ein bootförmiger Einspritzverlauf. Die Länge des Hochdruckanteils ist abhängig von der Aktivierungszeit der Druckübersetzungseinheit. Die Haupteinspritzung wird durch Schließen des Ventils 55 beendet, wodurch der Einspritzdruck wiederum durch das Entlasten des Düsenraums auf Leckagedruckniveau rampenförmig abklingt und die Einspritzung beendet wird. Bei Nacheinspritzung kann zwischen einem hohen und einem geringen Einspritzdruckniveau gewählt werden. So kann in einem engen Abstand nach der Haupteinspritzung eine Nacheinspritzung mit hohem Druck zur Rußreduktion oder eine abgesetzte Nacheinspritzung bei geringem Einspritzdruck zur Abgasnachbehandlung erfolgen.For the pressure-controlled systems results in an injection pressure curve according to FIG. 9, starting from the idle state (pressure booster unit deactivated and in the starting position). By connecting the valve unit 55 and deactivated switching valve of the pressure booster unit, a pre-injection is initiated with low rail pressure via the bypass at the beginning of the injection cycle. By multiple wiring and multiple pilot injections are possible. The pressure increase in the nozzle chamber results in a ramp-shaped injection pressure curve in all subregions of the injection. For the main injection, the valve unit 59 arranged upstream of the pressure booster unit can be energized simultaneously with the valve 55, so that a ramp-shaped course of the injection pressure results up to the translated maximum pressure (dot-dashed line). The termination of the main injection is then again by closing the valve 55. If the connection of the pressure booster unit is delayed, it is first injected with rail pressure and by connecting the pressure booster unit results in a boat-shaped injection course. The length of the high-pressure part depends on the activation time of the pressure booster unit. The main injection is stopped by closing the valve 55, whereby the injection pressure decays in turn ramped by relieving the nozzle chamber to the leakage pressure level and the injection is terminated. In the case of post-injection, it is possible to choose between a high and a low injection pressure level. Thus, at a close distance after the main injection, a post-injection with high pressure for reducing soot or a remote post-injection at low injection pressure for exhaust aftertreatment can take place.

Zusätzlich zu den vorgenannten Bootinjektionen für beide Systeme ist es denkbar, durch eine geeignete Form des Ventilglieds (Düsennadel) und der Gestalt des Düsenraums eine sog. rate-shaping-nozzle zu realisieren. Diese ermöglicht es, im Niederdruckteil der Bootinjektion bzw. bei allen Einspritzungen ein weiteres Druckplateau zu realisieren. Ebenso ist es wiederum denkbar, im Hochdruckteil der Einspritzung (bei Betrieb der Druckübersetzungseinheit) durch Entlastungsbohrungen am Kolben der Druckübersetzungseinheit eine weitere Formung des Einspritzverlaufs zu realisieren. In addition to the aforementioned boot injections for both systems, it is conceivable through a suitable shape of the valve member (nozzle needle) and the shape of the nozzle space a to realize so-called rate-shaping-nozzle. This makes it possible in the low pressure part of the Boot injection or in all injections to realize another print plateau. As well it is again conceivable in the high pressure part of the injection (during operation of the Pressure booster unit) through relief holes on the piston of Pressure Translation unit to realize a further shaping of the injection curve.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
KraftstoffeinspritzeinrichtungFuel injection system
22
KraftstoffpumpeFuel pump
33
Kraftstofffuel
44
KraftstofftankFuel tank
55
Förderleitungdelivery line
66
DruckspeicherraumPressure reservoir
77
Druckleitungpressure line
88th
Injektorinjector
99
DruckübersetzungseinheitPressure booster unit
1010
Ventileinheitvalve unit
1111
Rückschlagventilcheck valve
1212
Druckmittellever
12'12 '
Differenzraumdifferential chamber
1313
Leckageleitungleakage line
1414
Druckkammerpressure chamber
14'14 '
Primärkammerprimary chamber
1515
Steuerraumcontrol room
1616
Düsenraumnozzle chamber
1818
Ventilgliedvalve member
1919
VentildichtflächeValve sealing surface
2020
Druckleitungpressure line
2121
Ventilfedervalve spring
2222
DruckstückPressure piece
2323
Stirnseitefront
2424
Drosselthrottle
2525
DruckentlastungsleitungPressure relief line
2626
Drosselthrottle
2727
2/2-Wege-Ventil2/2 way valve
2828
Bypass-LeitungBypass line
5050
KraftstoffeinspritzeinrichtungFuel injection system
5151
DruckspeicherraumPressure reservoir
5252
DruckübersetzungseinheitPressure booster unit
5353
Rückschlagventilcheck valve
5454
Bypass-LeitungBypass line
5555
3/2-Wege-Ventil 3/2-way valve
5656
Ventilgliedvalve member
5757
Ventilfedervalve spring
5858
Druckflächeprint area
5959
Ventileinheitvalve unit
6060
Injektorinjector
6161
KraftstoffeinspritzeinrichtungFuel injection system
6262
Ventileinheit zur KraftstoffzumessungValve unit for metering fuel
6363
Ventileinheit zur DruckübersetzungsansteuerungValve unit for pressure intensification control
6464
Injektorinjector
7070
DruckübersetzungseinheitPressure booster unit
70'70 '
Primärkammerprimary chamber
7171
Differenzraumdifferential chamber
7272
Kolbenpiston
7373
Federfeather
7474
Druckkammerpressure chamber
7575
Drosselthrottle
7676
2/2-Wege-Ventil2/2 way valve
7777
DruckspeicherraumPressure reservoir
7878
Leckageleitungleakage line
7979
2/2-Wege-Ventil2/2 way valve

Claims (6)

  1. Fuel injection device (1; 50; 61) having a pressure intensification unit (9; 52; 70) which is arranged between a pressure storage space (6; 51; 77) and a nozzle space (16) and has a displaceable pressure medium (12) for dividing the pressure intensification unit (9; 52; 70) at one end into a pressure chamber (14; 37; 74) and at the other end into a primary chamber (14') and a differential space (12'), the pressure chamber (14; 74) being connected to the nozzle space (16) via a pressure line (20), and having a bypass line (28; 54) which is connected to the pressure storage space (6; 51; 77) and directly to the pressure line (20), characterized in that the pressure chamber (14; 74), the primary chamber (14') for receiving fuel for pressurizing the pressure medium (12) in the direction of the pressure chamber (14; 74) and the nozzle space (16) are connected in a continuously permeable manner to the pressure storage space (6; 51; 77) via a pressure line (7, 8), and in that a valve for connecting the differential space (12'), which is provided for receiving fuel for the pressurization or pressure release of the pressure medium (12), to a leakage line or to the pressure storage space (6; 51; 77) is provided.
  2. Fuel injection device according to Claim 1, characterized in that the bypass line (28; 54) contains a nonreturn valve (11; 53).
  3. Fuel injection device according to Claim 1 or 2, characterized in that the pressure intensification unit (9) is arranged within the injector (8).
  4. Fuel injection device according to Claim 1 or 2, characterized in that the pressure intensification unit (9) is arranged outside the injector (8).
  5. Fuel injection device according to one of the preceding claims, characterized in that the fuel injection device (50; 61) comprises means for the pressure-controlled injection of fuel.
  6. Fuel injection device according to one of Claims 1 to 4, characterized in that the fuel injection device (1) comprises means for the stroke-controlled injection of fuel.
EP00910561A 1999-03-12 2000-02-29 Fuel injection system Expired - Lifetime EP1078160B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19910970 1999-03-12
DE19910970A DE19910970A1 (en) 1999-03-12 1999-03-12 Fuel injector
PCT/DE2000/000580 WO2000055496A1 (en) 1999-03-12 2000-02-29 Fuel injection system

Publications (2)

Publication Number Publication Date
EP1078160A1 EP1078160A1 (en) 2001-02-28
EP1078160B1 true EP1078160B1 (en) 2005-05-18

Family

ID=7900676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910561A Expired - Lifetime EP1078160B1 (en) 1999-03-12 2000-02-29 Fuel injection system

Country Status (6)

Country Link
US (1) US6453875B1 (en)
EP (1) EP1078160B1 (en)
JP (1) JP4638604B2 (en)
KR (1) KR100676642B1 (en)
DE (2) DE19910970A1 (en)
WO (1) WO2000055496A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284357A1 (en) * 2000-05-17 2003-02-19 Bosch Automotive Systems Corporation Fuel injection device

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868831B2 (en) * 1998-10-16 2005-03-22 International Engine Intellectual Property Company, Llc Fuel injector with controlled high pressure fuel passage
DE19939428A1 (en) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Method and device for performing a fuel injection
DE19939429A1 (en) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Fuel injector
DE19939423A1 (en) 1999-08-20 2001-03-01 Bosch Gmbh Robert Fuel injection system for an internal combustion engine
DE10040526A1 (en) * 2000-08-18 2002-03-14 Bosch Gmbh Robert Fuel injection system
DE10050238A1 (en) * 2000-10-11 2002-04-25 Bosch Gmbh Robert Control module for fluid control in injection systems has electromagnetically actuated control valves; magnetic coils are accommodated in apertures in valve body or in insert elements
DE10050599B4 (en) * 2000-10-12 2006-11-02 Siemens Ag Injection valve with a pump piston
DE10054992A1 (en) * 2000-11-07 2002-06-06 Bosch Gmbh Robert Pressure controlled injector with force compensation
DE10055269B4 (en) * 2000-11-08 2005-10-27 Robert Bosch Gmbh Pressure-controlled injector with pressure boost
DE10055268A1 (en) * 2000-11-08 2002-05-23 Bosch Gmbh Robert Pressure controlled injector of a high pressure accumulator injection system
DE10056166A1 (en) * 2000-11-13 2002-05-23 Bosch Gmbh Robert High pressure collecting chamber, for fuel distribution, consists of pressure amplifier, in the form of a piston integrated into collecting chamber and supply pipe, controlled by control chamber.
DE10059124B4 (en) * 2000-11-29 2005-09-15 Robert Bosch Gmbh Pressure-controlled injector for injection systems with high-pressure collecting space
DE10060089A1 (en) * 2000-12-02 2002-06-20 Bosch Gmbh Robert Fuel injection system
DE10063545C1 (en) * 2000-12-20 2002-08-01 Bosch Gmbh Robert Fuel injection system
DE10065103C1 (en) * 2000-12-28 2002-06-20 Bosch Gmbh Robert Pressure-controlled fuel injection device has pressure cavity connected by line containing valve directly to pressure storage cavity
WO2002055869A1 (en) 2001-01-12 2002-07-18 Robert Bosch Gmbh Fuel-injection device
DE10112154A1 (en) * 2001-03-14 2002-09-26 Bosch Gmbh Robert Fuel injection system
SE522624C2 (en) * 2001-03-29 2004-02-24 Volvo Teknisk Utveckling Ab A method for controlling the injection of a fluid into an internal combustion engine
DE10124207A1 (en) 2001-05-11 2002-11-21 Bosch Gmbh Robert Fuel injection device pressure amplifier has control channel in low pressure chamber connected to difference chamber, opening closed/opened depending on piston unit part movement
DE10123911A1 (en) * 2001-05-17 2002-11-28 Bosch Gmbh Robert Fuel injection device for internal combustion engine has transfer piston separating chamber connected to source from high pressure and return chambers
DE50209869D1 (en) 2001-05-17 2007-05-16 Bosch Gmbh Robert FUEL INJECTION DEVICE
JP4125963B2 (en) * 2001-05-17 2008-07-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection device
DE10123914B4 (en) 2001-05-17 2005-10-20 Bosch Gmbh Robert Fuel injection device with pressure booster device and pressure booster device
DE10123917A1 (en) * 2001-05-17 2002-11-28 Bosch Gmbh Robert Fuel injection system for internal combustion engine has closure piston region protruding into closure pressure chamber connected to high-pressure source so source fuel pressure acts on closure piston
DE10126686A1 (en) 2001-06-01 2002-12-19 Bosch Gmbh Robert Fuel injection system, for an IC motor, has a pressure amplifier with a sliding piston and controlled outflow cross section stages to set the fuel pressure according to the piston stroke and give a boot injection action
DE10126685A1 (en) 2001-06-01 2002-12-19 Bosch Gmbh Robert Fuel injection system, at an IC motor, has a pressure amplifier to give a flat pressure increase without pressure oscillations
DE10132732A1 (en) * 2001-07-05 2003-01-23 Bosch Gmbh Robert Fuel injection system
DE10141110A1 (en) 2001-08-22 2003-03-20 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE10141111B4 (en) 2001-08-22 2005-10-13 Robert Bosch Gmbh Fuel injection device for internal combustion engines
JP4345096B2 (en) * 2001-09-28 2009-10-14 株式会社デンソー Fuel injection device
DE10148995A1 (en) * 2001-10-04 2003-04-24 Bosch Gmbh Robert Fuel injection system, for direct fuel injection at an IC motor, has a pressure unit for each injection valve with a piston return spring within the primary zone so that the piston is unaffected by hydraulic oscillations
DE10149004C1 (en) * 2001-10-04 2003-02-27 Bosch Gmbh Robert Fuel injection device for IC engine has compression piston displaced in compression space provided with annular shoulder defining second compression space
DE10158951A1 (en) * 2001-12-03 2003-06-12 Daimler Chrysler Ag Fuel Injection system for IC engine, operates with pressure conversion, has connection from control chamber and admission chamber to return line passing via common valve connection
GB2394002B (en) * 2001-12-03 2004-06-16 Daimler Chrysler Ag Injection system operating with pressure intensification
FR2834001B1 (en) 2001-12-20 2004-06-04 Renault PISTON FOR INTERNAL COMBUSTION ENGINE AND ASSOCIATED ENGINE
DE10213011B4 (en) * 2002-03-22 2014-02-27 Daimler Ag Auto-ignition internal combustion engine
DE10213025B4 (en) * 2002-03-22 2014-02-27 Daimler Ag Auto-ignition internal combustion engine
EP1359316B1 (en) * 2002-05-03 2007-04-18 Delphi Technologies, Inc. Fuel injection system
DE10225148B4 (en) * 2002-06-06 2014-02-20 Robert Bosch Gmbh Injection device and method for its operation
DE10229417A1 (en) * 2002-06-29 2004-01-15 Robert Bosch Gmbh Accumulator injection system with vario nozzle and pressure booster
DE10229415A1 (en) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Device for damping the needle stroke on pressure-controlled fuel injectors
DE10229413A1 (en) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Pressure intensifier control by moving an injection valve member
GB0215488D0 (en) 2002-07-04 2002-08-14 Delphi Tech Inc Fuel injection system
JP3931120B2 (en) 2002-07-10 2007-06-13 ボッシュ株式会社 Accumulated fuel injection system
JP4308487B2 (en) * 2002-07-11 2009-08-05 株式会社豊田中央研究所 Fuel injection method in fuel injection device
US6854446B2 (en) * 2002-07-11 2005-02-15 Toyota Jidosha Kabushiki Kaisha Fuel injection apparatus
DE10257641B4 (en) * 2002-07-29 2009-08-20 Robert Bosch Gmbh Fuel injector with and without pressure boosting with controllable needle speed and method for its control
DE10242894A1 (en) 2002-09-16 2004-03-25 Robert Bosch Gmbh Fuel injection system for supplying fuel to direct-injection internal combustion engines comprises a central fuel reservoir partly integrated in the cylinder head
DE10246208A1 (en) * 2002-10-04 2004-04-15 Robert Bosch Gmbh Surge suppression device for storage injection system has equalizing device between high pressure storage cavity and fuel injector
DE10247210A1 (en) * 2002-10-10 2004-04-22 Robert Bosch Gmbh Fuel injection unit for internal combustion engines has filter element connected in series to one chamber of pressure intensifier and to flow lines for filling of at least one chamber of pressure intensifier
DE10247903A1 (en) * 2002-10-14 2004-04-22 Robert Bosch Gmbh Pressure-reinforced fuel injection device for internal combustion engine has central control line acting on pressure transmission piston
DE10248467A1 (en) 2002-10-17 2004-05-06 Robert Bosch Gmbh Fuel injection system with pressure intensifier and low-pressure circuit with reduced delivery rate
DE10251679A1 (en) * 2002-11-07 2004-05-19 Robert Bosch Gmbh Pressure booster with stroke-dependent damping for supplying self-ignition internal combustion engine combustion chambers has damping choke passing fuel from working chamber to hydraulic chamber
DE10251932B4 (en) * 2002-11-08 2007-07-12 Robert Bosch Gmbh Fuel injection device with integrated pressure booster
US7059301B2 (en) * 2003-02-20 2006-06-13 Caterpillar Inc. End of injection rate shaping
US7219655B2 (en) * 2003-02-28 2007-05-22 Caterpillar Inc Fuel injection system including two common rails for injecting fuel at two independently controlled pressures
DE10315016A1 (en) * 2003-04-02 2004-10-28 Robert Bosch Gmbh Fuel injector with a leak-free servo valve
DE10315015B4 (en) * 2003-04-02 2005-12-15 Robert Bosch Gmbh Fuel injector with pressure booster and servo valve with optimized control quantity
DE10335059A1 (en) * 2003-07-31 2005-02-17 Robert Bosch Gmbh Switching valve for a fuel injector with pressure booster
US6951204B2 (en) * 2003-08-08 2005-10-04 Caterpillar Inc Hydraulic fuel injection system with independently operable direct control needle valve
JP4088600B2 (en) 2004-03-01 2008-05-21 トヨタ自動車株式会社 Correction method for booster fuel injection system
DE102004010760A1 (en) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Fuel injection device for internal combustion engines with Nadelhubdämpfung
JP4196868B2 (en) 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 Fuel injection device
JP4196869B2 (en) 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 Fuel injection device
JP4196870B2 (en) * 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 Fuel injection device
DE102004017305A1 (en) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Fuel injection device for internal combustion engines with directly controllable nozzle needles
JP2005315195A (en) 2004-04-30 2005-11-10 Toyota Motor Corp Fuel injection control method of boosting common rail type fuel injector
DE102004022270A1 (en) * 2004-05-06 2005-12-01 Robert Bosch Gmbh Fuel injector for internal combustion engines with multi-stage control valve
JP3994990B2 (en) * 2004-07-21 2007-10-24 株式会社豊田中央研究所 Fuel injection device
JP4107277B2 (en) * 2004-09-27 2008-06-25 株式会社デンソー Fuel injection device for internal combustion engine
DE102004053421A1 (en) * 2004-11-05 2006-05-11 Robert Bosch Gmbh Fuel injector
JP4134979B2 (en) * 2004-11-22 2008-08-20 株式会社デンソー Fuel injection device for internal combustion engine
DE102004057610A1 (en) * 2004-11-29 2006-06-01 Fev Motorentechnik Gmbh Fuel injection method for e.g. piston internal combustion engine, involves closing and opening injection nozzle by pressure in pressure chamber under movement of locking piece that acts on nozzle by hydraulically-controlled pressure change
JP4286770B2 (en) * 2004-12-02 2009-07-01 株式会社日本自動車部品総合研究所 Control valve and fuel injection valve having the same
DE102006003484A1 (en) * 2005-03-16 2006-09-21 Robert Bosch Gmbh Device for injecting fuel
JP4305416B2 (en) * 2005-06-09 2009-07-29 株式会社デンソー Fuel injection device for internal combustion engine
DE102005030220A1 (en) 2005-06-29 2007-01-04 Robert Bosch Gmbh Injector with switchable pressure intensifier
JP4695453B2 (en) * 2005-07-29 2011-06-08 株式会社豊田中央研究所 Directional control valve
JP4400528B2 (en) * 2005-08-02 2010-01-20 株式会社デンソー Fuel injection device for internal combustion engine
CN1786457B (en) * 2005-09-19 2011-06-22 童维友 Preset high pressure distributing type fuel oil injecting pump
US7293547B2 (en) * 2005-10-03 2007-11-13 Caterpillar Inc. Fuel injection system including a flow control valve separate from a fuel injector
US8100110B2 (en) 2005-12-22 2012-01-24 Caterpillar Inc. Fuel injector with selectable intensification
KR100845624B1 (en) * 2006-03-24 2008-07-10 엠에이엔 디젤 에이/에스 Common rail hydraulic system
SE529810C2 (en) * 2006-04-10 2007-11-27 Scania Cv Ab Injection means for an internal combustion engine
DE102006039264A1 (en) * 2006-08-22 2008-02-28 Volkswagen Ag Fuel injection device with pressure booster
DE102006039263A1 (en) * 2006-08-22 2008-03-06 Volkswagen Ag Fuel injector
US20080047527A1 (en) * 2006-08-25 2008-02-28 Jinhui Sun Intensified common rail fuel injection system and method of operating an engine using same
DE102007006083B4 (en) * 2006-12-18 2009-04-30 Continental Automotive Gmbh fuel injector
DE102007002760A1 (en) * 2007-01-18 2008-07-24 Robert Bosch Gmbh Fuel injector with integrated pressure booster
DE102007004745A1 (en) 2007-01-31 2008-08-14 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Fuel injection system for internal combustion engine, has high pressure accumulator chamber that branches in supply line, which is continuously connected with pressure intensifier working chamber of pressure transmission unit
JP2008215101A (en) 2007-02-28 2008-09-18 Denso Corp Fuel injection device
DE102007021326A1 (en) * 2007-05-07 2008-11-13 Robert Bosch Gmbh Pressure boosting system for at least one fuel injector
US8082902B2 (en) 2007-10-19 2011-12-27 Caterpillar Inc. Piezo intensifier fuel injector and engine using same
US7970526B2 (en) * 2009-01-05 2011-06-28 Caterpillar Inc. Intensifier quill for fuel injector and fuel system using same
DE102011008484A1 (en) 2011-01-13 2012-07-19 Hydac Filtertechnik Gmbh Supply device with a fuel conveyor and use of a pertinent supply device
DE102011009035A1 (en) 2011-01-21 2012-07-26 Hydac Filtertechnik Gmbh Fuel delivery device for an internal combustion engine
DE102011000872A1 (en) 2011-02-22 2012-08-23 Jochen Mertens Method for injecting a fuel and associated device
DE102012005319A1 (en) * 2012-03-19 2013-09-19 L'orange Gmbh Injector assembly for fuel injector of motor vehicle, has actuating element that generates pressure in fluid, which is increased with respect to system high pressure, where injector assembly is formed to be effective against pressure force
CN107110082B (en) * 2014-12-19 2020-06-05 沃尔沃卡车集团 Injection system for an internal combustion engine and motor vehicle comprising such an injection system
DE102020212697B4 (en) 2020-10-08 2022-08-25 Ford Global Technologies, Llc injector, diesel engine and motor vehicle

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE554051A (en) * 1956-01-31
DE2003265A1 (en) * 1969-05-07 1970-11-19 Univ Magdeburg Tech Injection device for high injection pressures, especially for diesel engines
JPS51101628A (en) * 1975-01-24 1976-09-08 Diesel Kiki Co
DE2806788A1 (en) * 1978-02-17 1979-08-23 Bosch Gmbh Robert PUMP NOZZLE FOR COMBUSTION MACHINES
JPS54155319A (en) * 1978-05-29 1979-12-07 Komatsu Ltd Fuel injection controller for internal combustion engine
FR2449795B1 (en) * 1979-02-24 1986-11-28 Huber Motorenbau Inst INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINE
FR2497876B1 (en) * 1981-01-15 1986-02-07 Renault FUEL INJECTION DEVICE AND METHOD FOR AN INTERNAL COMBUSTION ENGINE
JPS57124073A (en) * 1981-01-24 1982-08-02 Diesel Kiki Co Ltd Fuel injection device
JPS597768A (en) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd Fuel injection device
JPS59141764A (en) * 1983-02-03 1984-08-14 Nissan Motor Co Ltd Fuel injection device
FR2541379B1 (en) * 1983-02-21 1987-06-12 Renault IMPROVEMENT IN ELECTROMAGNETICALLY CONTROLLED INJECTION SYSTEMS FOR A PRESSURE-TIME DIESEL ENGINE WHERE THE INJECTOR NEEDLE IS DRIVEN BY THE DISCHARGE THEN LOADING A CAPACITY
JPS6036771A (en) * 1983-08-09 1985-02-25 Daihatsu Diesel Kk Fuel injection device for diesel engine
DE3345971A1 (en) * 1983-12-20 1985-06-27 Volkswagenwerk Ag, 3180 Wolfsburg Fuel injection device
JP2512899B2 (en) * 1986-05-21 1996-07-03 株式会社豊田自動織機製作所 Fuel injection device for internal combustion engine
DE3634962A1 (en) * 1986-10-14 1988-04-21 Bosch Gmbh Robert FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES, ESPECIALLY FOR DIESEL ENGINES
DE4015557A1 (en) * 1989-05-26 1990-11-29 Volkswagen Ag Fuel injection system for IC engine - has high pressure chamber connected permanently with pressure operated injection valve which is defined by piston surface
AT408133B (en) * 1990-06-08 2001-09-25 Avl Verbrennungskraft Messtech INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES
US5143291A (en) * 1992-03-16 1992-09-01 Navistar International Transportation Corp. Two-stage hydraulic electrically-controlled unit injector
DE4341543A1 (en) * 1993-12-07 1995-06-08 Bosch Gmbh Robert Fuel injection device for internal combustion engines
JP2885076B2 (en) * 1994-07-08 1999-04-19 三菱自動車工業株式会社 Accumulator type fuel injection device
US5803028A (en) * 1994-10-13 1998-09-08 Rose; Nigel Eric Fluid actuated engines and engine mechanisms
US5522545A (en) * 1995-01-25 1996-06-04 Caterpillar Inc. Hydraulically actuated fuel injector
JP3079933B2 (en) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2882358B2 (en) 1996-04-10 1999-04-12 三菱自動車工業株式会社 Accumulator type fuel injection device
JPH09296767A (en) * 1996-04-30 1997-11-18 Isuzu Motors Ltd Fuel injector of internal combustion engine
DE19619523A1 (en) * 1996-05-15 1997-11-20 Bosch Gmbh Robert Fuel injector for high pressure injection
JP3845917B2 (en) * 1996-11-08 2006-11-15 株式会社デンソー Accumulated fuel injection system
DE19716221B4 (en) * 1997-04-18 2007-06-21 Robert Bosch Gmbh Fuel injection device with pre-injection and main injection in internal combustion engines, in particular for hard to ignite fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1284357A1 (en) * 2000-05-17 2003-02-19 Bosch Automotive Systems Corporation Fuel injection device

Also Published As

Publication number Publication date
JP4638604B2 (en) 2011-02-23
DE19910970A1 (en) 2000-09-28
US6453875B1 (en) 2002-09-24
JP2002539372A (en) 2002-11-19
DE50010339D1 (en) 2005-06-23
KR20010043493A (en) 2001-05-25
KR100676642B1 (en) 2007-02-01
EP1078160A1 (en) 2001-02-28
WO2000055496A1 (en) 2000-09-21

Similar Documents

Publication Publication Date Title
EP1078160B1 (en) Fuel injection system
EP1125049B1 (en) Combined stroke/pressure controlled fuel injection method and system for an internal combustion engine
DE19939429A1 (en) Fuel injector
EP1125054B1 (en) Fuel injection method and device
EP1520099B1 (en) Boosted fuel injector with rapid pressure reduction at end of injection
WO2008135339A1 (en) Fuel injection system having pressure boosting system
EP1273797B1 (en) Fuel injection device
EP1125045B1 (en) Fuel injection system for an internal combustion engine
WO2004033893A1 (en) Device for surpressing pressure waves on storage injection systems
EP1311755B1 (en) Fuel injection device
DE19939425B4 (en) Fuel injection system for an internal combustion engine
EP1397593B1 (en) Fuel injection device with a pressure booster
EP1354133B1 (en) Fuel-injection device
EP1392965B1 (en) Pressure amplifier for a fuel injection device
EP1534950A1 (en) Fuel injection device
EP1203882A2 (en) Injector
EP1397591B1 (en) Fuel injection device comprising a pressure amplifier
WO2002055869A1 (en) Fuel-injection device
DE102004048322A1 (en) fuel injector
DE10133490A1 (en) Fuel injection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010321

17Q First examination report despatched

Effective date: 20031001

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010339

Country of ref document: DE

Date of ref document: 20050623

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050908

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170221

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170217

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50010339

Country of ref document: DE