JP2008215101A - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP2008215101A
JP2008215101A JP2007050171A JP2007050171A JP2008215101A JP 2008215101 A JP2008215101 A JP 2008215101A JP 2007050171 A JP2007050171 A JP 2007050171A JP 2007050171 A JP2007050171 A JP 2007050171A JP 2008215101 A JP2008215101 A JP 2008215101A
Authority
JP
Japan
Prior art keywords
fuel
pressure
needle
injection
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007050171A
Other languages
Japanese (ja)
Inventor
Kenji Date
健治 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007050171A priority Critical patent/JP2008215101A/en
Priority to DE102008000423.5A priority patent/DE102008000423B4/en
Publication of JP2008215101A publication Critical patent/JP2008215101A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the injection pressure of fuel by an injector high in a fuel injection device without adding an inexpensive device or a member. <P>SOLUTION: An ECU of the fuel injection device performs a temporary valve closing operation for displacing a needle in the opening direction of an injection hole after displacing it temporarily in the closing direction in one injection stroke from when the needle opens the injection hole from a fully closed state until the needle closes the injection hole. Pressure waves generated accompanying opening of the injection hole can be used by the temporary valve closing operation mainly comprising operation of an existing needle. Thereby, in the fuel injection device, the injection pressure of fuel by the injector can be made high without adding an expensive device or a member by only alternating a control flow. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンに燃料を噴射して供給する燃料噴射装置に関する。   The present invention relates to a fuel injection device that injects and supplies fuel to an engine.

従来から、燃料噴射装置は、ニードルにより噴孔を開放して燃料を噴射するインジェクタと、ニードルをリフト動作させるアクチュエータに指令を与え、インジェクタによる燃料の噴射を制御する制御手段とを備える。近年、黒煙低減等の要請の高まりに伴い、燃料噴射装置においてもインジェクタによる燃料の噴射圧が高圧化され、さらなる高圧化を達成すべく種々の技術検討がなされている。   2. Description of the Related Art Conventionally, a fuel injection device includes an injector that opens a nozzle hole with a needle and injects fuel, and a control unit that gives a command to an actuator that lifts the needle and controls injection of fuel by the injector. In recent years, with the increasing demand for reduction of black smoke and the like, the fuel injection pressure by the injector is also increased in the fuel injection device, and various technical studies have been conducted to achieve further higher pressure.

例えば、パスカルの原理により燃料を増圧する増圧機構をインジェクタに装備し、この増圧機構を有するインジェクタにより噴射圧を高圧化する燃料噴射装置(例えば、特許文献1参照)、コモンレール等の燃料供給源からインジェクタへの燃料の供給流路を開閉する弁装置を備え、この弁装置により、噴孔開閉に伴い発生する圧力波を利用して噴射圧を高圧化する燃料噴射装置(例えば、特許文献2参照)、噴孔開放に伴う燃料の圧力低下により移動して燃料を増圧する動圧ピストンをインジェクタに装備し、この動圧ピストンを有するインジェクタにより噴射圧を高圧化する燃料噴射装置(例えば、特許文献3参照)等が開示されている。   For example, an injector is equipped with a pressure-increasing mechanism that boosts fuel according to Pascal's principle, and a fuel injection device that increases the injection pressure by an injector having this pressure-increasing mechanism (see, for example, Patent Document 1), fuel supply such as a common rail A fuel injection device that includes a valve device that opens and closes a fuel supply flow path from a source to an injector, and that uses this pressure device to increase the injection pressure by using a pressure wave generated when the nozzle hole is opened and closed (for example, Patent Documents) 2), a fuel injection device that equips an injector with a dynamic pressure piston that moves due to a decrease in fuel pressure accompanying opening of the nozzle hole and increases the fuel, and increases the injection pressure with the injector having the dynamic pressure piston (for example, Patent Document 3) is disclosed.

しかし、特許文献1に記載の燃料噴射装置はインジェクタに増圧機構を装備する必要があり、特許文献2に記載の燃料噴射装置は弁装置を備える必要があり、特許文献3に記載の燃料噴射装置はインジェクタに動圧ピストンを装備する必要がある。したがって、特許文献1〜3に記載の燃料噴射装置は、いずれも高価な機器、部材を追加する必要があり、高コストである。
特表2002−539372号公報 特開2006−170153号公報 特開2000−130293号公報
However, the fuel injection device described in Patent Document 1 needs to be provided with a pressure increasing mechanism in the injector, the fuel injection device described in Patent Document 2 needs to include a valve device, and the fuel injection device described in Patent Document 3 The device needs to equip the injector with a dynamic pressure piston. Therefore, the fuel injection devices described in Patent Documents 1 to 3 all require expensive equipment and members and are expensive.
JP 2002-539372 A JP 2006-170153 A JP 2000-130293 A

本発明は、上記の問題点を解決するためになされたものであり、その目的は、燃料噴射装置において、高価な機器、部材を追加することなくインジェクタによる燃料の噴射圧を高圧化することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to increase the fuel injection pressure by the injector without adding expensive equipment or members in the fuel injection device. is there.

〔請求項1の手段〕
請求項1に記載の燃料噴射装置は、エンジンに燃料を噴射して供給するものであり、ニードルにより噴孔を開放して燃料を噴射するインジェクタと、ニードルをリフト動作させるアクチュエータに指令を与え、インジェクタによる燃料の噴射を制御する制御手段とを備える。そして、制御手段は、ニードルが噴孔を全閉から開放した後に閉鎖するまでの1噴射行程で、ニードルを一時的に閉方向に変位させた後に開方向に変位させる一時閉弁操作を行う。
[Means of Claim 1]
The fuel injection device according to claim 1, which injects and supplies fuel to the engine, gives a command to an injector that opens a nozzle hole by a needle and injects the fuel, and an actuator that lifts the needle, Control means for controlling fuel injection by the injector. The control means performs a temporary valve closing operation in which the needle is temporarily displaced in the closing direction and then displaced in the opening direction in one injection stroke until the needle is opened from the fully closed state to the closed state.

これにより、噴孔開閉に伴い発生する圧力波を、既存のニードルを動作主体とする一時閉弁操作により利用することができる。このため、燃料噴射装置において、高価な機器、部材を追加することなく制御手段の改変のみで、インジェクタによる燃料の噴射圧を高圧化することができる。   Thereby, the pressure wave generated with the opening and closing of the nozzle hole can be used by a temporary valve closing operation with the existing needle as the main operation. For this reason, in the fuel injection device, the fuel injection pressure by the injector can be increased only by modifying the control means without adding expensive equipment and members.

〔請求項2の手段〕
請求項2に記載の燃料噴射装置によれば、ニードルは、一時閉弁操作により、全閉位置よりも開側の第1リフト位置から閉方向に変位して、全閉位置よりも開側かつ第1リフト位置よりも閉側の第2リフト位置に到達し、その後、第2リフト位置から開方向に変位する。
[Means of claim 2]
According to the fuel injection device of the second aspect, the needle is displaced in the closing direction from the first lift position on the open side with respect to the fully closed position by the temporary valve closing operation, and is opened on the open side with respect to the fully closed position. The second lift position that is closer to the first lift position is reached, and then the second lift position is displaced in the opening direction.

〔請求項3の手段〕
請求項3に記載の燃料噴射装置によれば、インジェクタは、ニードルに対し閉方向に燃料圧を作用させる背圧室、および噴孔を通じて噴射される燃料が流出入するノズル室を形成し、制御手段は、アクチュエータへの指令により背圧室への燃料の流出入を操作することで、背圧室の燃料圧を増減してニードルを閉方向または開方向に変位させる。そして、一時閉弁操作は、背圧室の燃料圧を一時的に増加させた後に減少させることにより行われる。
[Means of claim 3]
According to the fuel injection device of the third aspect, the injector forms a back pressure chamber that applies fuel pressure to the needle in the closing direction, and a nozzle chamber through which the fuel injected through the injection hole flows in and out. The means operates the flow of fuel into and out of the back pressure chamber according to a command to the actuator, thereby increasing or decreasing the fuel pressure in the back pressure chamber to displace the needle in the closing direction or the opening direction. The temporary valve closing operation is performed by temporarily increasing the fuel pressure in the back pressure chamber and then decreasing it.

〔請求項4の手段〕
請求項4に記載の燃料噴射装置によれば、制御手段は、噴孔の開放により生じるノズル室の燃料圧の減圧波が自由端反射して昇圧波となりノズル室に到達する時に、一時閉弁操作を行う。
[Means of claim 4]
According to the fuel injection device of the fourth aspect, the control means temporarily closes the valve when the pressure reduction wave of the fuel pressure in the nozzle chamber caused by opening of the nozzle hole is reflected at the free end to reach the nozzle chamber. Perform the operation.

〔請求項5の手段〕
請求項5に記載の燃料噴射装置は、燃料を高圧状態で蓄圧しインジェクタに分配するコモンレールと、コモンレールからノズル室に燃料を導く燃料流路に配されて、燃料流路の燃料圧を検出する燃料圧検出手段とを備える。そして、制御手段は、燃料圧検出手段から得られる検出値に基づき一時閉弁操作を行う時期を決める。
これにより、制御手段は、ノズル室で発生した圧力波がノズル室に戻ってくる時期を、高精度に把握することができるので、より効果的に一時閉弁操作を行うことができる。
[Means of claim 5]
The fuel injection device according to claim 5 is disposed in a common rail that accumulates fuel in a high pressure state and distributes the fuel to the injector, and a fuel passage that guides the fuel from the common rail to the nozzle chamber, and detects the fuel pressure in the fuel passage. And a fuel pressure detecting means. Then, the control means determines the timing for performing the temporary valve closing operation based on the detection value obtained from the fuel pressure detection means.
As a result, the control means can accurately grasp when the pressure wave generated in the nozzle chamber returns to the nozzle chamber, so that the valve closing operation can be performed more effectively.

〔請求項6の手段〕
請求項6に記載の燃料噴射装置によれば、制御手段は、1噴射行程でインジェクタにより噴射すべき燃料の必要量を、エンジンの運転状態に応じて算出し、1噴射行程で一時閉弁操作を行う回数を、燃料の必要量に応じて決める。
燃料の必要量が多いほど1噴射行程に要する時間が長くなるので、1噴射行程あたり、圧力波がコモンレール等の燃料供給源とインジェクタとの間を往復する回数も多くなる。そこで、1噴射行程で一時閉弁操作を行う回数を燃料の必要量に応じて決めることで、圧力波を無駄に減衰させることなく有効に利用することができる。
[Means of claim 6]
According to the fuel injection device of the sixth aspect, the control means calculates the required amount of fuel to be injected by the injector in one injection stroke according to the operating state of the engine, and temporarily closes the valve in one injection stroke. The number of times to perform is determined according to the required amount of fuel.
As the required amount of fuel increases, the time required for one injection stroke becomes longer. Therefore, the number of times the pressure wave reciprocates between a fuel supply source such as a common rail and the injector per injection stroke increases. Therefore, by determining the number of times that the temporary valve closing operation is performed in one injection stroke according to the required amount of fuel, the pressure wave can be effectively used without being attenuated unnecessarily.

〔請求項7の手段〕
請求項7に記載の燃料噴射装置によれば、噴孔は、ニードルの先端に設けられたシート部が所定の着座位置に着座することで閉鎖される。そして、一時閉弁操作による閉方向の変位は、シート部と着座位置との間に形成される流路断面積(シート部開口面積と呼ぶ)が噴孔の流路断面積(噴孔総断面積と呼ぶ)以上となる範囲で行われる。
シート部開口面積が噴孔総断面積よりも小さくなると、シート部開口面積を形成する部分を燃料が通過することによる圧力損失が大きくなり、一時閉弁操作による高圧化の効果が大幅に減殺されてしまう。そこで、閉方向の変位をシート部開口面積が噴孔総断面積以上となる範囲で行うことで、一時閉弁操作による高圧化の効果の減殺を防止することができる。
[Means of Claim 7]
According to the fuel injection device of the seventh aspect, the nozzle hole is closed when the seat portion provided at the tip of the needle is seated at a predetermined seating position. The displacement in the closing direction due to the temporary valve closing operation is such that the flow path cross-sectional area formed between the seat part and the seating position (referred to as the seat part opening area) (Referred to as an area).
If the seat opening area is smaller than the total cross-sectional area of the nozzle hole, the pressure loss due to the fuel passing through the part that forms the seat opening area increases, and the effect of high pressure by the temporary closing operation is greatly reduced. End up. Therefore, by performing the displacement in the closing direction in a range where the seat opening area is equal to or larger than the total nozzle hole cross-sectional area, it is possible to prevent the high pressure effect due to the temporary valve closing operation from being reduced.

最良の形態1の燃料噴射装置は、エンジンに燃料を噴射して供給するものであり、ニードルにより噴孔を開放して燃料を噴射するインジェクタと、ニードルをリフト動作させるアクチュエータに指令を与え、インジェクタによる燃料の噴射を制御する制御手段とを備える。そして、制御手段は、ニードルが噴孔を全閉から開放した後に閉鎖するまでの1噴射行程で、ニードルを一時的に閉方向に変位させた後に開方向に変位させる一時閉弁操作を行う。   The fuel injection device of the best mode 1 is to inject and supply fuel to an engine. The injector opens a nozzle hole with a needle and injects the fuel, and gives an instruction to an actuator that lifts the needle. And control means for controlling the fuel injection. Then, the control means performs a temporary valve closing operation in which the needle is temporarily displaced in the closing direction and then displaced in the opening direction in one injection stroke until the needle is opened from the fully closed state to the closed state.

ここで、ニードルは、一時閉弁操作により、全閉位置よりも開側の第1リフト位置から閉方向に変位して、全閉位置よりも開側かつ第1リフト位置よりも閉側の第2リフト位置に到達し、その後、第2リフト位置から開方向に変位する。   Here, the needle is displaced in the closing direction from the first lift position on the open side with respect to the fully closed position by the temporary valve closing operation, so that the needle is open on the open side with respect to the fully closed position and on the close side with respect to the first lift position. The second lift position is reached, and then the second lift position is displaced in the opening direction.

また、インジェクタは、ニードルに対し閉方向に燃料圧を作用させる背圧室、および噴孔を通じて噴射される燃料が流出入するノズル室を形成し、制御手段は、アクチュエータへの指令により背圧室への燃料の流出入を操作することで、背圧室の燃料圧を増減してニードルを閉方向または開方向に変位させる。そして、一時閉弁操作は、背圧室の燃料圧を一時的に増加させた後に減少させることにより行われる。
さらに、制御手段は、噴孔の開放により生じるノズル室の燃料圧の減圧波が自由端反射して昇圧波となりノズル室に到達する時に、一時閉弁操作を行う。
The injector forms a back pressure chamber that applies fuel pressure to the needle in a closing direction, and a nozzle chamber through which fuel injected through the injection hole flows in and out. By operating the flow of fuel into and out of the valve, the fuel pressure in the back pressure chamber is increased or decreased to displace the needle in the closing direction or the opening direction. The temporary valve closing operation is performed by temporarily increasing the fuel pressure in the back pressure chamber and then decreasing it.
Further, the control means performs a temporary valve closing operation when the pressure reduction wave of the fuel pressure in the nozzle chamber generated by opening the nozzle hole is reflected at the free end to become a pressure increase wave and reach the nozzle chamber.

また、この燃料噴射装置は、燃料を高圧状態で蓄圧しインジェクタに分配するコモンレールと、コモンレールからノズル室に燃料を導く燃料流路に配されて、燃料流路の燃料圧を検出する燃料圧検出手段とを備える。そして、制御手段は、燃料圧検出手段から得られる検出値に基づき一時閉弁操作を行う時期を決める。   In addition, this fuel injection device is arranged in a common rail that accumulates fuel in a high pressure state and distributes the fuel to the injector, and a fuel passage that leads to the fuel from the common rail to the nozzle chamber, and detects the fuel pressure in the fuel passage. Means. Then, the control means determines the timing for performing the temporary valve closing operation based on the detection value obtained from the fuel pressure detection means.

また、制御手段は、1噴射行程でインジェクタにより噴射すべき燃料の必要量を、エンジンの運転状態に応じて算出し、1噴射行程で一時閉弁操作を行う回数を、燃料の必要量に応じて決める。
また、噴孔は、ニードルの先端に設けられたシート部が所定の着座位置に着座することで閉鎖される。そして、一時閉弁操作による閉方向の変位は、シート部開口面積が噴孔総断面積以上となる範囲で行われる。
Further, the control means calculates the required amount of fuel to be injected by the injector in one injection stroke according to the operating state of the engine, and determines the number of times that the temporary valve closing operation is performed in one injection stroke according to the required amount of fuel. Decide.
Further, the nozzle hole is closed by seating a seat portion provided at the tip of the needle at a predetermined seating position. And the displacement of the closing direction by temporary valve closing operation is performed in the range from which a seat part opening area becomes more than a nozzle hole total cross-sectional area.

〔実施例1の構成〕
実施例1の燃料噴射装置1の構成を、図1を用いて説明する。
燃料噴射装置1は、エンジン(図示せず)に燃料を噴射して供給するものであり、ニードル2により噴孔2aを開放して燃料を噴射するインジェクタ3と、インジェクタ3のアクチュエータ4に指令を与え、インジェクタ3による燃料の噴射を制御する制御手段としての電子制御装置(ECUと呼ぶ)5とを備える。
[Configuration of Example 1]
The configuration of the fuel injection device 1 according to the first embodiment will be described with reference to FIG.
The fuel injection device 1 injects and supplies fuel to an engine (not shown). The injector 3 opens the injection hole 2a with the needle 2 and injects the fuel, and the actuator 4 of the injector 3 is instructed. And an electronic control unit (referred to as ECU) 5 as a control means for controlling fuel injection by the injector 3.

インジェクタ3は、例えば、エンジンに搭載され、燃料を高圧状態で蓄圧するコモンレール8から燃料の分配を受け、コモンレール8から分配された燃料をエンジンの気筒内に噴射する。なお、コモンレール8は、サプライポンプ(図示せず)により加圧された燃料が供給され、コモンレール8に蓄圧される燃料の圧力(コモンレール圧と呼ぶ)は、レール圧センサ9により検出され、レール圧の検出値はECU5に出力される。   The injector 3 is mounted on an engine, for example, receives fuel distribution from a common rail 8 that accumulates fuel in a high pressure state, and injects fuel distributed from the common rail 8 into a cylinder of the engine. The common rail 8 is supplied with fuel pressurized by a supply pump (not shown), and the pressure of the fuel accumulated in the common rail 8 (referred to as common rail pressure) is detected by a rail pressure sensor 9 and the rail pressure is detected. The detected value is output to the ECU 5.

インジェクタ3は、噴孔2aを開閉するニードル2、ニードル2を開方向にリフト動作させるための駆動力を発生するアクチュエータ4としての電磁2方弁(以下、アクチュエータ4をこの電磁2方弁とし、電磁弁4と呼ぶ)、ニードル2を閉方向に付勢するスプリング11等から構成される。そして、ニードル2の先端側には、噴孔2aを通じて噴射される燃料が流出入するノズル室11aが形成され、ノズル室11aの燃料圧はニードル2を開方向に付勢する。また、ニードル2の後端側には背圧室12が形成され、背圧室12の燃料圧(背圧と呼ぶ)はニードル2を閉方向に付勢する。   The injector 3 includes a needle 2 that opens and closes the nozzle hole 2a, and an electromagnetic two-way valve as an actuator 4 that generates a driving force for lifting the needle 2 in the opening direction (hereinafter, the actuator 4 is referred to as this electromagnetic two-way valve. (Referred to as an electromagnetic valve 4), and a spring 11 for urging the needle 2 in the closing direction. A nozzle chamber 11a through which fuel injected through the injection hole 2a flows in and out is formed on the tip side of the needle 2, and the fuel pressure in the nozzle chamber 11a urges the needle 2 in the opening direction. Further, a back pressure chamber 12 is formed on the rear end side of the needle 2, and the fuel pressure (referred to as back pressure) in the back pressure chamber 12 biases the needle 2 in the closing direction.

ノズル室11aにはコモンレール8から燃料を受け入れるための燃料流路14が接続しており、ノズル室11aは、常時、燃料流路14によりコモンレール8と連通する。背圧室12には燃料流路14から分岐する燃料流路15、および燃料タンク16に通じる燃料流路17が接続しており、燃料流路15、17には、各々、絞り18、19が設けられている。   A fuel flow path 14 for receiving fuel from the common rail 8 is connected to the nozzle chamber 11a, and the nozzle chamber 11a is always in communication with the common rail 8 through the fuel flow path 14. A fuel flow path 15 branched from the fuel flow path 14 and a fuel flow path 17 leading to the fuel tank 16 are connected to the back pressure chamber 12. The fuel flow paths 15 and 17 have throttles 18 and 19, respectively. Is provided.

また、燃料流路14には、燃料圧を検出する燃料圧検出手段としての燃料圧センサ19aが配され、燃料流路14の燃料圧の検出値がECU5に出力される。さらに、燃料流路17には上記の電磁弁4が配され、電磁弁4により燃料流路17が開閉される。さらに、燃料流路17には燃料温度センサ20が配されて燃料流路17を流れる燃料の温度が検出され、この温度の検出値はECU5に出力される。   The fuel flow path 14 is provided with a fuel pressure sensor 19a as a fuel pressure detection means for detecting the fuel pressure, and the detected value of the fuel pressure in the fuel flow path 14 is output to the ECU 5. Further, the electromagnetic valve 4 is disposed in the fuel flow path 17, and the fuel flow path 17 is opened and closed by the electromagnetic valve 4. Further, a fuel temperature sensor 20 is disposed in the fuel flow path 17 to detect the temperature of the fuel flowing through the fuel flow path 17, and the detected value of this temperature is output to the ECU 5.

ここで、電磁弁4は、通電時に燃料流路17を開放し非通電時に燃料流路17を閉鎖するように配され、絞り18、19は、燃料流路17が開放された時に、燃料流路17を通じて背圧室12から流出する燃料の流量が、燃料流路15を通じて背圧室12に流入する燃料の流量よりも大きくなるように設けられている。   Here, the solenoid valve 4 is arranged so as to open the fuel flow path 17 when energized and close the fuel flow path 17 when de-energized, and the throttles 18 and 19 The flow rate of the fuel flowing out from the back pressure chamber 12 through the passage 17 is provided to be larger than the flow rate of the fuel flowing into the back pressure chamber 12 through the fuel flow path 15.

これにより、電磁弁4への通電がオンされると、背圧室12からの燃料の流出量が多くなり背圧が低下する。このため、ニードル2に閉方向に作用する付勢力(主に、背圧による付勢力とスプリング11による付勢力との合力)が、開方向に作用する付勢力(主に、ノズル室11aの燃料圧による付勢力)よりも弱くなり、ニードル2が開方向に駆動される。この結果、噴孔2aが開放され、ノズル室11aの燃料圧と同等の噴射圧で燃料が噴射される。
なお、噴孔2aは、ニードル2の先端に設けられたシート部24が所定の着座位置28に着座することで閉鎖され、シート部24が着座位置28から離座することで開放される。
As a result, when energization to the solenoid valve 4 is turned on, the amount of fuel outflow from the back pressure chamber 12 increases and the back pressure decreases. Therefore, the urging force acting on the needle 2 in the closing direction (mainly the resultant force of the urging force due to the back pressure and the urging force due to the spring 11) acts in the opening direction (mainly the fuel in the nozzle chamber 11a). And the needle 2 is driven in the opening direction. As a result, the nozzle hole 2a is opened, and fuel is injected at an injection pressure equivalent to the fuel pressure in the nozzle chamber 11a.
The nozzle hole 2 a is closed when the seat portion 24 provided at the tip of the needle 2 is seated at a predetermined seating position 28, and is opened when the seat portion 24 is separated from the seating position 28.

また、電磁弁4への通電がオフされると、背圧室12からの燃料の流出が止まり、背圧が上昇する。このため、ニードル2に閉方向に作用する付勢力が、開方向に作用する付勢力よりも強くなり、ニードル2が閉方向に駆動される。この結果、噴孔2aが閉鎖され、燃料の噴射が終了する。   When the energization of the solenoid valve 4 is turned off, the fuel outflow from the back pressure chamber 12 stops and the back pressure increases. For this reason, the urging force acting on the needle 2 in the closing direction becomes stronger than the urging force acting on the opening direction, and the needle 2 is driven in the closing direction. As a result, the nozzle hole 2a is closed, and fuel injection ends.

ECU5は、制御機能および演算機能を発揮するCPU、ROMおよびRAM等の記憶装置、入力装置ならびに出力装置等により構成される周知のマイクロコンピュータである。そして、ECU5は、レール圧センサ9、燃料圧センサ19a、燃料温度センサ20等のエンジンの運転状態を示す各種センサから検出値の入力を受け、これらの検出値に基づき電磁弁4への通電をオンオフするための各種の指令値を算出する。そして、ECU5は、算出した指令値に基づく出力を行い、電磁弁4への通電をオンオフする。   The ECU 5 is a well-known microcomputer including a storage device such as a CPU, ROM, and RAM, an input device, an output device, and the like that perform a control function and an arithmetic function. The ECU 5 receives input of detection values from various sensors indicating the operating state of the engine such as the rail pressure sensor 9, the fuel pressure sensor 19a, and the fuel temperature sensor 20, and energizes the electromagnetic valve 4 based on these detection values. Various command values for turning on and off are calculated. Then, the ECU 5 performs output based on the calculated command value, and turns on / off the energization of the electromagnetic valve 4.

つまり、ECU5は、電磁弁4への指令により背圧室12への燃料の流出入を操作することで、背圧を増減してニードル2を閉方向または開方向に変位させ噴射を制御する。すなわち、ECU5は、各種の検出値に基づいて、インジェクタ3による噴射を開始する時期(ニードル2が噴孔2aを全閉から開放する時期:噴射開始時期Tinjとする)、およびインジェクタ3により噴射すべき燃料の必要量(必要噴射量と呼ぶ)等を算出する。なお、必要噴射量とは、ニードル2が噴孔2aを全閉から開放した後に閉鎖するまでの1噴射行程で噴射すべき燃料の必要量である。   That is, the ECU 5 controls the injection by operating the fuel flow into and out of the back pressure chamber 12 according to a command to the electromagnetic valve 4 to increase or decrease the back pressure to displace the needle 2 in the closing direction or the opening direction. That is, the ECU 5 performs injection by the injector 3 based on various detection values, when to start the injection by the injector 3 (when the needle 2 opens the injection hole 2a from the fully closed state: the injection start timing Tinj), and The required amount of fuel (referred to as the required injection amount) is calculated. The required injection amount is a required amount of fuel to be injected in one injection stroke until the needle 2 opens the injection hole 2a from the fully closed state and then closes.

そして、ECU5は、噴射開始時期Tinj、必要噴射量等に基づいて、電磁弁4に通電を開始する時期(通電開始時期Tonと呼ぶ)、および、通電開始時期Tonから1噴射行程を終えるために通電を停止する時期までの期間(総通電期間Tqと呼ぶ)を算出する。そして、ECU5は、通電開始時期Ton、および総通電期間Tqに基づく出力を行い、電磁弁4への通電をオンオフして、インジェクタ3による噴射を制御する。   Then, the ECU 5 finishes one injection stroke from the energization start timing Ton and the energization start timing Ton based on the injection start timing Tinj, the required injection amount, and the like. A period (referred to as a total energization period Tq) until the time of stopping energization is calculated. Then, the ECU 5 performs output based on the energization start timing Ton and the total energization period Tq, turns on / off the energization of the electromagnetic valve 4, and controls the injection by the injector 3.

ここで、インジェクタ3による噴射開始と電磁弁4への通電開始との間、および噴射停止と通電停止との間には時間的な遅れが生じる(噴射開始と通電開始との間の遅れを、噴射開始遅れτdとし、噴射停止と通電停止との間の遅れを、噴射停止遅れτcとする)。そして、噴射開始遅れτd、噴射停止遅れτcは、主にコモンレール圧に応じて変動する。そこで、ECU5は、レール圧センサ9から得られる検出値に基づいて噴射開始遅れτd、噴射停止遅れτcを算出し、噴射開始遅れτdを加味して通電開始時期Tonを算出し、噴射停止遅れτcを加味して総通電期間Tqを算出する。   Here, there is a time delay between the start of injection by the injector 3 and the start of energization of the solenoid valve 4 and between the stop of injection and the stop of energization (the delay between the start of injection and the start of energization, (Injection start delay τd, and the delay between the injection stop and energization stop is the injection stop delay τc). The injection start delay τd and the injection stop delay τc vary mainly according to the common rail pressure. Therefore, the ECU 5 calculates the injection start delay τd and the injection stop delay τc based on the detection values obtained from the rail pressure sensor 9, calculates the energization start timing Ton taking into account the injection start delay τd, and the injection stop delay τc. Is added to calculate the total energization period Tq.

なお、噴射停止とは、「ニードル2が噴孔2aを閉鎖するために閉方向に変位を開始すること」を意味するものとする。そして、1噴射行程の終期は、噴射停止の時ではなく、噴孔2aが閉鎖されて全閉になり燃料が噴射されなくなる時である。   The term “injection stop” means “the needle 2 starts displacement in the closing direction to close the nozzle hole 2a”. The end of one injection stroke is not when the injection is stopped, but when the nozzle hole 2a is closed and fully closed, and fuel is no longer injected.

さらに、ECU5は、1噴射行程でニードル2を一時的に閉方向に変位させた後に開方向に変位させる一時閉弁操作を行う。すなわち、ECU5は、通電開始時期Tonから総通電期間Tqだけ経過するまでの間に、一時的に電磁弁4への通電を停止した後、再度、通電を開始する。つまり、ECU5は、一時的に燃料流路17を閉鎖して背圧を増加させた後、再度、燃料流路17を開放して背圧を減少させることにより一時閉弁操作を行う。   Further, the ECU 5 performs a temporary valve closing operation for displacing the needle 2 in the opening direction after temporarily displacing the needle 2 in the closing direction in one injection stroke. That is, the ECU 5 temporarily stops energization to the solenoid valve 4 until the total energization period Tq elapses from the energization start timing Ton, and then starts energization again. That is, the ECU 5 temporarily closes the fuel flow path 17 to increase the back pressure, and then opens the fuel flow path 17 again to decrease the back pressure to perform a temporary valve closing operation.

この一時閉弁操作は、噴孔2aの開閉に伴い発生する圧力波を利用して燃料の噴射圧を高圧化するために行われる。すなわち、噴孔2aを全閉から開放することによりノズル室11aの燃料圧に圧力波が発生し、この圧力波が、燃料流路14を通じてコモンレール8に伝播し、コモンレール8で自由端反射する。そして、ECU5は、自由端反射した圧力波(反射圧力波と呼ぶ)が燃料流路14を通じてノズル室11aに伝播する時期に一時閉弁操作を行う。これにより、ノズル室11aで反射圧力波が増幅され、ノズル室11aの燃料圧(つまり、噴射圧)が高圧化される。   This temporary valve closing operation is performed in order to increase the fuel injection pressure using the pressure wave generated when the nozzle hole 2a is opened and closed. That is, by opening the nozzle hole 2a from the fully closed state, a pressure wave is generated in the fuel pressure in the nozzle chamber 11a. Then, the ECU 5 performs a temporary valve closing operation when the pressure wave reflected by the free end (referred to as a reflected pressure wave) propagates to the nozzle chamber 11 a through the fuel flow path 14. Thereby, the reflected pressure wave is amplified in the nozzle chamber 11a, and the fuel pressure (that is, the injection pressure) in the nozzle chamber 11a is increased.

ここで、ECU5は、燃料圧センサ19aから得られる燃料流路14の燃料圧の検出値に基づき、一時閉弁操作を行う時期を決める。つまり、ECU5は、圧力波や反射圧力波が燃料圧センサ19aによる検出部位を通過する時期を直接的に把握し、この通過時期に基づき一時閉弁操作を行う時期を決める。   Here, the ECU 5 determines the timing for performing the temporary closing operation based on the detected value of the fuel pressure in the fuel flow path 14 obtained from the fuel pressure sensor 19a. That is, the ECU 5 directly grasps the time when the pressure wave or the reflected pressure wave passes through the detection portion by the fuel pressure sensor 19a, and determines the time when the temporary valve closing operation is performed based on this passage time.

また、ECU5は、1噴射行程で一時閉弁操作を行う回数を必要噴射量に応じて(具体的には、必要噴射量等に基づいて算出した総通電期間Tqに応じて)決める。すなわち、一時閉弁操作でニードル2が開方向に変位する際にも圧力波が発生するので、このような圧力波を有効に利用するため、一時閉弁操作を行う回数を必要噴射量に応じて決める。なお、ECU5は、一時閉弁操作を行う回数を、総通電期間Tqの値に基づきゼロに決定することもできる。つまり、ECU5は、必要噴射量が少なく総通電期間Tqが短い場合、一時閉弁操作を行わずに噴射を終了することができる。   Further, the ECU 5 determines the number of times of performing the temporary valve closing operation in one injection stroke according to the required injection amount (specifically, according to the total energization period Tq calculated based on the required injection amount). That is, a pressure wave is generated even when the needle 2 is displaced in the opening direction by the temporary valve closing operation. Therefore, in order to effectively use such a pressure wave, the number of times of performing the temporary valve closing operation depends on the required injection amount. Decide. In addition, ECU5 can also determine the frequency | count of performing a temporary valve closing operation to zero based on the value of the total energization period Tq. That is, the ECU 5 can end the injection without performing the temporary closing operation when the required injection amount is small and the total energization period Tq is short.

ここで、ニードル2は、一時閉弁操作により、全閉位置よりも開側の第1リフト位置から閉方向に変位して、全閉位置よりも開側かつ第1リフト位置よりも閉側の第2リフト位置に到達し、その後、第2リフト位置から開方向に変位する(図2参照)。そして、一時閉弁操作による閉方向の変位は、シート部24と着座位置28との間に形成される流路断面積(シート部開口面積と呼ぶ)が噴孔2aの流路断面積(噴孔総断面積と呼ぶ)以上となる範囲で行われる(図2参照)。   Here, the needle 2 is displaced in the closing direction from the first lift position on the open side with respect to the fully closed position by the temporary valve closing operation, so that the needle 2 is on the open side with respect to the fully closed position and on the close side with respect to the first lift position. The second lift position is reached, and then the second lift position is displaced in the opening direction (see FIG. 2). The displacement in the closing direction due to the temporary valve closing operation is such that the flow path cross-sectional area formed between the seat part 24 and the seating position 28 (referred to as the seat part opening area) (Refer to FIG. 2).

すなわち、シート部開口面積と噴孔総断面積とが等しくなるときのニードル2の変位量を規定リフトHLとすると、ニードル2の変位量が規定リフトHLよりも小さいと(つまり、シート部開口面積が噴孔総断面積よりも小さいと)、燃料がシート部24と着座位置28との間を通過する際の圧力損失が大きくなり、一時閉弁操作による高圧化の効果が大幅に減殺されてしまう。そこで、ECU5は、一時閉弁操作において一時的に電磁弁4への通電を停止する期間(一時閉弁操作期間Tintとする)を、ニードル2の変位量が規定リフトHLよりも大きくなるように算出する。
以下、一時閉弁操作を行うための制御方法を詳述する。
That is, if the displacement amount of the needle 2 when the seat portion opening area and the nozzle hole total cross-sectional area are equal is the defined lift HL, the displacement amount of the needle 2 is smaller than the defined lift HL (that is, the seat portion opening area). Is smaller than the total nozzle hole cross-sectional area), the pressure loss when the fuel passes between the seat portion 24 and the seating position 28 increases, and the effect of increasing the pressure by the temporary closing operation is greatly reduced. End up. Therefore, the ECU 5 sets a displacement amount of the needle 2 to be larger than the specified lift HL during a period in which energization to the solenoid valve 4 is temporarily stopped in the temporary closing operation (a temporary closing operation period Tint). calculate.
Hereinafter, a control method for performing the temporary valve closing operation will be described in detail.

〔実施例1の制御方法〕
実施例1の燃料噴射装置1の制御方法を、図3のフローチャートを用いて説明する。
まず、ステップS1で、各種検出値に基づいて噴射開始時期Tinj、必要噴射量を算出し、ステップS2で、レール圧センサ9から得られる検出値に基づいて噴射開始遅れτd、噴射停止遅れτcを算出する。そして、ステップS3で、噴射開始時期Tinj、必要噴射量、噴射開始遅れτd、噴射停止遅れτc等に基づいて通電開始時期Ton、総通電期間Tqを算出する。
[Control Method of Example 1]
A control method of the fuel injection device 1 according to the first embodiment will be described with reference to the flowchart of FIG.
First, in step S1, the injection start timing Tinj and the required injection amount are calculated based on various detection values. In step S2, the injection start delay τd and the injection stop delay τc are calculated based on the detection values obtained from the rail pressure sensor 9. calculate. In step S3, the energization start timing Ton and the total energization period Tq are calculated based on the injection start timing Tinj, the required injection amount, the injection start delay τd, the injection stop delay τc, and the like.

次に、ステップS4で、時刻が通電開始時期Tonになったか否かを判断し、時刻が通電開始時期Tonになれば(YES)、ステップS5に進んで電磁弁4への通電を開始し、時刻が通電開始時期Tonになっていなければ(NO)、通電開始時期Tonになるまで待機する。   Next, in step S4, it is determined whether or not the time has reached the energization start timing Ton. If the time has reached the energization start timing Ton (YES), the process proceeds to step S5 to start energization of the solenoid valve 4. If the time is not the energization start timing Ton (NO), the system waits until the energization start timing Ton is reached.

次に、ステップS6で、時刻が噴射開始時期Tinjになったか否かを判断し、時刻が噴射開始時期Tinjになれば(YES)、ステップS7に進んで圧力波往復時間Trを算出し、時刻が噴射開始時期Tinjになっていなければ(NO)、噴射開始時期Tinjになるまで待機する。   Next, in step S6, it is determined whether or not the time has reached the injection start timing Tinj. If the time has reached the injection start timing Tinj (YES), the process proceeds to step S7 to calculate the pressure wave reciprocation time Tr. If the injection start timing Tinj is not reached (NO), the system waits until the injection start timing Tinj is reached.

ここで、圧力波往復時間Trとは、ノズル室11aで圧力波が発生してから(つまり、ニードル2が噴孔2aを全閉から開放してから)、この圧力波がコモンレール8で自由端反射して反射圧力波となり、反射圧力波がノズル室11aに伝播するまでに要する時間である。そして、圧力波往復時間Trは、ノズル室11aとコモンレール8との間の往復距離(つまり、燃料流路14の距離の2倍)を音速で除することで算出され、音速は、レール圧センサ9からの検出値および燃料温度センサ20からの検出値に基づいて算出される。   Here, the pressure wave reciprocation time Tr means that after a pressure wave is generated in the nozzle chamber 11a (that is, after the needle 2 opens the nozzle hole 2a from the fully closed state), the pressure wave is freed by the common rail 8 at the free end. This is the time required for reflection to become a reflected pressure wave and for the reflected pressure wave to propagate to the nozzle chamber 11a. The pressure wave reciprocation time Tr is calculated by dividing the reciprocating distance between the nozzle chamber 11a and the common rail 8 (that is, twice the distance of the fuel flow path 14) by the sonic velocity, and the sonic velocity is calculated by the rail pressure sensor. 9 and the detection value from the fuel temperature sensor 20 are calculated.

次に、ステップS8で、残噴射期間が圧力波往復時間Trよりも長いか否かを判断し、残噴射期間が圧力波往復時間Trよりも長ければ(YES)、ステップS9に進み、残噴射期間が圧力波往復時間Trよりも長くなければ(NO)、ステップS15に進む。
ここで、残噴射期間とは、現時点から噴射停止時期(つまり、ニードル2が噴孔2aを閉鎖するために閉方向に変位を開始する時期)までの期間である。
Next, in step S8, it is determined whether or not the remaining injection period is longer than the pressure wave reciprocation time Tr. If the remaining injection period is longer than the pressure wave reciprocation time Tr (YES), the process proceeds to step S9 and the remaining injection is performed. If the period is not longer than the pressure wave reciprocation time Tr (NO), the process proceeds to step S15.
Here, the remaining injection period is a period from the present time to the injection stop timing (that is, the timing at which the needle 2 starts displacement in the closing direction to close the nozzle hole 2a).

つまり、ステップS8では、反射圧力波を噴射圧の高圧化に利用できる時期まで噴射が続くか否かを判断している。そして、反射圧力波を利用できる時期まで噴射が続くと判断すれば、ステップS9〜ステップS14に進んで一時閉弁操作を実行し、反射圧力波を利用できる時期まで噴射が続かないと判断すれば、ステップS15、S16に進んで噴射を終了する。   That is, in step S8, it is determined whether or not the injection continues until a time when the reflected pressure wave can be used to increase the injection pressure. Then, if it is determined that the injection continues until the time when the reflected pressure wave can be used, the process proceeds to step S9 to step S14, the temporary valve closing operation is executed, and if it is determined that the injection does not continue until the time when the reflected pressure wave can be used. Then, the process proceeds to steps S15 and S16 to end the injection.

また、ステップS7〜S14は、一時閉弁操作を実行する回数とともに処理回数が増加するステップであり、ステップS8の処理が1回目である場合、現時点は噴射開始時期Tinjとなり、残噴射期間は、Tq−τd+τcとなる。   Steps S7 to S14 are steps in which the number of processes increases with the number of times that the temporary valve closing operation is performed. When the process in step S8 is the first time, the present time is the injection start timing Tinj, and the remaining injection period is Tq−τd + τc.

ステップS9では、一時閉弁操作における通電停止とニードル2の閉方向への変位開始との間の時間的な遅れ(一時閉弁遅れτcintとする)、一時閉弁操作における通電再開とニードル2の開方向への変位開始との間の時間的な遅れ(再開弁遅れτdintとする)を算出する。一時閉弁遅れτcint、再開弁遅れτdintも、レール圧センサ9からの検出値に基づいて算出される。
そして、ステップS10で、一時閉弁操作のための通電停止時期(一時閉弁操作開始時期Toff’とする)、および一時閉弁操作期間Tintを算出する。
In step S9, a time delay between the stop of energization in the temporary valve closing operation and the start of displacement of the needle 2 in the closing direction (referred to as a temporary valve closing delay τcint), the restart of energization in the temporary valve closing operation, and the needle 2 A time delay from the start of displacement in the opening direction (restart valve delay τdint) is calculated. The temporary valve closing delay τcint and the restart valve delay τdint are also calculated based on the detected value from the rail pressure sensor 9.
In step S10, an energization stop timing (temporary valve closing operation start timing Toff ′) for the temporary valve closing operation and a temporary valve closing operation period Tint are calculated.

ここで、一時閉弁操作開始時期Toff’は、圧力波往復時間Tr、一時閉弁遅れτcint等に基づいて算出され、一時閉弁操作期間Tintは、再開弁遅れτdint、規定リフトHL、レール圧センサ9の検出値等に基づいて算出される。なお、一時閉弁操作開始時期Toff’の算出に用いる圧力波往復時間Trは、燃料圧センサ19aからの検出値に基づき再算出された値である。つまり、圧力波や反射圧力波が燃料圧センサ19aによる検出部位を通過する時期に基づき、圧力波往復時間Trを再算出し、この再算出された圧力波往復時間Trを用いて一時閉弁操作開始時期Toff’を算出する。   Here, the temporary valve closing operation start timing Toff ′ is calculated based on the pressure wave reciprocating time Tr, the temporary valve closing delay τcint, and the like, and the temporary valve closing operation period Tint is the restart valve delay τdint, the specified lift HL, the rail pressure, and the like. It is calculated based on the detection value of the sensor 9 and the like. Note that the pressure wave reciprocation time Tr used for calculating the temporary valve closing operation start timing Toff 'is a value recalculated based on the detected value from the fuel pressure sensor 19a. That is, the pressure wave reciprocation time Tr is recalculated based on the time when the pressure wave or the reflected pressure wave passes through the detection site by the fuel pressure sensor 19a, and the valve closing operation is temporarily performed using the recalculated pressure wave reciprocation time Tr. The start time Toff ′ is calculated.

また、一時閉弁操作期間Tintの算出に必要なニードル2の閉方向への変位速度は、主にコモンレール圧に応じて変動するので、レール圧センサ9の検出値に基づいて算出される。さらに、一時閉弁操作による高圧化効果の減殺を防止するため、一時閉弁操作期間Tintの算出は、ニードル2の変位量が規定リフトHLよりも小さくならないように行われる。   Further, the displacement speed in the closing direction of the needle 2 necessary for calculating the temporary valve closing operation period Tint mainly varies depending on the common rail pressure, and is thus calculated based on the detected value of the rail pressure sensor 9. Furthermore, in order to prevent the increase in the high pressure effect due to the temporary closing operation, the temporary closing operation period Tint is calculated so that the displacement amount of the needle 2 does not become smaller than the specified lift HL.

そして、ステップS11で、時刻が一時閉弁操作開始時期Toff’になったか否かを判断し、時刻が一時閉弁操作開始時期Toff’になれば(YES)、ステップS12に進んで電磁弁4への通電を停止し、時刻が一時閉弁操作開始時期Toff’になっていなければ(NO)、一時閉弁操作開始時期Toff’になるまで待機する。   In step S11, it is determined whether or not the time has reached the temporary valve closing operation start timing Toff '. If the time has reached the temporary valve closing operation start timing Toff' (YES), the process proceeds to step S12 and the electromagnetic valve 4 is moved. If the time is not the temporary valve closing operation start timing Toff ′ (NO), the system waits until the temporary valve closing operation start timing Toff ′ is reached.

次に、ステップS13で、時刻が一時閉弁操作開始時期Toff’から一時閉弁操作期間Tintだけ経過したか否かを判断する。そして、一時閉弁操作開始時期Toff’から一時閉弁操作期間Tintだけ経過していれば(YES)、ステップS14に進み、電磁弁4への通電を再開してステップS7に戻り、経過していなければ(NO)、経過するまで待機する。   Next, in step S13, it is determined whether or not the time has elapsed from the temporary valve closing operation start timing Toff 'by the temporary valve closing operation period Tint. If the temporary valve closing operation period Tint has elapsed from the temporary valve closing operation start timing Toff '(YES), the process proceeds to step S14, energization of the electromagnetic valve 4 is resumed, the process returns to step S7, and has elapsed. If not (NO), the process waits until it elapses.

ステップS15では、時刻が通電開始時期Tonから総通電期間Tqだけ経過したか否かを判断する。つまり、ステップS15は、1噴射行程を終えるか否かを判断するものであり、時刻が通電開始時期Tonから総通電期間Tqだけ経過していれば(YES)、ステップS16に進んで電磁弁4への通電を停止し、経過していなければ(NO)、経過するまで待機する。   In step S15, it is determined whether or not the time has elapsed from the energization start timing Ton by the total energization period Tq. That is, in step S15, it is determined whether or not one injection stroke is completed. If the time has elapsed from the energization start timing Ton by the total energization period Tq (YES), the process proceeds to step S16 and the solenoid valve 4 is reached. If the current is not passed (NO), the system waits until the current has passed.

〔実施例1の作用〕
実施例1の燃料噴射装置1の作用を、図4のタイムチャートを用いて説明する。
まず、時刻が通電開始時期Tonになると電磁弁4への通電が開始され、時刻が噴射開始時期Tinjになると、ニードル2が開方向に変位を始め噴孔2aを全閉から開放する。なお、噴射開始時期Tinjは、通電開始時期Tonよりも噴射開始遅れτdだけ遅れる。
[Operation of Example 1]
The operation of the fuel injection device 1 according to the first embodiment will be described with reference to the time chart of FIG.
First, when the time reaches the energization start timing Ton, energization to the solenoid valve 4 is started, and when the time reaches the injection start timing Tinj, the needle 2 starts to be displaced in the opening direction and opens the nozzle hole 2a from the fully closed state. The injection start timing Tinj is delayed from the energization start timing Ton by the injection start delay τd.

ニードル2が噴孔2aを全閉から開放することにより、ノズル室11aの燃料圧(つまり、噴射圧)は、一時的に急低下した後、急上昇して安定する。つまり、噴孔2aの開放によりノズル室11aで生じる圧力波は減圧波の形態になり、この減圧波が、燃料流路14を流れる燃料を媒体としてコモンレール8に向かって伝播する。   When the needle 2 opens the nozzle hole 2a from the fully closed state, the fuel pressure (that is, the injection pressure) in the nozzle chamber 11a suddenly drops and then rises and stabilizes. That is, the pressure wave generated in the nozzle chamber 11a due to the opening of the nozzle hole 2a is in the form of a decompression wave, and this decompression wave propagates toward the common rail 8 using the fuel flowing through the fuel flow path 14 as a medium.

そして、この減圧波は、コモンレール8で自由端反射し、一時的な急上昇、および急上昇に続く急低下に形を変え、燃料流路14を流れる燃料を媒体としてノズル室11aに向かって反射伝播する。つまり、コモンレール8での自由端反射により反射圧力波は昇圧波の形態になり、この昇圧波は、噴射開始時期Tinjから圧力波往復時間Trだけ経過した時刻に略一致する時刻にノズル室11aに伝播する。   This decompression wave is reflected at the common rail 8 at the free end, changed into a sudden sudden rise and a sudden drop following the sudden rise, and reflected and propagated toward the nozzle chamber 11a using the fuel flowing through the fuel flow path 14 as a medium. . In other words, the reflected pressure wave is in the form of a boosted wave due to free end reflection at the common rail 8, and this boosted wave enters the nozzle chamber 11a at a time that approximately coincides with the time when the pressure wave reciprocation time Tr has elapsed from the injection start timing Tinj. Propagate.

一方、一時閉弁操作を開始する時刻(つまり、電磁弁4への通電が停止される時刻)として一時閉弁操作開始時期Toff’が算出されるが、一時閉弁操作開始時期Toff’は、昇圧波がノズル室11aに伝播する時刻より一時閉弁遅れτcintだけ前の時刻として算出される。このため、昇圧波により噴射圧が上昇を始める時刻よりも前に、電磁弁4への通電が停止される。   On the other hand, a temporary valve closing operation start timing Toff ′ is calculated as a time at which the temporary valve closing operation is started (that is, a time at which energization to the electromagnetic valve 4 is stopped). It is calculated as a time before the temporary valve closing delay τcint from the time when the boost wave propagates to the nozzle chamber 11a. For this reason, energization to the solenoid valve 4 is stopped before the time when the injection pressure starts to increase due to the boost wave.

この結果、昇圧波がノズル室11aに伝播して噴射圧が上昇を始めるのとほぼ同時に、ニードル2が閉方向に変位を始める。そして、昇圧波は、噴射開始時期Tinjに発生した減圧波よりも増幅され、噴射圧の高圧化が促進される。また、この噴射圧の高圧化により、噴射率も一時的に上昇する。   As a result, the needle 2 starts to be displaced in the closing direction almost simultaneously with the pressure wave being propagated to the nozzle chamber 11a and the injection pressure starting to rise. The boost wave is amplified more than the decompression wave generated at the injection start timing Tinj, and the injection pressure is increased. In addition, the injection rate is temporarily increased by increasing the injection pressure.

そして、時刻が一時閉弁操作開始時期Toff’から一時閉弁操作期間Tintだけ経過すると電磁弁4への通電が再開され、通電再開から再開弁遅れτdintだけ遅れてニードル2が開方向に変位を始める。なお、一時閉弁操作において、ニードル2の変位量は、規定リフトHLよりも小さくなることはない。   Then, when the time has elapsed from the temporary valve closing operation start timing Toff ′ by the time of the temporary valve closing operation period Tint, the energization to the electromagnetic valve 4 is resumed, and the needle 2 is displaced in the opening direction with a delay of the restart valve delay τdint from the resumption of energization. start. In the temporary valve closing operation, the displacement amount of the needle 2 does not become smaller than the specified lift HL.

やがて、時刻が通電開始時期Tonから総通電期間Tqだけ経過すると、噴射停止のために電磁弁4への通電が停止され、通電停止から噴射停止遅れτcだけ遅れてニードル2が閉方向に変位を始める。   Eventually, when the time elapses from the energization start timing Ton for the total energization period Tq, energization to the solenoid valve 4 is stopped to stop the injection, and the needle 2 is displaced in the closing direction with a delay of the injection stop delay τc from the energization stop. start.

〔実施例1の効果〕
実施例1の燃料噴射装置1によれば、ECU5は、ニードル2が噴孔2aを全閉から開放した後に閉鎖するまでの1噴射行程で、ニードル2を一時的に閉方向に変位させた後に開方向に変位させる一時閉弁操作を行う。
これにより、噴孔2aの開放に伴い発生する圧力波を、既存のニードル2を動作主体とする一時閉弁操作により利用することができる。このため、燃料噴射装置1において、高価な機器、部材を追加することなく制御フローの改変のみで、インジェクタ3による燃料の噴射圧を高圧化することができる。
[Effect of Example 1]
According to the fuel injection device 1 of the first embodiment, the ECU 5 temporarily displaces the needle 2 in the closing direction in one injection stroke until the needle 2 opens the nozzle hole 2a from the fully closed state and then closes. Temporarily closes the valve to be displaced in the opening direction.
Thereby, the pressure wave generated with the opening of the nozzle hole 2a can be used by the temporary valve closing operation with the existing needle 2 as the main operation. Therefore, in the fuel injection device 1, the fuel injection pressure by the injector 3 can be increased only by modifying the control flow without adding expensive equipment and members.

また、燃料噴射装置1は、燃料流路14の燃料圧を検出する燃料圧センサ19aを備え、ECU5は、燃料圧センサ19aから得られる検出値に基づき、一時閉弁操作開始時期Toff’を算出するために必要な圧力波往復時間Trを再算出する。
これにより、ECU5は、ノズル室11aで発生した圧力波がノズル室11aに戻ってくる時期を、高精度に把握することができるので、より効果的に一時閉弁操作を行うことができる。
The fuel injection device 1 also includes a fuel pressure sensor 19a that detects the fuel pressure in the fuel flow path 14, and the ECU 5 calculates a temporary valve closing operation start timing Toff ′ based on a detection value obtained from the fuel pressure sensor 19a. The pressure wave reciprocation time Tr necessary for the calculation is recalculated.
Thereby, since ECU5 can grasp | ascertain the time when the pressure wave which generate | occur | produced in the nozzle chamber 11a returns to the nozzle chamber 11a with high precision, it can perform temporary valve closing operation more effectively.

また、ECU5は、エンジンの運転状態を示す各種の検出値に応じて必要噴射量を算出し、1噴射行程で一時閉弁操作を行う回数を、必要噴射量等に基づいて算出された総通電期間Tqに応じて決める。
必要噴射量が多いほど総通電期間Tqが長くなるので、1噴射行程あたり、圧力波がコモンレール8とインジェクタ3との間を往復する回数も多くなる。そこで、1噴射行程で一時閉弁操作を行う回数を総通電期間Tqに応じて決めることで、圧力波を無駄に減衰させることなく有効に利用することができる。
Further, the ECU 5 calculates the required injection amount according to various detection values indicating the operating state of the engine, and calculates the number of times that the temporary valve closing operation is performed in one injection stroke based on the required injection amount and the like. It is determined according to the period Tq.
Since the total energization period Tq becomes longer as the required injection amount increases, the number of times the pressure wave reciprocates between the common rail 8 and the injector 3 per injection stroke also increases. Therefore, by determining the number of times of performing the temporary valve closing operation in one injection stroke according to the total energization period Tq, the pressure wave can be effectively used without being attenuated unnecessarily.

また、一時閉弁操作による閉方向の変位は、シート部開口面積が噴孔総断面積以上となる範囲で行われる。
シート部開口面積が噴孔総断面積よりも小さくなると、シート部開口面積を形成する部分を燃料が通過することによる圧力損失が大きくなり、一時閉弁操作による高圧化の効果が大幅に減殺されてしまう。そこで、閉方向の変位をシート部開口面積が噴孔総断面積以上となる範囲で行うことで、一時閉弁操作による高圧化の効果の減殺を防止することができる。
Further, the displacement in the closing direction due to the temporary valve closing operation is performed in a range where the seat opening area is equal to or larger than the total nozzle hole cross-sectional area.
If the seat opening area is smaller than the total cross-sectional area of the nozzle hole, the pressure loss due to the fuel passing through the part that forms the seat opening area increases, and the effect of high pressure by the temporary closing operation is greatly reduced. End up. Therefore, by performing the displacement in the closing direction in a range where the seat opening area is equal to or larger than the total nozzle hole cross-sectional area, it is possible to prevent the high pressure effect due to the temporary valve closing operation from being reduced.

〔変形例〕
実施例1の燃料噴射装置1によれば、ECU5は、算出された噴射開始時期Tinjに圧力波が発生するものとみなし、噴射開始時期Tinjを基準にして一時閉弁操作を行ったが、ニードル2の変位量を検出するニードル変位量センサを装備し、ニードル変位量センサからの検出値に基づいて圧力波の発生時期を把握し、ニードル変位量センサからの検出値に基づく圧力波の発生時期を基準にして一時閉弁操作を行うようにしてもよい。この場合、圧力波の発生時期を高精度に把握できるため、一時閉弁操作による高圧化の効果を高めることができる。
[Modification]
According to the fuel injection device 1 of the first embodiment, the ECU 5 considers that a pressure wave is generated at the calculated injection start timing Tinj, and performs a temporary valve closing operation based on the injection start timing Tinj. Equipped with a needle displacement sensor that detects the amount of displacement 2 and grasps the generation time of the pressure wave based on the detection value from the needle displacement sensor, and the generation time of the pressure wave based on the detection value from the needle displacement sensor The valve closing operation may be performed based on the above. In this case, since the generation time of the pressure wave can be grasped with high accuracy, the effect of increasing the pressure by the temporary closing operation can be enhanced.

また、実施例1の燃料噴射装置1によれば、ECU5は、燃料流路14に燃料圧センサ19aを装備し、燃料圧センサ19aからの検出値に基づいて圧力波往復時間Trを再算出し、再算出した圧力波往復時間Trを用いて一時閉弁操作開始時期Toff’を算出したが、再算出前の圧力波往復時間Trの値(つまり、ノズル室11aとコモンレール8との間の往復距離を音速で除することで算出された値)を用いて、一時閉弁操作開始時期Toff’を算出してもよい。   Further, according to the fuel injection device 1 of the first embodiment, the ECU 5 equips the fuel flow path 14 with the fuel pressure sensor 19a, and recalculates the pressure wave reciprocation time Tr based on the detected value from the fuel pressure sensor 19a. The recalculated pressure wave reciprocation time Tr was used to calculate the temporary valve closing operation start timing Toff ′. However, the value of the pressure wave reciprocation time Tr before recalculation (that is, the reciprocation between the nozzle chamber 11a and the common rail 8). The temporary valve closing operation start timing Toff ′ may be calculated using a value calculated by dividing the distance by the speed of sound.

なお、ニードル変位量センサや燃料圧センサ19aは、特許文献1に記載の増圧機構、特許文献2に記載の弁装置、および特許文献3に記載の動圧ピストンよりも安価であり、ニードル変位量センサや燃料圧センサ19aを装備しても安価に噴射圧を高圧化できる。   The needle displacement sensor and the fuel pressure sensor 19a are less expensive than the pressure increasing mechanism described in Patent Document 1, the valve device described in Patent Document 2, and the dynamic pressure piston described in Patent Document 3, and the needle displacement sensor Even if the quantity sensor and the fuel pressure sensor 19a are provided, the injection pressure can be increased at a low cost.

また、実施例1の燃料噴射装置1によれば、燃料温度センサ20は燃料流路17に配され、燃料流路17を流れる燃料の温度に基づいて音速が算出されたが、コモンレール8や燃料流路14、15のように燃料が流動する部位であれば、任意の部位に燃料温度センサ20を配することができる。   Further, according to the fuel injection device 1 of the first embodiment, the fuel temperature sensor 20 is disposed in the fuel flow path 17, and the speed of sound is calculated based on the temperature of the fuel flowing through the fuel flow path 17. The fuel temperature sensor 20 can be arranged at any part as long as the fuel flows in the flow paths 14 and 15.

燃料噴射装置の構成を示す説明図である。It is explanatory drawing which shows the structure of a fuel-injection apparatus. (a)はニードルの変位量とシート部開口面積および噴孔総断面積との相関を示す相関図であり、(b)は一時閉弁操作におけるニードルの変位量の許容範囲を示す説明図である。(A) is a correlation diagram showing the correlation between the needle displacement, the seat opening area, and the total nozzle hole cross-sectional area, (b) is an explanatory diagram showing the allowable range of the needle displacement in the temporary closing operation. is there. 燃料噴射装置の制御フローを示すフローチャートである。It is a flowchart which shows the control flow of a fuel-injection apparatus. (a)は電磁弁への通電の推移を示すタイムチャートであり、(b)はニードルの変位量の推移を示すタイムチャートであり、(c)は噴射圧の推移を示すタイムチャートであり、(d)は噴射率の推移を示すタイムチャートである。(A) is a time chart showing the transition of energization to the solenoid valve, (b) is a time chart showing the transition of the displacement amount of the needle, (c) is a time chart showing the transition of the injection pressure, (D) is a time chart which shows transition of an injection rate.

符号の説明Explanation of symbols

1 燃料噴射装置
2 ニードル
2a 噴孔
3 インジェクタ
4 電磁弁(アクチュエータ)
5 ECU(制御手段)
8 コモンレール
11a ノズル室
12 背圧室
14 燃料流路
19a 燃料圧センサ(燃料圧検出手段)
24 シート部
28 着座位置
DESCRIPTION OF SYMBOLS 1 Fuel injection apparatus 2 Needle 2a Injection hole 3 Injector 4 Electromagnetic valve (actuator)
5 ECU (control means)
8 Common rail 11a Nozzle chamber 12 Back pressure chamber 14 Fuel flow path 19a Fuel pressure sensor (fuel pressure detecting means)
24 Seat part 28 Seating position

Claims (7)

エンジンに燃料を噴射して供給する燃料噴射装置において、
ニードルにより噴孔を開放して燃料を噴射するインジェクタと、
前記ニードルをリフト動作させるアクチュエータに指令を与え、前記インジェクタによる燃料の噴射を制御する制御手段とを備え、
この制御手段は、前記ニードルが前記噴孔を全閉から開放した後に閉鎖するまでの1噴射行程で、前記ニードルを一時的に閉方向に変位させた後に開方向に変位させる一時閉弁操作を行うことを特徴とする燃料噴射装置。
In a fuel injection device for injecting and supplying fuel to an engine,
An injector that opens a nozzle hole with a needle and injects fuel;
A control means for giving a command to an actuator for lifting the needle and controlling fuel injection by the injector;
The control means performs a temporary valve closing operation in which the needle is displaced in the opening direction after being temporarily displaced in the closing direction in one injection stroke until the needle is opened from the fully closed position to the closed position. A fuel injection device characterized in that:
請求項1に記載の燃料噴射装置において、
前記ニードルは、前記一時閉弁操作により、全閉位置よりも開側の第1リフト位置から閉方向に変位して、前記全閉位置よりも開側かつ前記第1リフト位置よりも閉側の第2リフト位置に到達し、その後、前記第2リフト位置から開方向に変位することを特徴とする燃料噴射装置。
The fuel injection device according to claim 1,
The needle is displaced in the closing direction from the first lift position on the open side with respect to the fully closed position by the temporary valve closing operation, so that the needle is on the open side with respect to the fully closed position and on the close side with respect to the first lift position. The fuel injection device, which reaches a second lift position and is then displaced in an opening direction from the second lift position.
請求項1または請求項2に記載の燃料噴射装置において、
前記インジェクタは、前記ニードルに対し閉方向に燃料圧を作用させる背圧室、および前記噴孔を通じて噴射される燃料が流出入するノズル室を形成し、
前記制御手段は、前記アクチュエータへの指令により前記背圧室への燃料の流出入を操作することで、前記背圧室の燃料圧を増減して前記ニードルを閉方向または開方向に変位させ、
前記一時閉弁操作は、前記背圧室の燃料圧を一時的に増加させた後に減少させることにより行われることを特徴とする燃料噴射装置。
The fuel injection device according to claim 1 or 2,
The injector forms a back pressure chamber that applies a fuel pressure to the needle in a closing direction, and a nozzle chamber into which fuel injected through the injection hole flows in and out.
The control means operates the flow of fuel into and out of the back pressure chamber according to a command to the actuator, thereby increasing or decreasing the fuel pressure in the back pressure chamber to displace the needle in the closing direction or the opening direction,
The fuel injection device according to claim 1, wherein the temporary valve closing operation is performed by temporarily increasing the fuel pressure in the back pressure chamber and then decreasing the fuel pressure.
請求項3に記載の燃料噴射装置において、
前記制御手段は、前記噴孔の開放により生じる前記ノズル室の燃料圧の減圧波が自由端反射して昇圧波となり前記ノズル室に到達する時に、前記一時閉弁操作を行うことを特徴とする燃料噴射装置。
The fuel injection device according to claim 3, wherein
The control means performs the temporary valve closing operation when a reduced pressure wave of the fuel pressure in the nozzle chamber generated by opening the nozzle hole is reflected at a free end to become a boosted wave and reaches the nozzle chamber. Fuel injection device.
請求項4に記載の燃料噴射装置において、
燃料を高圧状態で蓄圧し前記インジェクタに分配するコモンレールと、
このコモンレールから前記ノズル室に燃料を導く燃料流路に配されて、この燃料流路の燃料圧を検出する燃料圧検出手段とを備え、
前記制御手段は、前記燃料圧検出手段から得られる検出値に基づき前記一時閉弁操作を行う時期を決めることを特徴とする燃料噴射装置。
The fuel injection device according to claim 4, wherein
A common rail that accumulates fuel in a high pressure state and distributes the fuel to the injector;
A fuel pressure detecting means arranged in a fuel flow path for guiding fuel from the common rail to the nozzle chamber and detecting a fuel pressure in the fuel flow path;
The fuel injection device according to claim 1, wherein the control means determines a timing for performing the temporary valve closing operation based on a detection value obtained from the fuel pressure detection means.
請求項1ないし請求項5の内のいずれか1つに記載の燃料噴射装置において、
前記制御手段は、
前記1噴射行程で前記インジェクタにより噴射すべき燃料の必要量を、前記エンジンの運転状態に応じて算出し、
前記1噴射行程で前記一時閉弁操作を行う回数を、前記燃料の必要量に応じて決めることを特徴とする燃料噴射装置。
The fuel injection device according to any one of claims 1 to 5,
The control means includes
Calculating a required amount of fuel to be injected by the injector in the one injection stroke according to an operating state of the engine;
The number of times that the temporary valve closing operation is performed in the one injection stroke is determined according to the required amount of the fuel.
請求項1ないし請求項6の内のいずれか1つに記載の燃料噴射装置において、
前記噴孔は、前記ニードルの先端に設けられたシート部が所定の着座位置に着座することで閉鎖され、
前記一時閉弁操作による閉方向の変位は、前記シート部と前記着座位置との間に形成される流路断面積が前記噴孔の流路断面積以上となる範囲で行われることを特徴とする燃料噴射装置。
The fuel injection device according to any one of claims 1 to 6,
The nozzle hole is closed by seating a seat portion provided at the tip of the needle at a predetermined seating position,
The displacement in the closing direction by the temporary valve closing operation is performed in a range in which a flow path cross-sectional area formed between the seat portion and the seating position is equal to or larger than a flow path cross-sectional area of the nozzle hole. Fuel injection device.
JP2007050171A 2007-02-28 2007-02-28 Fuel injection device Withdrawn JP2008215101A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007050171A JP2008215101A (en) 2007-02-28 2007-02-28 Fuel injection device
DE102008000423.5A DE102008000423B4 (en) 2007-02-28 2008-02-27 Fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050171A JP2008215101A (en) 2007-02-28 2007-02-28 Fuel injection device

Publications (1)

Publication Number Publication Date
JP2008215101A true JP2008215101A (en) 2008-09-18

Family

ID=39670257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050171A Withdrawn JP2008215101A (en) 2007-02-28 2007-02-28 Fuel injection device

Country Status (2)

Country Link
JP (1) JP2008215101A (en)
DE (1) DE102008000423B4 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130293A (en) 1998-10-28 2000-05-09 Nissan Motor Co Ltd Fuel injector of diesel engine
DE19910970A1 (en) 1999-03-12 2000-09-28 Bosch Gmbh Robert Fuel injector
JP4433598B2 (en) * 1999-12-24 2010-03-17 株式会社デンソー Common rail fuel injection system
DE10157886B4 (en) * 2000-11-27 2009-12-17 DENSO CORPORATION, Kariya-shi Fuel injection unit of an internal combustion engine
DE102004047959A1 (en) * 2004-10-01 2006-04-06 Siemens Ag Method and device for determining the pressure in pipes
JP4241601B2 (en) 2004-12-20 2009-03-18 株式会社デンソー Fuel injection device and fuel injection method
EP1795738A1 (en) * 2005-12-12 2007-06-13 C.R.F. Societa Consortile per Azioni Fuel-injection system for an internal-combustion engine and corresponding method for controlling fuel injection

Also Published As

Publication number Publication date
DE102008000423A1 (en) 2008-09-04
DE102008000423B4 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4917556B2 (en) Fuel injection control device for internal combustion engine
EP2317102B1 (en) Control apparatus for internal combustion engine
JP5572604B2 (en) Control device for fuel injection valve
US8061331B2 (en) Fuel injector for internal combustion engine
JP4648254B2 (en) High pressure fuel pump
US20080314364A1 (en) High-Pressure Fuel Pump Control Device for Internal Combustion Engine
JP2011027041A (en) Fuel pump control device for internal combustion engine
JP2007023930A (en) Accumulator fuel injection control device
JP2009162115A (en) Fuel injection control apparatus
JP2000265892A (en) Engine fuel injection device
JP2009074373A (en) Fuel injection controller of internal combustion engine
US8079345B2 (en) High pressure fuel supply control system for internal combustion engine
JP2006291843A (en) Fuel injection device
JP2007247541A (en) Fuel injection device
JPH0783134A (en) Fuel supplying device for internal combustion engine
JP2010190178A (en) Fuel injection apparatus
JP2005256703A (en) Accumulator fuel injection device
JP2005291076A (en) Fuel injection system
JP4269913B2 (en) Accumulated fuel injection system
JP2008215101A (en) Fuel injection device
JP4955601B2 (en) Method for driving pressure control solenoid valve in common rail fuel injection control device and common rail fuel injection control device
JP5982536B2 (en) High pressure fuel pump control device for internal combustion engine
JP2012246793A (en) Fuel supply device of internal combustion engine
JP4995941B2 (en) High pressure fuel pump
JP2007077967A (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A761 Written withdrawal of application

Effective date: 20090723

Free format text: JAPANESE INTERMEDIATE CODE: A761