JP2000130293A - Fuel injector of diesel engine - Google Patents

Fuel injector of diesel engine

Info

Publication number
JP2000130293A
JP2000130293A JP10307186A JP30718698A JP2000130293A JP 2000130293 A JP2000130293 A JP 2000130293A JP 10307186 A JP10307186 A JP 10307186A JP 30718698 A JP30718698 A JP 30718698A JP 2000130293 A JP2000130293 A JP 2000130293A
Authority
JP
Japan
Prior art keywords
pressure
fuel
piston
dynamic pressure
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10307186A
Other languages
Japanese (ja)
Inventor
Shuji Kimura
修二 木村
Tetsuya Uehara
哲也 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10307186A priority Critical patent/JP2000130293A/en
Publication of JP2000130293A publication Critical patent/JP2000130293A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To secure higher injection pressure without increasing supply pressure from a pressure accumulating chamber. SOLUTION: This fuel injector is provided with a pressure accumulating chamber 1 for accumulating high-pressure fuel, a nozzle hole 5 provided on an oil storage chamber 4 into which fuel from the pressure accumulating chamber 1 is to be guided through an oil passage 7, and a valve 6 for opening and closing the nozzle hole 5. A dynamic pressure piston 23 to be moved according to differential pressure between the upstream side and the downstream side is provided on the way of the oil passage 7, the dynamic pressure piston 23 is moved in fuel injection, dynamic pressure is made to act on the oil storage chamber 4, and therefore, high injection pressure is maintained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はディーゼルエンジン
の燃料噴射装置に関する。
The present invention relates to a fuel injection device for a diesel engine.

【0002】[0002]

【従来の技術】ディーゼルエンジンの燃料噴射装置とし
て、コモンレール式の燃料噴射装置が知られている。こ
れは高圧の燃料をいったんコモンレールに蓄圧してお
き、電磁作動型の燃料噴射弁を開閉制御することによ
り、高圧燃料を燃焼室内に直接的に噴射するもので、燃
料噴射量、時期を自由に制御できる利点がある。
2. Description of the Related Art A common rail fuel injection device is known as a fuel injection device for a diesel engine. In this method, high-pressure fuel is temporarily stored in the common rail, and high-pressure fuel is injected directly into the combustion chamber by controlling the opening and closing of an electromagnetically-actuated fuel injection valve. There is an advantage that can be controlled.

【0003】この燃料噴射弁として、特開平9−158
811号公報にて提案されたものは、図10に示すよう
に構成されている。
As this fuel injection valve, Japanese Patent Application Laid-Open No. 9-158
Japanese Patent Application Laid-Open No. 811 proposes a configuration as shown in FIG.

【0004】ポンプからの高圧の燃料が送り込まれるコ
モンレール内の蓄圧室1の燃料は、高圧配管2及び燃料
インジェクタ3の内部の油路7を経由してノズル油溜室
4に導かれると共に、針弁6にリフタ12を介して連接
した油圧ピストン8の油圧室9に充填オリフィス11を
経由して導かれる。
The fuel in the accumulator 1 in the common rail into which the high-pressure fuel from the pump is fed is guided to the nozzle oil reservoir 4 via the high-pressure pipe 2 and the oil passage 7 inside the fuel injector 3 and the needles. It is guided via a filling orifice 11 to a hydraulic chamber 9 of a hydraulic piston 8 connected to a valve 6 via a lifter 12.

【0005】燃料を噴射しないときは電磁弁14が閉じ
られ、これにより油圧室9の高圧で油圧ピストン8を押
し、リターンスプリング13に抗して針弁6を着座させ
て閉じる。
When fuel is not injected, the solenoid valve 14 is closed, whereby the high pressure of the hydraulic chamber 9 pushes the hydraulic piston 8, and the needle valve 6 is seated and closed against the return spring 13.

【0006】燃料を噴射するときは、電磁弁14を開弁
し、油圧室9の圧力を放出オリフィス10を介して低圧
側に解放すると、油溜室4の油圧により油圧ピストン8
を押し上げながら針弁6がリフトし、噴孔5を開き、燃
料が噴射される。
When injecting fuel, the solenoid valve 14 is opened and the pressure in the hydraulic chamber 9 is released to the low pressure side through the discharge orifice 10.
The needle valve 6 is lifted while pushing up, the injection hole 5 is opened, and fuel is injected.

【0007】なお、同一の燃料圧力が作用しているとき
は、針弁6にかかるリフト力よりも、油圧ピストン8の
押し下げ力の方が大きく、針弁6は閉じている。放出オ
リフィス10が開いても充填オリフィス11があるた
め、油圧室9の圧力は即座に回復せず、電磁弁14が開
いている間は針弁6がリフトしている。
When the same fuel pressure is applied, the pushing force of the hydraulic piston 8 is larger than the lifting force applied to the needle valve 6, and the needle valve 6 is closed. Even when the discharge orifice 10 is opened, the pressure in the hydraulic chamber 9 does not recover immediately because the filling orifice 11 is present, and the needle valve 6 is lifted while the solenoid valve 14 is open.

【0008】なお、エンジン停止時には、油溜室4の燃
料が漏れ出すことのないように、リターンスプリング1
3によって針弁6を閉弁保持する。
When the engine is stopped, the return spring 1 is used to prevent the fuel in the oil reservoir 4 from leaking.
3, the needle valve 6 is held closed.

【0009】[0009]

【発明が解決しようとする課題】このような燃料噴射装
置にあっては、燃料噴射前は油溜室4の圧力は蓄圧室1
と同一の圧力に保たれているが、燃料噴射の開始と共に
油溜室4の圧力は低下し、噴射途中における実際の噴射
圧は蓄圧室1の設定圧よりも低くなってしまう。これは
燃料噴射前の状態において、蓄圧室1から油溜室4まで
が静圧状態で一定値となっており、噴射により圧力が低
下しても、油溜室4から噴孔5を通して噴射された燃料
に相当する燃料を蓄圧室1から供給するまでに時間遅れ
が生じるためである。
In such a fuel injection device, before the fuel injection, the pressure in the oil reservoir 4 is increased.
However, the pressure in the oil reservoir 4 decreases with the start of fuel injection, and the actual injection pressure during injection becomes lower than the set pressure in the pressure accumulator 1. This is because, before the fuel injection, the pressure from the pressure accumulating chamber 1 to the oil sump chamber 4 has a constant value in a static pressure state. Even if the pressure is reduced by the injection, the oil is injected from the oil sump chamber 4 through the injection hole 5. This is because there is a time delay before the fuel corresponding to the depleted fuel is supplied from the accumulator 1.

【0010】このため、エンジン高回転、高負荷の運転
条件下で、スモークを抑制しようとすると、油溜室4の
圧力低下に相当する分だけ、さらに蓄圧室1の供給圧を
高める必要がでてくる。
For this reason, in order to suppress the smoke under the operating condition of high engine speed and high load, it is necessary to further increase the supply pressure of the accumulator 1 by an amount corresponding to the pressure drop of the oil reservoir 4. Come.

【0011】しかしこのように高圧化すると、これに応
じて要求ポンプ駆動力の増大、効率低下、燃料のリーク
による損失、配管の耐圧性、電磁弁の要求駆動力の増大
などが新たな問題となってくる。
However, when the pressure is increased as described above, new problems such as an increase in required pump driving force, a decrease in efficiency, a loss due to fuel leakage, a pressure resistance of piping, and an increase in required driving force of the solenoid valve are caused. It is becoming.

【0012】本発明はこのような問題を解決するために
提案されたもので、蓄圧室からの供給圧を高めることな
く、より高い噴射圧を維持できるようにすることを目的
とする。
The present invention has been proposed to solve such a problem, and it is an object of the present invention to maintain a higher injection pressure without increasing a supply pressure from a pressure accumulation chamber.

【0013】[0013]

【課題を解決するための手段】第1の発明は、高圧の燃
料を蓄える蓄圧室と、蓄圧室からの燃料が油路を介して
導かれる油溜室に設けた噴孔と、噴孔を開閉する弁を備
えたディーゼルエンジンの燃料噴射装置において、前記
油路の途中にその上流と下流の圧力差に応じて移動する
動圧ピストンを設け、燃料噴射時に動圧ピストンを移動
して噴射圧を維持するようにしたことを特徴とする。
According to a first aspect of the present invention, there is provided a pressure accumulation chamber for storing high-pressure fuel, an injection hole provided in an oil reservoir through which fuel from the pressure accumulation chamber is guided through an oil passage, and an injection hole. In a fuel injection device for a diesel engine equipped with a valve that opens and closes, a dynamic pressure piston that moves in accordance with a pressure difference between the upstream and downstream of the oil passage is provided in the middle of the oil passage, and the dynamic pressure piston is moved during fuel injection to inject the injection pressure. Is maintained.

【0014】第2の発明は、第1の発明において、油圧
ピストンの油圧室に前記動圧ピストンの上流から燃料圧
力を充填オリフィスを介して導き、かつ油圧室の燃料圧
力を放出オリフィスを介して開放する電磁弁を設け、電
磁弁の開弁により油溜室の燃料圧力により油圧ピストン
に抗して弁をリフトさせるように構成した。
According to a second aspect, in the first aspect, the fuel pressure is introduced into the hydraulic chamber of the hydraulic piston from upstream of the dynamic pressure piston through a charging orifice, and the fuel pressure in the hydraulic chamber is released through a discharge orifice. An electromagnetic valve to be opened is provided, and the valve is lifted against the hydraulic piston by the fuel pressure of the oil reservoir when the electromagnetic valve is opened.

【0015】第3の発明は、第1または第2の発明にお
いて、前記動圧ピストンは油路の途中に設けたシリンダ
室に摺動自由に配置され、動圧ピストンには燃料の油路
が貫通形成されると共に、スプリングにより上流側に向
けて付勢されている。
According to a third aspect of the present invention, in the first or second aspect, the dynamic pressure piston is slidably disposed in a cylinder chamber provided in the middle of an oil passage, and a fuel oil passage is provided in the dynamic pressure piston. It is formed through and is urged toward the upstream by a spring.

【0016】第4の発明は、第3の発明において、前記
動圧ピストンは段付ピストンに形成され、大径部が燃料
油路の上流側に、小径部が下流側に位置し、かつ初期位
置において大径部が着座するシート部が設けられ、上流
側の受圧面積が初期位置では小さく、移動開始後に大き
くなるようにした。
In a fourth aspect based on the third aspect, the dynamic pressure piston is formed as a stepped piston, a large-diameter portion is located on the upstream side of the fuel oil passage, a small-diameter portion is located on the downstream side, and the dynamic pressure piston is formed in the initial stage. The seat portion on which the large diameter portion is seated is provided at the position, and the pressure receiving area on the upstream side is small at the initial position and large after the start of the movement.

【0017】第5の発明は、第4の発明において、前記
動圧ピストンの小径部はガイドにより案内され、その周
囲にはリターンスプリングを介装する環状のスプリング
室が形成され、かつスプリング室は前記放出オリフィス
に連通している。
In a fifth aspect based on the fourth aspect, the small-diameter portion of the dynamic pressure piston is guided by a guide, and an annular spring chamber in which a return spring is interposed is formed around the small-diameter portion. It communicates with the discharge orifice.

【0018】[0018]

【発明の作用・効果】第1〜第3の発明において、燃料
を噴射させるべく弁を開くと、燃料の噴射に伴い油溜室
の圧力が大幅に下がるが、動圧ピストンの上流の燃料圧
力の低下はこれに比較すると小さい。このため上流と下
流の圧力差により動圧ピストンが油溜室側に向けて移動
し、燃料を押し出し、これにより油溜室に動圧を作用さ
せて燃料圧力の低下を補う。これにより燃料噴射圧力が
直ぐに回復し、高圧を維持する。この結果、燃料の噴射
率が高まり、燃料噴射量の多い高負荷時にもスモークの
発生を効果的に低減できる。
In the first to third aspects of the present invention, when the valve is opened to inject fuel, the pressure in the oil reservoir is greatly reduced with the injection of fuel, but the fuel pressure upstream of the dynamic pressure piston is reduced. Is small compared to this. Therefore, the dynamic pressure piston moves toward the oil reservoir due to the pressure difference between the upstream and the downstream, and pushes out the fuel, whereby the dynamic pressure acts on the oil reservoir to compensate for the decrease in the fuel pressure. As a result, the fuel injection pressure is immediately restored, and the high pressure is maintained. As a result, the fuel injection rate is increased, and the generation of smoke can be effectively reduced even at a high load with a large fuel injection amount.

【0019】第4の発明では、動圧ピストンの上流側の
受圧面積が、動圧ピストンの移動開始後に増加し、この
ため移動が加速され、より大きな動圧を油溜室に作用さ
せることができ、噴射期間中、燃料噴射圧を高圧に維持
することができる。
According to the fourth aspect, the pressure receiving area on the upstream side of the dynamic pressure piston increases after the start of the movement of the dynamic pressure piston, so that the movement is accelerated and a larger dynamic pressure is applied to the oil reservoir. Thus, the fuel injection pressure can be maintained at a high level during the injection period.

【0020】第5の発明では、リターンスプリングを介
装したスプリング室の圧力が燃料噴射の開始に伴い急激
に低下し、このため動圧ピストンの移動が速やかに行
え、動圧発生の応答性を高められる。
According to the fifth aspect, the pressure of the spring chamber in which the return spring is interposed is rapidly decreased with the start of the fuel injection, so that the dynamic pressure piston can be moved quickly, and the responsiveness of the dynamic pressure generation is improved. Enhanced.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0022】図1において、1は蓄圧室、2は高圧配
管、3はインジェクタ、4はノズル油溜室、5は噴孔、
6は針弁、7は内部通路、8は油圧ピストン、9は油圧
室、10は放出オリフィス、11は充填オリフィス、1
2はリフタ、13はリターンスプリング、14は電磁弁
であり、これらは図10に示すものと実質的に同じであ
る。
In FIG. 1, 1 is a pressure accumulator, 2 is a high pressure pipe, 3 is an injector, 4 is a nozzle oil reservoir, 5 is an injection hole,
6 is a needle valve, 7 is an internal passage, 8 is a hydraulic piston, 9 is a hydraulic chamber, 10 is a discharge orifice, 11 is a filling orifice, 1
2 is a lifter, 13 is a return spring, and 14 is a solenoid valve, which are substantially the same as those shown in FIG.

【0023】この発明では、蓄圧室1とインジェクタ3
を結ぶ高圧配管2の途中に燃料噴射開始時に動圧を発生
させるための動圧ピストン23を設け、燃料の供給遅れ
を小さくしている。
According to the present invention, the pressure accumulating chamber 1 and the injector 3
A dynamic pressure piston 23 for generating a dynamic pressure at the start of fuel injection is provided in the middle of the high-pressure pipe 2 connecting the.

【0024】インジェクタ3に高圧配管2を接続するコ
ネクタ20が固設され、このコネクタ20の中心には燃
料油路21が貫通し、その出口側には拡径された燃料溜
まり22が形成されている。この燃料溜まり22は内部
通路7と接続し、この接続部において動圧ピストン23
がシリンダ室26に摺動自由に収装される。動圧ピスト
ン23はスプリング25によって燃料溜まり22側に向
けて付勢され、コネクタ20の端部に当接している。
A connector 20 for connecting the high-pressure pipe 2 to the injector 3 is fixedly provided. A fuel oil passage 21 penetrates the center of the connector 20, and a fuel reservoir 22 having an enlarged diameter is formed at an outlet side thereof. I have. This fuel reservoir 22 is connected to the internal passage 7 and at this connection, a dynamic pressure piston 23
Are slidably housed in the cylinder chamber 26. The dynamic pressure piston 23 is urged toward the fuel pool 22 by a spring 25 and is in contact with the end of the connector 20.

【0025】なお、燃料溜まり22からは充填オリフィ
ス11が分岐し、油圧室9へと接続する。
The filling orifice 11 branches from the fuel reservoir 22 and connects to the hydraulic chamber 9.

【0026】このような構成において、燃料の噴射前
は、蓄圧室1からノズル油溜室4までは燃料の流れが無
く、圧力一定の静圧状態に維持されている。この状態で
は動圧ピストン23はスプリング25に押され、コネク
タ20と接触する上方位置にある。なお、スプリング2
5は静圧状態で動圧ピストン23を戻すことができれば
よく、極く弱いバネ力となっている。
In such a configuration, before fuel injection, there is no flow of fuel from the pressure accumulating chamber 1 to the nozzle oil reservoir 4, and the pressure is maintained at a constant pressure. In this state, the dynamic pressure piston 23 is pushed by the spring 25 and is at an upper position where it contacts the connector 20. The spring 2
Reference numeral 5 is only required to be able to return the dynamic pressure piston 23 in a static pressure state, and has a very weak spring force.

【0027】燃料の噴射時期において、電磁弁14が開
き、放出オリフィス10から高圧燃料が放出されると、
油圧室9の圧力が低下して針弁6が上昇を始め、噴孔5
から燃料の噴射が行われる。これによりノズル油溜室4
の圧力が低下し、内部通路7の圧力も下がり、また充填
オリフィス11を介して油圧室9と連通する燃料溜まり
22の圧力も下がる。
At the fuel injection timing, when the solenoid valve 14 is opened and high-pressure fuel is discharged from the discharge orifice 10,
The pressure in the hydraulic chamber 9 decreases, the needle valve 6 starts to rise, and the injection hole 5
, Fuel is injected. Thereby, the nozzle oil reservoir 4
, The pressure in the internal passage 7 decreases, and the pressure in the fuel reservoir 22 communicating with the hydraulic chamber 9 via the charging orifice 11 also decreases.

【0028】しかし、燃料圧力の低下代は、とくに燃料
噴射量の多いエンジン高負荷時には内部通路7の方が燃
料溜まり22よりも大きくなる。このため、動圧ピスト
ン23はこの圧力差によりスプリング25に抗してコネ
クタ20から離れ、内部通路側に移動し、これにより燃
料を油溜室4に向けて押し出し、これにより油溜室4に
高い動圧を作用させ、燃料圧力の低下を補う。
However, the amount of decrease in the fuel pressure is larger in the internal passage 7 than in the fuel reservoir 22 especially when the engine is heavily loaded with a large amount of fuel injection. Due to this pressure difference, the dynamic pressure piston 23 moves away from the connector 20 against the spring 25 and moves toward the internal passage, thereby pushing out the fuel toward the oil storage chamber 4, thereby causing the oil to be stored in the oil storage chamber 4. Apply high dynamic pressure to compensate for the decrease in fuel pressure.

【0029】この場合、動圧ピストン23の移動量は初
期噴射の圧力低下を防ぐように決められればよく、例え
ば排気量2リッタークラスのディーゼルエンジンでは、
高負荷領域での噴射量はおよそ70mm3/stであ
り、初期噴射量のほぼ30mm/stまで圧力低下を
起こしていることを考えると、動圧ピストン23の移動
により30mmだけ内部通路7の体積を縮めてやれば
よい。いま動圧ピストン23の直径を5mm、油路21
の直径を2mmとすれば、移動量は約3mmでよいこと
になる。ただし、初期の圧力差により動圧ピストン23
が移動を開始し、その慣性力によりさらに同一方向に移
動することにより油溜室4側の圧力上昇を動圧として付
与する効果を得るために、動圧ピストン23のストロー
ク量を必要量の3mmよりも長い6mmに設定してい
る。
In this case, the amount of movement of the dynamic pressure piston 23 may be determined so as to prevent a decrease in the pressure of the initial injection. For example, in the case of a 2-liter displacement diesel engine,
Injection amount of the high load region is approximately 70 mm 3 / st, considering that has caused a pressure drop to approximately 30 mm 3 / st in the initial injection amount, the internal passage only 30 mm 3 by the movement of the dynamic pressure piston 23 7 May be reduced. Now, let the diameter of the dynamic pressure piston 23 be 5 mm,
If the diameter is 2 mm, the movement amount may be about 3 mm. However, due to the initial pressure difference, the dynamic pressure piston 23
Starts moving, and further moves in the same direction due to its inertia force to obtain the effect of giving the pressure increase on the oil reservoir chamber 4 side as a dynamic pressure. It is set to 6 mm, which is longer than that.

【0030】図3に燃料噴射圧力の変化する様子を示す
が、従来は燃料の噴射開始と共に油溜室4の圧力P1が
大きく低下し、これに対して上流の入口側の燃料圧力P
2は放出オリフィス10の解放によりわずかに低下す
る。そして上流側からの高圧燃料の供給により圧力が元
の圧力まで上昇するまでには、内部通路7などの管路抵
抗などにより、約半分の燃料噴射が終了している。
FIG. 3 shows how the fuel injection pressure changes. In the prior art, the pressure P1 in the oil storage chamber 4 decreases greatly with the start of fuel injection, whereas the fuel pressure P1 on the upstream inlet side decreases.
2 is lowered slightly by the release of discharge orifice 10. By the time high pressure fuel is supplied from the upstream side to increase the pressure to the original pressure, about half of the fuel injection has been completed due to the pipe resistance of the internal passage 7 and the like.

【0031】これに対して本実施形態では、噴射初期の
上流側圧力P2と、下流側圧力P1との差圧により、動
圧ピストン23が移動するために上流側圧力P2は低下
するが、P1は途中から上昇に転じる。この圧力差に応
じて動圧ピストン23が変位し、これにより油溜室4の
圧力P1の圧力低下は大幅に減少する。
On the other hand, in the present embodiment, the upstream pressure P2 decreases due to the movement of the dynamic pressure piston 23 due to the differential pressure between the upstream pressure P2 at the initial stage of the injection and the downstream pressure P1. Starts to rise from the middle. The dynamic pressure piston 23 is displaced in accordance with this pressure difference, whereby the pressure drop of the pressure P1 in the oil reservoir 4 is greatly reduced.

【0032】このため、図4に示すように、燃料の噴射
率が高まり、図5にも示すように、とくに燃料噴射量の
多い高負荷時などにおいて、従来に比較してスモークの
発生を大幅に低減することが可能となる。
For this reason, as shown in FIG. 4, the fuel injection rate is increased, and as shown in FIG. 5, the generation of smoke is significantly reduced as compared with the conventional art, especially at a high load where the fuel injection amount is large. It becomes possible to reduce to.

【0033】なお、電磁弁14が閉じて針弁6が着座
し、燃料の噴射が停止すると、即座に油溜室4、内部通
路7が高圧燃料で満たされ、動圧ピストン23の上流の
燃料溜まり22の圧力と同一圧力まで上昇する。これに
より動圧ピストン23は次の噴射までの間にスプリング
25のバネ力により押し戻され、コネクタ20と当接す
る初期位置へと復帰し、次の噴射に備える。
When the solenoid valve 14 is closed and the needle valve 6 is seated and fuel injection is stopped, the oil reservoir 4 and the internal passage 7 are immediately filled with high-pressure fuel, and the fuel upstream of the dynamic pressure piston 23 is discharged. It rises to the same pressure as the pressure of the reservoir 22. As a result, the dynamic pressure piston 23 is pushed back by the spring force of the spring 25 until the next injection, and returns to the initial position where it comes into contact with the connector 20 to prepare for the next injection.

【0034】次に図6に示す他の実施形態を説明する。Next, another embodiment shown in FIG. 6 will be described.

【0035】これは段付き状態の動圧ピストン31を備
え、シリンダ室26の内部に円筒形のガイド33を設
け、このガイド33により動圧ピストン31の小径部3
1aを摺動自由に案内する。そして、小径部31aとシ
リンダ室26との間の環状のスプリング室36を油路3
7を介して放出オリフィス10と連通し、またここにリ
ターンスプリング35を介装する。
This has a stepped dynamic pressure piston 31, and a cylindrical guide 33 is provided inside the cylinder chamber 26, and the small diameter portion 3 of the dynamic pressure piston 31 is provided by the guide 33.
1a is slidably guided. The annular spring chamber 36 between the small diameter portion 31a and the cylinder chamber 26 is
It communicates with the discharge orifice 10 through 7 and a return spring 35 is interposed here.

【0036】動圧ピストン31の中心には極小径の油路
32が貫通する。動圧ピストン31の大径部31bは、
リターンスプリング35に押され、コネクタ20に嵌合
した筒状のシート部29と密着するまで後退する。な
お、燃料溜まり22に面する動圧ピストン31のシート
部29への着座時の受圧面積は、小径部31aの面する
燃料溜まり室39の受圧面積とほぼ同じに設定してあ
る。この燃料溜まり室39は内部通路7とテーパ流路3
4を介して連通するが、燃料溜まり室39の容積は、燃
料の最大噴射量と同等かそれ以上の容積をもつように形
成される。
A very small diameter oil passage 32 penetrates the center of the dynamic pressure piston 31. The large diameter portion 31b of the dynamic pressure piston 31
It is pushed by the return spring 35 and retreats until it comes into close contact with the tubular seat portion 29 fitted to the connector 20. The pressure receiving area of the dynamic pressure piston 31 facing the fuel reservoir 22 when seated on the seat portion 29 is set to be substantially the same as the pressure receiving area of the fuel reservoir chamber 39 facing the small diameter portion 31a. The fuel storage chamber 39 includes the internal passage 7 and the tapered passage 3.
The fuel reservoir chamber 39 is formed so as to have a volume equal to or greater than the maximum fuel injection amount.

【0037】上記燃料溜まり22にはシート部29を貫
通する通路41を介して充填オリフィス11が連通して
いる。
The filling orifice 11 communicates with the fuel reservoir 22 via a passage 41 passing through the seat 29.

【0038】このように構成したので、電磁弁14の開
弁により放出オリフィス10が開放され、燃料の噴射が
開始されると、燃料溜まり22はわずかに圧力が低下す
るのに対し、油溜室4、内部通路7は燃料の噴射に伴い
大幅に圧力が低下する。同時にスプリング室36の圧力
も油路37が充填オリフィス10に開口しているため大
幅に低下する。
With this construction, when the discharge orifice 10 is opened by the opening of the solenoid valve 14 and fuel injection is started, the pressure in the fuel reservoir 22 slightly decreases while the oil reservoir 22 decreases. 4. The pressure in the internal passage 7 is greatly reduced as fuel is injected. At the same time, the pressure in the spring chamber 36 is significantly reduced because the oil passage 37 is open to the filling orifice 10.

【0039】これらの結果、動圧ピストン31はこれら
の圧力差に基づいてリターンスプリング35に抗しつ
つ、燃料溜まり室39に向けて移動を開始する。動圧ピ
ストン31がシート部29から離れると、大径部31b
の全域に燃料溜まり22の圧力がかかり、動圧ピストン
31の移動速度は加速される。これにより燃料溜まり室
39の圧力が上昇し、このとき動圧ピストン31に設け
た油路32は極小径であるため、燃料溜まり室39の圧
力が上流側に逃げるのを防いでいる。燃料溜まり室39
の圧力が上昇しても動圧ピストン31は慣性により移動
するため、燃料圧力がさらに上昇し、またこの燃料はテ
ーパ流路34によりさらに圧力を増す。
As a result, the dynamic pressure piston 31 starts to move toward the fuel storage chamber 39 while resisting the return spring 35 based on the pressure difference. When the dynamic pressure piston 31 separates from the seat portion 29, the large-diameter portion 31b
, The pressure of the fuel pool 22 is applied, and the moving speed of the dynamic pressure piston 31 is accelerated. As a result, the pressure in the fuel storage chamber 39 increases. At this time, the oil passage 32 provided in the dynamic pressure piston 31 has a very small diameter, thereby preventing the pressure in the fuel storage chamber 39 from escaping to the upstream side. Fuel pool 39
Even if the pressure increases, the dynamic pressure piston 31 moves by inertia, so that the fuel pressure further increases, and the fuel further increases in pressure by the tapered flow path 34.

【0040】このようにして油溜室4には高い動圧が作
用し、噴孔5から噴射される圧力が高く維持される。図
7は燃料噴射圧力の変化を示してあり、油溜室4の燃料
圧力P1は、動圧ピストン31の作動及びテーパ流路3
4により発生した圧力波により、蓄圧室1よりも高い圧
力となり、高圧噴射することができる。
In this manner, a high dynamic pressure acts on the oil reservoir 4, and the pressure injected from the injection hole 5 is maintained at a high level. FIG. 7 shows a change in the fuel injection pressure. The fuel pressure P1 in the oil reservoir 4 depends on the operation of the dynamic pressure piston 31 and the taper flow path 3.
Due to the pressure wave generated by 4, the pressure becomes higher than that of the pressure accumulation chamber 1, and high-pressure injection can be performed.

【0041】このため、燃料の噴射率も図8に示すよう
に、前記した第1の実施形態よりも高くなり、この結
果、図9にもあるとおり、スモークの発生が低減し、さ
らにはエンジントルクも増大することができる。
Therefore, as shown in FIG. 8, the fuel injection rate is higher than that of the first embodiment, and as a result, as shown in FIG. Torque can also be increased.

【0042】なお本発明は上記した実施の形態に限定さ
れるものではなく、本発明の技術的思想の範囲内におい
て、様々な変更がなしうることは明らかである。例え
ば、燃料噴射弁としては、燃料圧力バランスにより針弁
をリフトさせるものに限らず、電磁弁により直接的に針
弁を駆動するものであってもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and it is apparent that various modifications can be made within the scope of the technical idea of the present invention. For example, the fuel injection valve is not limited to the one that lifts the needle valve by fuel pressure balance, and may be one that directly drives the needle valve by an electromagnetic valve.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】同じくその一部拡大図。FIG. 2 is a partially enlarged view of FIG.

【図3】燃料噴射圧を従来と比較して示す説明図。FIG. 3 is an explanatory diagram showing a fuel injection pressure in comparison with a conventional case.

【図4】燃料噴射率を従来と比較して示す説明図。FIG. 4 is an explanatory diagram showing a fuel injection rate in comparison with a conventional case.

【図5】燃料噴射量とスモークの発生量の関係を従来と
比較して示す説明図。
FIG. 5 is an explanatory diagram showing a relationship between a fuel injection amount and a generation amount of smoke in comparison with a conventional case.

【図6】第2の実施形態を示す断面図。FIG. 6 is a cross-sectional view showing a second embodiment.

【図7】燃料噴射圧を従来と比較して示す説明図。FIG. 7 is an explanatory diagram showing a fuel injection pressure in comparison with a conventional case.

【図8】燃料噴射率を従来と比較して示す説明図。FIG. 8 is an explanatory diagram showing a fuel injection rate in comparison with a conventional case.

【図9】燃料噴射量とスモーク、トルクの関係を従来と
比較して示す説明図。
FIG. 9 is an explanatory diagram showing a relationship between a fuel injection amount, smoke, and torque in comparison with the related art.

【図10】従来例を示す断面図。FIG. 10 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 蓄圧室 3 インジェクタ 4 油溜室 5 噴孔 6 針弁 8 油圧ピストン 9 油圧室 10 放出オリフィス 11 充填オリフィス 14 電磁弁 22 燃料溜まり 23 動圧ピストン 24 燃料油路 25 スプリング 29 シート部 31 動圧ピストン 31a小径部 31b大径部 32 燃料油路 35 リターンスプリング 36 スプリング室 DESCRIPTION OF SYMBOLS 1 Accumulation chamber 3 Injector 4 Oil reservoir 5 Injection hole 6 Needle valve 8 Hydraulic piston 9 Hydraulic chamber 10 Release orifice 11 Filling orifice 14 Solenoid valve 22 Fuel reservoir 23 Dynamic pressure piston 24 Fuel oil passage 25 Spring 29 Seat part 31 Dynamic pressure piston 31a small diameter portion 31b large diameter portion 32 fuel oil passage 35 return spring 36 spring chamber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 61/20 F02M 61/20 P Fターム(参考) 3G066 AA07 AB02 AC09 AD12 BA05 BA12 BA13 BA16 BA19 BA24 CB05 CC06T CC08T CC14 CC26 CC61 CC64T CC66 CC67 CC68U CC70 CD28 CD30 CE13 CE22 CE34 DA06 DA08 DA11 DA12 DA14 DB09──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) F02M 61/20 F02M 61/20 PF Term (Reference) 3G066 AA07 AB02 AC09 AD12 BA05 BA12 BA13 BA16 BA19 BA24 CB05 CC06T CC08T CC14 CC26 CC61 CC64T CC66 CC67 CC68U CC70 CD28 CD30 CE13 CE22 CE34 DA06 DA08 DA11 DA12 DA14 DB09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高圧の燃料を蓄える蓄圧室と、蓄圧室から
の燃料が油路を介して導かれる油溜室に設けた噴孔と、
噴孔を開閉する弁を備えたディーゼルエンジンの燃料噴
射装置において、前記油路の途中にその上流と下流の圧
力差に応じて移動する動圧ピストンを設け、燃料噴射時
に動圧ピストンを移動して噴射圧を維持するようにした
ことを特徴とするディーゼルエンジンの燃料噴射装置。
1. An accumulator for storing high-pressure fuel, an injection hole provided in an oil reservoir through which fuel from the accumulator is guided through an oil passage,
In a fuel injection device for a diesel engine having a valve for opening and closing an injection hole, a dynamic pressure piston that moves in accordance with a pressure difference between upstream and downstream of the oil passage is provided in the middle of the oil passage, and the dynamic pressure piston moves during fuel injection. A fuel injection device for a diesel engine, characterized in that the injection pressure is maintained.
【請求項2】油圧ピストンの油圧室に前記動圧ピストン
の上流から燃料圧力を充填オリフィスを介して導き、か
つ油圧室の燃料圧力を放出オリフィスを介して開放する
電磁弁を設け、電磁弁の開弁により油溜室の燃料圧力に
より油圧ピストンに抗して弁をリフトさせるように構成
した請求項1に記載のディーゼルエンジンの燃料噴射装
置。
2. An electromagnetic valve is provided in a hydraulic chamber of a hydraulic piston to guide fuel pressure from upstream of the dynamic pressure piston through a charging orifice and to release fuel pressure in the hydraulic chamber through a discharge orifice. 2. The diesel engine fuel injection device according to claim 1, wherein the valve is lifted against the hydraulic piston by the fuel pressure of the oil reservoir when the valve is opened.
【請求項3】前記動圧ピストンは油路の途中に設けたシ
リンダ室に摺動自由に配置され、動圧ピストンには燃料
の油路が貫通形成されると共に、スプリングにより上流
側に向けて付勢されている請求項1または2に記載のデ
ィーゼルエンジンの燃料噴射装置。
3. The dynamic pressure piston is slidably disposed in a cylinder chamber provided in the middle of an oil passage. A fuel oil passage is formed through the dynamic pressure piston, and the dynamic pressure piston is directed upstream by a spring. The fuel injection device for a diesel engine according to claim 1, wherein the fuel injection device is energized.
【請求項4】前記動圧ピストンは段付ピストンに形成さ
れ、大径部が燃料油路の上流側に、小径部が下流側に位
置し、かつ初期位置において大径部が着座するシート部
が設けられ、上流側の受圧面積が初期位置では小さく、
移動開始後に大きくなるようにした請求項3に記載のデ
ィーゼルエンジンの燃料噴射装置。
4. The seat according to claim 1, wherein said dynamic pressure piston is formed as a stepped piston, a large diameter portion is located upstream of the fuel oil passage, a small diameter portion is located downstream, and a large diameter portion is seated at an initial position. Is provided, the pressure receiving area on the upstream side is small at the initial position,
The fuel injection device for a diesel engine according to claim 3, wherein the fuel injection device is configured to increase after the start of the movement.
【請求項5】前記動圧ピストンの小径部はガイドにより
案内され、その周囲にはリターンスプリングを介装する
環状のスプリング室が形成され、かつスプリング室は前
記放出オリフィスに連通している請求項4に記載のディ
ーゼルエンジンの燃料噴射装置。
5. A small-diameter portion of the dynamic pressure piston is guided by a guide, and an annular spring chamber having a return spring interposed therebetween is formed around the small-diameter portion, and the spring chamber communicates with the discharge orifice. 5. The fuel injection device for a diesel engine according to 4.
JP10307186A 1998-10-28 1998-10-28 Fuel injector of diesel engine Pending JP2000130293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10307186A JP2000130293A (en) 1998-10-28 1998-10-28 Fuel injector of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10307186A JP2000130293A (en) 1998-10-28 1998-10-28 Fuel injector of diesel engine

Publications (1)

Publication Number Publication Date
JP2000130293A true JP2000130293A (en) 2000-05-09

Family

ID=17966086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10307186A Pending JP2000130293A (en) 1998-10-28 1998-10-28 Fuel injector of diesel engine

Country Status (1)

Country Link
JP (1) JP2000130293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684855B2 (en) 2001-03-23 2004-02-03 Toyota Jidosha Kabushiki Kaisha Common rail fuel injection apparatus and control method thereof
DE102008000423A1 (en) 2007-02-28 2008-09-04 Denso Corp., Kariya Automotive fuel injection assembly uses back-pressure on needle valve opening to raise injection pressure
KR100970298B1 (en) * 2002-07-31 2010-07-16 로베르트 보쉬 게엠베하 Fuel-Injector Comprising a Connecting Area That Can Withstand High Pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6684855B2 (en) 2001-03-23 2004-02-03 Toyota Jidosha Kabushiki Kaisha Common rail fuel injection apparatus and control method thereof
KR100970298B1 (en) * 2002-07-31 2010-07-16 로베르트 보쉬 게엠베하 Fuel-Injector Comprising a Connecting Area That Can Withstand High Pressure
DE102008000423A1 (en) 2007-02-28 2008-09-04 Denso Corp., Kariya Automotive fuel injection assembly uses back-pressure on needle valve opening to raise injection pressure

Similar Documents

Publication Publication Date Title
JP3707210B2 (en) Fuel injection control device
JPH09509716A (en) Method for reducing fuel pressure in a fuel injector
JP3932688B2 (en) Fuel injection device for internal combustion engine
US7370636B2 (en) Fuel injection system
JP2003508670A (en) Magnet injectors for fuel storage and injection systems
JP2000130293A (en) Fuel injector of diesel engine
JP4211733B2 (en) Common rail fuel injection system
JP3235286B2 (en) Fuel injection device for internal combustion engine
JP2002542426A (en) Fuel pressurized delay cylinder
JP4635980B2 (en) Fuel supply system
EP0974750A2 (en) Fuel-injection pump having a vapor-prevention accumulator
JP2000130284A (en) Fuel injector of diesel engine
JP2006505734A (en) Fuel injection device with built-in pressure booster
JP4239332B2 (en) Fuel injection device for internal combustion engine
JP4256771B2 (en) Fuel control method and apparatus for diesel engine
JP2887970B2 (en) Fuel injection device
JP3465909B2 (en) Diesel engine fuel injection system
JP2959224B2 (en) Fuel injection device
JP2006242139A (en) Fuel supply system
JP3744577B2 (en) Accumulated fuel injection system
JP2002332933A (en) Fuel injection device
JP3832037B2 (en) Accumulated fuel injection system
JPH1150930A (en) Accumulator fuel injection system
US6526942B2 (en) Common rail type fuel injecting device
JPH10238432A (en) Fuel injector for engine