EP1073406A1 - Procede cosmetique pour traiter les cheveux teints afin de reduire l'affaiblissement des couleurs - Google Patents

Procede cosmetique pour traiter les cheveux teints afin de reduire l'affaiblissement des couleurs

Info

Publication number
EP1073406A1
EP1073406A1 EP98940819A EP98940819A EP1073406A1 EP 1073406 A1 EP1073406 A1 EP 1073406A1 EP 98940819 A EP98940819 A EP 98940819A EP 98940819 A EP98940819 A EP 98940819A EP 1073406 A1 EP1073406 A1 EP 1073406A1
Authority
EP
European Patent Office
Prior art keywords
hair
cationic
composition
cosmetic method
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98940819A
Other languages
German (de)
English (en)
Inventor
Bernard Castaing
Louis Carlos Dias
Dieter Hans Josef Langsch
Neil Archibald Macgilp
Melissa Smith Monich
Christina Harcharan Kaur Sami
Blake Gareth Hughes
Andrei Bureiko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1073406A1 publication Critical patent/EP1073406A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/004Preparations used to protect coloured hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to a cosmetic method of treating mammalian coloured hair to reduce or prevent colour fade and/or colour shift.
  • the colour be retained in a consistent manner for a predictable period of time. Further, there is a desire for the colour to be resistant to fading, as occasioned by the actions of washing (also known as wash fastness) and other exterior factors such as the action of the sun. It is, therefore, something of a balancing act between the desire to retain a consistent colour and the necessity of exposing the coloured hair to factors which would lead to colour fade and/or colour shift.
  • GB-1570220 discloses a pre-treatment composition comprising cationic materials for the elimination of the bad effect of discolouration or dyeing treatments.
  • JP- 60087208 discloses a pre-treatment comprising metal salts for preventing flux of protein components during shampooing and thereby protect the hair in addition to improving chemically damaged hair.
  • none of these references disclose the use of pre-treatment compositions on coloured hair for the prevention or reduction of colour fade/shift.
  • the present invention provides a cosmetic method for treating mammalian coloured hair to reduce or prevent colour fade and/or colour shift comprising;
  • the method can include treating the hair, after step (b), with a composition comprising a conditioning agent and/or an ultra violet filtering agent.
  • a composition comprising a conditioning agent and/or an ultra violet filtering agent.
  • the method of the present invention provides a reduction or prevention of colour fade and/or colour shift of coloured hair. The method can help to maintain a more consistent colour and, therefore, can increase the time between dye applications.
  • the method of the present invention comprises at least two essential steps, firstly a pre-treatment step and secondly a wetting step. Without intending necessarily to limit the scope of the invention, it is believed that pre-treatment with a composition comprising a conditioning agent 'seals' the hair thereby preventing or reducing the leaching out of dye molecules that can be caused by water.
  • coloured hair means hair which has been treated to alter its colour. In particular, this can be through a dyeing treatment which, permanently or temporarily, alters the hair's natural colour.
  • colour fade and/or colour shift means changes to the colour of coloured hair caused by the action of external conditions. In particular, this can be through exposure of the coloured hair to the sun or water.
  • reduction or prevention of colour fade and/or colour shift means impeding, retarding and/or arresting changes to the colour of hair. By reducing or preventing colour fade and/or colour shift a more consistent colour is achieved and the time between dye applications can be increased.
  • wetting of the hair means exposure of the hair to water.
  • this exposure can be during a cleansing regimen with, for example, shampoo or through other activities such as swimming.
  • a cleansing regimen it is preferable that such a regimen is carried out frequently, preferably from once a day to once a week, more preferably from once a day to once every three days, most preferably once a day.
  • An essential step of the present method is a pre-treatment of the coloured hair with a composition comprising a conditioning agent.
  • a conditioning agent suitable for use on hair may be used herein.
  • the composition comprises at least one hydrophobic and/or cationic conditioning agent.
  • Suitable conditioning agents include cationic surfactants, cationic polymers, volatile and non-volatile silicones (including soluble and insoluble silicones), nonvolatile hydrocarbons, saturated C14 to C22 straight chain fatty alcohols, nonvolatile hydrocarbon esters, liquid polyol carboxylic acid esters, and mixtures thereof.
  • Preferred conditioning agents are cationic surfactants, cationic polymers and silicones (especially insoluble silicones).
  • Cationic surfactants useful in the present method contain amino or quaternary ammonium moieties.
  • the cationic surfactant will preferably, though not necessarily, be insoluble in the compositions hereof.
  • Cationic surfactants among those useful herein are disclosed in the following documents, all incorporated by reference herein: M.C. Publishing Co., McCutcheon's, Detergents & Emulsifiers, (North American edition 1979); Schwartz, et al., Surface Active Agents, Their Chemistry and Technology, New York: Interscience Publishers, 1949; U.S. Patent 3,155,591 , Spotifyr, issued November 3, 1964; U. S.
  • quaternary ammonium-containing cationic surfactant materials useful herein are those of the general formula:
  • R1-R4 are independently an aliphatic group of from about 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having from about 1 to about 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate nitrate, sulfate, and alkylsulfate radicals.
  • the aliphatic groups may contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
  • the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.
  • di-long chain e.g., di C-
  • di-short chain e.g., C1-C3 alkyl, preferably C1-C2 alkyl
  • Salts of primary, secondary and tertiary fatty amines are also suitable cationic surfactant materials.
  • the alkyl groups of such amines preferably have from about 12 to about 22 carbon atoms, and may be substituted or unsubstituted.
  • Such amines useful herein, include stearamido propyl dimethyl amine, diethyl amino ethyl stearamide, dimethyl stearamine, dimethyl soyamine, soyamine, myristyl amine, tridecyl amine, ethyl stearylamine, N-tallowpropane diamine, ethoxylated (with 5 moles of ethylene oxide) stearylamine, dihydroxy ethyl stearylamine, and arachidylbehenylamine.
  • Suitable amine salts include the halogen, acetate, phosphate, nitrate, citrate, lactate, and alkyl sulfate salts.
  • Such salts include stearylamine hydrochloride, soyamine chloride, stearylamine formate, N-tallowpropane diamine dichloride and stearamidopropyl dimethylamine citrate.
  • Cationic amine surfactants included among those useful in the present invention are disclosed in U.S. Patent 4,275,055, Nachtigal, et al., issued June 23, 1981.
  • Cationic surfactants are preferably utilized at levels of from about 0.1% to about 10%, more preferably from about 0.25% to about 5%, most preferably from about 0.5% to about 2%, by weight of the composition.
  • the conditioning compositions useful in the present invention can also comprise one or more cationic polymer conditioning agents.
  • the cationic polymer conditioning agents will preferably be water soluble.
  • Cationic polymers are typically used in the same ranges as disclosed above for cationic surfactants.
  • water soluble cationic polymer By “water soluble” cationic polymer, what is meant is a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1% in water (distilled or equivalent) at 25°C. Preferably, the polymer will be sufficiently soluble to form a substantially clear solution at a concentration of 0.1% in water (distilled or equivalent) at 25°C. Preferably, the polymer will be sufficiently soluble to form a substantially clear solution at
  • polymer shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.
  • the cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million.
  • the cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof.
  • Any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met.
  • Suitable counterions include halides (e.g., Cl, Br, I, or F, preferably Cl, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
  • the cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers.
  • the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non-cationic units referred to herein as spacer monomer units.
  • Such polymers are known in the art, and a variety can be found in the CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C., 1982).
  • Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as acrylamide, methacrylamide, alkyl and dialkyl acrylamides, alkyl and dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, and vinyl pyrrolidone.
  • the alkyl and dialkyl substituted monomers preferably have C1-C7 alkyl groups, more preferably C1-C3 alkyl groups.
  • Other suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
  • the cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition.
  • Amine-substituted vinyl monomers can be polymerised in the amine form, and then optionally can be converted to ammonium by a quaternization reaction.
  • Amines can also be similarly quaternized subsequent to formation of the polymer.
  • tertiary amine functionalities can be quaternized by reaction with a salt of the formula R'X wherein R' is a short chain alkyl, preferably a C1-C7 alkyl, more preferably a C-1-C3 alkyl, and X is an anion which forms a water soluble salt with the quaternized ammonium.
  • Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quaternized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts.
  • the alkyl portions of these monomers are preferably lower alkyls such as the C1-C3 alkyls, more preferably C. and C 2 alkyls.
  • Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C1-C7 hydrocarbyls, more preferably C1-C3, alkyls.
  • the cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
  • Suitable cationic hair conditioning polymers include, for example: copolymers of 1-vinyl-2-pyrrolidone and 1-vinyl-3-methylimidazolium salt (e.g., chloride salt) (referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, "CTFA", as Polyquaternium-16), such as those commercially available from BASF Wyandotte Corp.
  • CTFA Cosmetic, Toiletry, and Fragrance Association
  • cationic polymers that can be used include polysaccha de polymers, such as cationic cellulose derivatives and cationic starch derivatives.
  • Cationic polysacchahde polymer materials suitable for use herein include those of the formula:
  • A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual
  • R is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof
  • Ri , R2, and R3 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R ⁇
  • X is an anionic counterion, as previously described.
  • Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR(RTM) and LR(RTM) series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10.
  • CTFA trimethyl ammonium substituted epoxide
  • Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted opoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Amerchol Corp.
  • cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride (commercially available from Celanese Corp. in their Jaguar R series).
  • Other materials include quaternary nitrogen-containing cellulose ethers (e.g., as described in U.S. Patent 3,962,418, incorporated by reference herein), and copolymers of etherified cellulose and starch (e.g., as described in U.S. Patent 3,958,581 , incorporated herein by reference).
  • the cationic polymer hereof is water soluble. This does not mean, however, that it must be soluble in the composition.
  • the cationic polymer is either soluble in the composition, or in a complex coacervate phase in the composition formed by the cationic polymer and anionic material.
  • Complex coacervates of the cationic polymer can be formed with anionic surfactants or with anionic polymers that can optionally be added to the compositions hereof (e.g., sodium polystyrene sulfonate).
  • the conditioning compositions of the present method can also include soluble or insoluble silicone conditioning agents.
  • soluble what is meant is that the silicone conditioning agent is miscible with the aqueous carrier of the composition so as to form part of the same phase.
  • insoluble what is meant is that the silicone forms a separate, discontinuous phase from the aqueous carrier, such as in the form of an emulsion or a suspension of droplets of the silicone.
  • the silicone hair conditioning agent will be used in the compositions hereof at levels of from about 0.05% to about 10% by weight of the composition, preferably from about 0.1 % to about 6%, more preferably from about 0.5% to about 5%, most preferably from about 0.5% to about 3%.
  • Soluble silicones include silicone copolyols, such as dimethicone copolyols, e.g. polyether siloxane-modified polymers, such as polypropylene oxide, polyethylene oxide modified polydimethylsiloxane, wherein the level of ethylene and/or propylene oxide sufficient to allow solubility in the composition.
  • silicone copolyols such as dimethicone copolyols
  • polyether siloxane-modified polymers such as polypropylene oxide, polyethylene oxide modified polydimethylsiloxane, wherein the level of ethylene and/or propylene oxide sufficient to allow solubility in the composition.
  • the insoluble silicone hair conditioning agent for use herein will preferably have viscosity of from about 1 ,000 to about 2,000,000 centistokes at 25°C, more preferably from about 10,000 to about 1 ,800,000, even more preferably from about 100,000 to about 1 ,500,000.
  • the viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970.
  • Suitable volatile silicones include cyclomethicone.
  • Suitable insoluble, nonvolatile silicone fluids include polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes, polyether siloxane copolymers, and mixtures thereof.
  • Other insoluble, nonvolatile silicone fluids having hair conditioning properties can also be used.
  • the term "nonvolatile” as used herein shall mean that the silicone has a boiling point of at least about 260°C, preferably at least about 275°C, more preferably at least about 300°C Such materials exhibit very low or no significant vapor pressure at ambient conditions.
  • silicone fluid shall mean flowable silicone materials having a viscosity of less than 1 ,000,000 centistokes at 25°C. Generally, the viscosity of the fluid will be between about 5 and 1 ,000,000 centistokes at 25°C, preferably between about 10 and about 300,000 centistokes.
  • Silicone fluids hereof also include polyalkyl or polyaryl siloxanes with the following structure:
  • R is alkyl or aryl, and x is an integer from about 7 to about 8,000 may be used.
  • A represents groups which block the ends of the silicone chains.
  • the alkyl or aryl groups substituted on the siloxane chain (R) or at the ends of the siloxane chains (A) may have any structure as long as the resulting silicones remain fluid at room temperature, are hydrophobic, are neither irritating, toxic nor otherwise harmful when applied to the hair, are compatible with the other components of the composition, are chemically stable under normal use and storage conditions, and are capable of being deposited on and of conditioning hair.
  • Suitable A groups include methyl, methoxy, ethoxy, propoxy, and aryloxy.
  • the two R groups on the silicone atom may represent the same group or different groups. Preferably, the two R groups represent the same group.
  • Suitable R groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
  • the preferred silicones are polydimethyl siloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane is especially preferred.
  • nonvolatile polyalkylsiloxane fluids that may be used include, for example, polydimethylsiloxanes. These siloxanes are available, for example, from the General Electric Company in their ViscasilR and SF 96 series, and from Dow Corning in their Dow Corning 200 series.
  • polyalkylaryl siloxane fluids that may be used, also include, for example, polymethylphenylsiloxanes. These siloxanes are available, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid.
  • highly arylated silicones such as highly phenylated polyethyl silicone having refractive indices of about 1.46 or higher, especially about 1.52 or higher.
  • a spreading agent such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
  • the polyether siloxane copolymers that may be used include, for example, a polypropylene oxide modified polydimethylsiloxane (e.g., Dow Corning DC-1248) although ethylene oxide or mixtures of ethylene oxide and propylene oxide may also be used.
  • a polypropylene oxide modified polydimethylsiloxane e.g., Dow Corning DC-1248
  • ethylene oxide or mixtures of ethylene oxide and propylene oxide may also be used.
  • the ethylene oxide and polypropylene oxide level should be sufficiently low to prevent solubility in the composition hereof.
  • silicone hair conditioning material that can be especially useful in the silicone conditioning agents is insoluble silicone gum.
  • silicone gum means polyorganosiloxane materials having a viscosity at 25°C of greater than or equal to 1 ,000,000 centistokes. Silicone gums are described by Petrarch and others including U.S. Patent 4,152,416, Spitzer et al., issued May 1 , 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968. Also describing silicone gums are General Electric Silicone Rubber Product Data Sheets SE 30, SE 33, SE 54 and SE 76. All of these described references are incorporated herein by reference.
  • the "silicone gums” will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1 ,000,000. Specific examples include polydimethylsiloxane, (polydimethylsiloxane) (methylvinylsiloxane) copolymer, poly(dimethylsiloxane) (diphenyl siloxane)(methyl vinylsiloxane) copolymer and mixtures thereof.
  • the silicone hair conditioning agent comprises a mixture of a polydimethylsiloxane gum, having a viscosity greater than about 1 ,000,000 centistokes and polydimethylsiloxane fluid having a viscosity of from about 10 centistokes to about 100,000 centistokes, wherein the ratio of gum to fluid is from about 30:70 to about 70:30, preferably from about 40:60 to about 60:40.
  • silicone resin An optional ingredient that can be included in the silicone conditioning agent is silicone resin.
  • Silicone resins are highly crosslinked polymeric siloxane systems. The cross-linking is introduced through the incorporation of trifunctional and tetrafunctional silanes with monofunctional or difunctional, or both, silanes during manufacture of the silicone resin. As is well understood in the art, the degree of cross-linking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin. In general, silicone materials which have a sufficient level of trifunctional and tetrafunctional siloxane monomer units (and hence, a sufficient level of crosslinking) such that they dry down to a rigid, or hard, film are considered to be silicone resins.
  • the ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material.
  • Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein.
  • the ratio of oxygen:silicon atoms is at least about 1.2:1.0.
  • Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinyl-chlorosilanes, and tetrachlorosilane, with the methyl-substituted silanes being most commonly utilized.
  • Preferred resins are offered by General Electric as GE SS4230 and SS4267.
  • Commercially available silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid.
  • the silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art.
  • Silicone resins can enhance deposition of silicone on the hair and can enhance the glossiness of hair with high refractive index volumes.
  • Silicone materials and silicone resins in particular can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as "MDTQ" nomenclature. Under this system, the silicone is described according to presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the monofunctional unit (CH3)3SiO) 5; D denotes the difunctional unit (CH3)2SiO; T denotes the trifunctional unit (CH3)SiO ⁇ 5; and Q denotes the quadri- or tetra-functional unit Si ⁇ 2- Primes of the unit symbols, e.g., M', D', T', and Q' denote substituents other than methyl, and must be specifically defined for each occurrence.
  • MDTQ the symbol M denotes the monofunctional unit (CH3)3SiO) 5
  • D denotes the difunctional unit (CH3)2SiO
  • T denotes the trifunctional unit (CH3)SiO ⁇ 5
  • Q de
  • Typical alternate substituents include groups such as vinyl, phenyls, amines, hydroxyls, etc.
  • the molar ratios of the various units either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone (or an average thereof) or as specifically indicated ratios in combination with molecular weight complete the description of the silicone material under the MDTQ system.
  • Higher relative molar amounts of T, Q, T and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of cross-linking.
  • the overall level of cross-linking can also be indicated by the oxygen to silicon ratio.
  • silicone resins for use herein which are preferred are MQ, MT,
  • the preferred silicone substituent is methyl.
  • MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weight of the resin is from about 1000 to about 10,000.
  • a second essential step of the present method is a wetting step to be carried out after the pre-treatment step.
  • This can comprise exposing the pre- treated hair, which may be wet or dry, to water, for example, rinsing or wetting during swimming or washing the pre-treated hair with a shampoo composition comprising a surfactant.
  • a shampoo composition comprising a surfactant.
  • Any shampoo suitable for cleansing the hair may be used herein.
  • Suitable surfactants for inclusion in the compositions of the invention generally have a lipophilic chain length of from about 8 to about 22 carbon atoms and can be selected from anionic, cationic, nonionic, amphoteric, zwitterionic surfactants and mixtures thereof.
  • Anionic surfactants suitable for inclusion in the compositions useful in the present method include alkyl sulphates, ethoxylated alkyl sulphates, alkyl glyceryl ether sulfonates, methyl acyl taurates, fatty acyl glycinates, N-acyl glutamates, acyl isethionates, alkyl sulfosuccinates, alkyl ethoxysulphosuccinates, alpha- sulfonated fatty acids, their salts and/or their esters, alkyl ethoxy carboxylates, alkyl phosphate esters, ethoxylated alkyl phosphate esters, alkyl sulphates, acyl sarcosinates and fatty acid/protein condensates, and mixtures thereof.
  • Alkyl and/or acyl chain lengths for these surfactants are C12-C22. preferably C12-C18 more
  • compositions useful in the present method can also comprise water-soluble nonionic surfactant(s).
  • Surfactants of this class include C12-C14 fatty acid mono-and diethanolamides, sucrose polyester surfactants and polyhydroxy fatty acid amide surfactants having the general formula below.
  • N-alkyl, N-alkoxy or N-aryloxy, polyhydroxy fatty acid amide surfactants according to the above formula are those in which Rs is C5-C31 hydrocarbyl, preferably C ⁇ -C-ig hydrocarbyl, including straight-chain and branched chain alkyl and alkenyl, or mixtures thereof and Rg is typically hydrogen, C-
  • R1-0-R2 wherein R " 1 is C2-C8 hydrocarbyl including straight-chain, branched- chain and cyclic (including aryl), and is preferably C2-C4 alkyiene, R ⁇ is C ⁇ -Cs straight-chain, branched-chain and cyclic hydrocarbyl including aryl and oxyhydrocarbyl, and is preferably C1-C4 alkyl, especially methyl, or phenyl.
  • Z2 is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain with at least 2 (in the case of glyceraldehyde) or at least 3 hydroxyls (in the case of other reducing sugars) directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
  • Z2 preferably will be derived from a reducing sugar in a reductive amination reaction, most preferably Z2 is a glycityl moiety.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde.
  • Z2 preferably will be selected from the group consisting of -CH2-
  • R8-CO-N ⁇ can be, for example, cocoamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmiamide, tallowamide, etc.
  • Suitable oil derived nonionic surfactants for use herein include water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted; ethoxylated mono and di-glycerides, polyethoxylated lanolins and ethoxylated butter derivatives.
  • water soluble vegetable and animal-derived emollients such as triglycerides with a polyethyleneglycol chain inserted
  • ethoxylated mono and di-glycerides ethoxylated mono and di-glycerides
  • polyethoxylated lanolins polyethoxylated lanolins
  • ethoxylated butter derivatives ethoxylated butter derivatives.
  • One preferred class of oil-derived nonionic surfactants for use herein have the general formula below:
  • n is from about 5 to about 200, preferably from about 20 to about 100, more preferably from about 30 to about 85, and wherein R comprises an aliphatic radical having on average from about 5 to 20 carbon atoms, preferably from about 7 to 18 carbon atoms.
  • Suitable ethoxylated oils and fats of this class include polyethyleneglycol derivatives of glyceryl cocoate, glyceryl caproate, glyceryl caprylate, glyceryl tallowate, glyceryl palmate, glyceryl stearate, glyceryl laurate, glyceryl oleate, glyceryl ricinoleate, and glyceryl fatty esters derived from triglycerides, such as palm oil, almond oil, and corn oil, preferably glyceryl tallowate and glyceryl cocoate.
  • polyethyleneglycol based polyethoxylated C9-C15 fatty alcohol nonionic surfactants containing an average of from about 5 to about 50 ethyleneoxy moieties per mole of surfactant.
  • Suitable polyethylene glycol based polyethoxylated C9-C15 fatty alcohols suitable for use herein include C9-C11 Pareth-3, C9-C11 Pareth-4, C9-C-11
  • Pareth-5 Cg-Cn Pareth-6, C9-C11 Pareth-7, C9-C11 Pareth-8, C11-C15 Pareth-3, C11-C15 Pareth-4, C11-C15 Pareth-5, C11-C15 Pareth-6, C11-C-15
  • Pareth-11 C11-C15 Pareth-12, C11-C15 Pareth-13 and C11-C-15 Pareth-14.
  • PEG 40 hydrogenated castor oil is commercially available under the tradename
  • Cremophor (RTM) from BASF.
  • PEG 7 glyceryl cocoate and PEG 20 glyceryl laurate are commercially available from Henkel under the tradenames Cetiol
  • C9-C11 Pareth-8 is commercially available from Shell Ltd under the tradename Dobanol (RTM) 91-8.
  • Particulary preferred for use herein are polyethylene glycol ethers of ceteryl alcohol such as Ceteareth 25 which is available from BASF under the trade name Cremaphor A25.
  • nonionic surfactants derived from composite vegetable fats extracted from the fruit of the Shea Tree (Butyrospermum Karkii Kotschy) and derivatives thereof.
  • ethoxylated derivatives of Mango, Cocoa and lllipe butter may be used in compositions according to the invention. Although these are classified as ethoxylated nonionic surfactants it is understood that a certain proportion may remain as non-ethoxylated vegetable oil or fat.
  • suitable oil-derived nonionic surfactants include ethoxylated derivatives of almond oil, peanut oil, rice bran oil, wheat germ oil, linseed oil, jojoba oil, oil of apricot pits, walnuts, palm nuts, pistachio nuts, sesame seeds, rapeseed, cade oil, corn oil, peach pit oil, poppyseed oil, pine oil, castor oil, soybean oil, avocado oil, safflower oil, coconut oil, hazelnut oil, olive oil, grapeseed oil, and sunflower seed oil.
  • Amphoteric Surfactants Amphoteric surfactants suitable for use in the compositions useful in the present method include:
  • is C7-C22 alkyl or alkenyl
  • R2 is hydrogen or CH2Z
  • each Z is independently CO2M or CH2CO2M
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium; and/or ammonium derivatives of formula (VIM)
  • R1 , R2 and Z are as defined above;
  • n, m, p, and q are numbers from 1 to 4, and R-] and M are independently selected from the groups specified above;
  • Suitable amphoteric surfactants of type (a) are marketed under the trade name Miranol and Empigen and are understood to comprise a complex mixture of species.
  • the Miranols have been described as having the general formula (VII), although the CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure (VIII) while the 4th Edition indicates yet another structural isomer in which R2 is O-linked rather than N-linked.
  • CTFA Cosmetic Ingredient Dictionary, 3rd Edition indicates the non-cyclic structure (VIII) while the 4th Edition indicates yet another structural isomer in which R2 is O-linked rather than N-linked.
  • a complex mixture of cyclic and non-cyclic species is likely to exist and both definitions are given here for sake of completeness. Preferred for use herein, however, are the non-cyclic species.
  • amphoteric surfactants of type (a) include compounds of formula XII and/or XIII in which R-
  • R2 is CH2CO2M; and the compounds in which R ⁇
  • materials suitable for use in the present invention include cocoamphocarboxypropionate, cocoamphocarboxy propionic acid, and especially cocoamphoacetate and cocoamphodiacetate (otherwise referred to as cocoamphocarboxyglycinate).
  • Specific commercial products include those sold under the trade names of Ampholak 7TX (sodium carboxy methyl tallow polypropyl amine), Empigen CDL60 and CDR 60 (Albright & Wilson), Miranol H2M Cone. Miranol C2M Cone. N.P., Miranol C2M Cone.
  • Miranol C2M SF Miranol CM Special (Rh ⁇ ne-Poulenc); Alkateric 2CIB (Alkaril Chemicals); Amphoterge W-2 (Lonza, Inc.); Monateric CDX-38, Monateric CSH-32 (Mona Industries); Rewoteric AM-2C (Rewo Chemical Group); and Schercotic MS-2 (Scher Chemicals).
  • amphoteric surfactants suitable for use herein include Octoxynol-1 (RTM), polyoxethylene (1) octylphenyl ether; Nonoxynol-4 (RTM), polyoxyethylene (4) nonylphenyl ether and Nonoxynol-9, polyoxyethylene (9) nonylphenyl ether.
  • amphoteric surfactants of this type are manufactured and sold in the form of electroneutral complexes with, for example, hydroxide counterions or with anionic sulfate or sulfonate surfactants, especially those of the sulfated C8-C18 alcohol, C8-C18 ethoxylated alcohol or C8-C18 acyl glyceride types.
  • concentrations and weight ratios of the amphoteric surfactants are based herein on the uncomplexed forms of the surfactants, any anionic surfactant counterions being considered as part of the overall anionic surfactant component content.
  • amphoteric surfactants of type (b) include N-alkyl polytrimethylene poly-, carboxymethylamines sold under the trade names Ampholak X07 and Ampholak 7CX by Berol Nobel and also salts, especially the triethanolammonium salts and salts of N-lauryl-beta-amino propionic acid and N- lauryl-imino-dipropionic acid.
  • Such materials are sold under the trade name Deriphat by Henkel and Mirataine by Rh ⁇ ne-Poulenc.
  • Water-soluble auxiliary zwitterionic surfactants suitable for inclusion in the compositions useful in the present method include alkyl betaines of the formula R 5 R 6 R 7 N+ (CH2) n C02M and amido betaines of the formula (XII) below:
  • R5 is C11-C22 alkyl or alkenyl
  • Rg and R7 are independently C1-C3 alkyl
  • M is H
  • alkali metal alkaline earth metal
  • n, m are each numbers from 1 to 4.
  • Preferred betaines include cocoamidopropyldimethylcarboxymethyl betaine, laurylamidopropyldimethylcarboxymethyl betaine and Tego betaine (RTM).
  • auxiliary sultaine surfactants suitable for inclusion in the compositions of the present invention include alkyl sultaines of the formula (XIII) below:
  • Rr wherein Ri is C7 to C22 alkyl or alkenyl, R2 and R3 are independently C-
  • Preferred for use herein is coco amido propylhydroxy sultaine.
  • Water-soluble auxiliary amine oxide surfactants suitable for inclusion in the compositions of the present invention include alkyl amine oxide R5R6R7NO and amido amine oxides of the formula (XIV) below:
  • R5 is C-
  • Rg and R7 are independently C-
  • M is H, alkali metal, alkaline earth metal, ammonium or alkanolammonium
  • m is a number from 1 to 4.
  • Preferred amine oxides include cocoamidopropylamine oxide, lauryl dimethyl amine oxide and myristyl dimethyl amine oxide.
  • the present method can additionally comprise one or more optional steps to be carried out after the wetting step. These additional steps can include treating the hair with a conditioning composition, treating the hair with a conditioning composition additionally comprising an ultra violet filtering agent and/or treating the hair with a composition comprising an ultra violet filtering agent.
  • any ultra violet filtering agents suitable for topical application are useful in the conditioning, shampooing or ultra violet filtering compositions herein.
  • a wide variety of ultra violet filtering agents are described in U.S. Patent No. 5,087,445, to Haffey et al., issued February 11 , 1992; U.S. Patent No. 5,073,372, to Turner et al., issued December 17, 1991 ; U.S. Patent No. 5,073,371 , to Turner et al. issued December 17, 1991 ; and Segarin, et al., at Chapter VIII, pages 189 et seq.. of Cosmetics Science and Technology.
  • the ultra violet filtering agents disclosed therein have, in a single molecule, two distinct chromophore moieties which exhibit different ultra-violet radiation absorption spectra. One of the chromophore moieties absorbs predominantly in the UVB radiation range and the other absorbs strongly in the UVA radiation range. These ultra violet filtering agents provide higher efficacy, broader UV absorption, lower skin penetration and longer lasting efficacy relative to conventional ultra violet filtering agents.
  • ultra violet filtering agents include those selected from 4-N,N-(2-ethylhexyl)methylaminobenzoic acid ester of 2,4- dihydroxybenzophenone, 4-N,N-(2-ethylhexyl) methylaminobenzoic acid ester with 4-hydroxydibenzoylmethane, 4-N,N-(2-ethylhexyl)methylaminobenzoic acid ester of 2-hydroxy-4-(2-hydroxyethoxy)benzophenone, 4-N,N-(2-ethylhexyl)- methylaminobenzoic acid ester of 4-(2-hydroxyethoxy)dibenzoylmethane, and mixtures thereof.
  • compositions useful in the present method can contain a variety of other optional components suitable for rendering such compositions more cosmetically or aesthetically acceptable or to provide them with additional usage benefits.
  • Such conventional optional ingredients are well-known to those skilled in the art.
  • additional ingredients can be formulated into the present compositions. These include: other conditioning agents; hair-hold polymers; additional thickening agents and suspending agents such as xanthan gum, guar gum, hydroxyethyl cellulose, methyl cellulose, hydroxyethylcellulose, starch and starch derivatives; viscosity modifiers such as methanolamides of long chain fatty acids such as cocomonoethanol amide; crystalline suspending agents; pearlescent aids such as ethylene glycol distearate; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; polyvinyl alcohol; ethyl alcohol; pH adjusting agents, such as citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; salts, in general, such as potassium acetate and sodium chloride; colouring agents, such as any of the FD&C or D&C dyes; hair oxidizing (
  • liquid polyol carboxylic acid esters are also suitable for use herein as conditioning agents.
  • These polyol esters are derived from a polyol with one or more carboxylic acids. In other words, these esters contain a moiety derived from a polyol and one or more moieties derived from a carboxylic acid.
  • These carboxylic acid esters can also be described as liquid polyol fatty acid esters, because the terms carboxylic acid and fatty acid are often used interchangeably by those skilled in the art.
  • the term liquid means a fluid which is visibly flowable (to the naked eye) under ambient conditions (about 1 atmosphere of pressure at about 25°C).
  • the liquid polyol polyesters suitable for use herein comprise certain polyols, especially sugars, sugar alcohols or sugar ethers, esterified with at least two fatty acid groups.
  • the polyol starting material preferably has at least about four esterifiable hydroxyl groups.
  • preferred polyols are sugars, including monosaccharides and disaccharides, sugar alcohols or sugar ethers.
  • monosaccharides containing four hydroxyl groups are xylose and arabinose and the sugar alcohol derived from xylose, which has five hydroxyl groups, i.e., xylitol.
  • the monosaccharide, erythrose is also suitable in the practice of this invention since it contains three hydroxyl groups, as is the sugar alcohol derived from erythrose, i.e., erythritol, which contains four hydroxyl groups. Suitable five hydroxyl group-containing monosaccharides are galactose, fructose, and sorbose. Sugar alcohols containing six hydroxyl groups derived from the hydrolysis products of sucrose, as well as glucose and sorbose, e.g., sorbitol, are also suitable. Examples of disaccharide polyols which can be used include maltose, lactose, and sucrose, all of which contain eight hydroxyl groups.
  • sugar ethers are also suitable for the practise of this invention, such as, sorbitan.
  • the polyols used in such liquid polyol esters preferably have from about 4 to about 12, more preferably from about 4 to about 11 , and most preferably from about 4 to about 8 hydroxyl groups.
  • Preferred polyols for preparing the polyesters suitable for use herein are selected from the group consisting of erythritol, xylitol, sorbitol, glucose, and sucrose. Sucrose is especially preferred.
  • the preferred polyol starting material having at least four hydroxyl groups must be esterified on at least two of the hydroxyl groups with a fatty acid containing from about 8 to about 22 carbon atoms, preferably from about 8 to about 14 carbon atoms.
  • a fatty acid containing from about 8 to about 22 carbon atoms, preferably from about 8 to about 14 carbon atoms.
  • fatty acids include caprylic, capric, lauric, myristic, myristoleic, palmitic, palmitoleic, stearic, oleic, ricinoleic, linoleic, linolenic, eleostearic, arachidic, arachidonic, behenic, and erucic acids.
  • the fatty acids can be derived from naturally occurring or synthetic fatty acids; they can be saturated or unsaturated, including positional and geometrical isomers. However, in order to provide liquid polyesters of the type suitable for use herein, at least about half of the fatty acid incorporated into the polyester molecule must be unsaturated fatty acids, saturated short chain fatty acids, or mixtures thereof.
  • the liquid polyol fatty acid polyesters suitable for use as conditioning agents herein must contain at least two fatty acid ester groups. It is not necessary that all of the hydroxyl groups of the polyol be esterified with fatty acids, but it is preferable that the polyester contain no more than two unesterified hydroxyl groups. Most preferably, substantially all of the hydroxyl groups of the polyol are esterified with fatty acids, i.e., the polyol moiety is substantially completely esterified.
  • the fatty acids esterified to the polyol molecule can be the same or mixed, but as noted above, a substantial amount of the unsaturated acid ester groups and/or saturated short chain acid ester groups must be present to provide liquidity.
  • sucrose di-fatty acid ester would be suitable, but is not preferred because it has more than two unesterified hydroxyl groups.
  • a sucrose hexa-fatty acid ester would be preferred because it has no more than two unesterified hydroxyl groups.
  • Highly preferred compounds in which all the hydroxyl groups are esterified with fatty acids include the liquid sucrose octa-substituted fatty acid esters.
  • liquid polyol fatty acid polyesters containing at least two fatty acid ester groups suitable for use in the present invention: glucose dioleate, the glucose diesters of soybean oil or cotton seed oil fatty acids (unsaturated), the mannose diesters of mixed soybean oil or cotton seed oil fatty acids, the galactose diesters of oleic acid, the arabinose diesters of linoleic acid, xylose dilinoleate, sorbitol dioleate, sucrose dioleate, glucose trioleate, the glucose triesters of soybean oil or cotton seed oil fatty acids (unsaturated), the mannose triesters of mixed soybean oil or cotton seed oil fatty acids, the galactose triesters of oleic acid, the arabinose triesters of linoleic acid, xylose trilinoleate, sorbitol trioleate, sucrose trioleate, glucose tetraoleate, the
  • the preferred liquid polyol polyesters of the present invention have complete melting points below about 30°C, preferably below about 27.5°C, and more preferably below about 25°C.
  • Complete melting points reported herein are measured by Differential Scanning Calorimetry (DSC).
  • the term "complete melting point”, as used herein means a melting point as measured by the well- known technique of Differential Scanning Calorimetry (DSC).
  • the complete melting point is the temperature at the intersection of the baseline, i.e. the specific heat line, with the line tangent to the trailing edge of the endothermic peak. Typically a scanning temperature of 5°C/minute is used in the present invention in measuring the complete melting points.
  • a technique for measuring complete melting points is more fully described in US-A-5,306,514, to Letton et al., issued April 26, 1994.
  • Exemplary liquid polyol carboxylic acid esters suitable for use herein are sucrose polysoyate or sucrose polycottonseedoate available from Procter and Gamble.
  • the polyol fatty acid polyesters suitable for use herein can be prepared by a variety of methods well known to those skilled in the art. These methods include: transesterification of the polyol with methyl, ethyl or glycerol fatty acid esters using a variety of catalysts; acylation of the polyol with a fatty acid chloride; acylation of the polyol with a fatty acid anhydride; and acylation of the polyol with a fatty acid, per se. See US-A-3,463,699, to Rizzi, issued June 15, 1976; and US-A-4,517,360 and 4,518,772 to Volpenhein issued 1985.
  • the shampoo, conditioning and ultra violet filtering compositions herein can be in the form of an emulsion, a cream, a gel or a foam.
  • the pre-treated hair is then washed with currently marketed Pantene(RTM) shampoo and rinsed with water.
  • Example 2 As part of a daily cleansing regimen coloured hair is pre-treated using a conditioning composition of the following formula (A);
  • 1 PEG-7M is Polyethylene Glycol where n has an average value of about 7,000 and is commercially available under the tradename of Polyox WSR(RT ) N-750 from Union Carbide
  • the coloured hair is pre-treated using currently marketed Pantene(RTM) conditioner. 2.
  • the pre-treated hair is exposed to water through swimming.
  • Pantene(RTM) conditioner As part of a daily cleansing regimen coloured hair is then pre-treated using currently marketed Pantene(RTM) conditioner.
  • the pre-treated hair is then washed with currently marketed Pantene(RTM) shampoo and rinsed with water.
  • the washed hair is then conditioned using currently marketed Pantene(RTM) Conditioner.
  • Example 7 As part of a daily cleansing regimen coloured hair is pre-treated using a conditioning composition of formula (A).
  • the washed hair is then conditioned with a conditioning composition of formula (A).
  • the coloured hair is pre-treated using currently marketed Oil of Ulay(RTM) Active Hydrogel. 2. The pre-treated hair is then washed with currently marketed Pantene(RTM) shampoo and rinsed with water.
  • the washed hair is then conditioned using a conditioning composition of the following formula;
  • 1 PEG-7M is Polyethylene Glycol where n has an average value of about 7,000 and is commercially available under the tradename of Polyox WSR(RTM) N-750 from Union Carbide
  • the coloured hair is pre-treated using currently marketed Pantene(RTM) conditioner. 2. The pre-treated hair is then washed with currently marketed Pantene(RTM) shampoo and rinsed with water. 3. The washed hair is then conditioned currently marketed Pantene(RTM) conditioner and rinsed with water.
  • Zinc oxide 3.00 %
  • the coloured hair is pre-treated using a conditioning composition of the following formula
  • 1 PEG-14M is Polyethylene Glycol where n has an average value of about 14,000 and is commercially available under the trade name of Polyox WSR(RTM) N-3000 from Union Carbide 2 An 85%/15% (wt basis) mixture of D5 Cyclomethicone and dimethicone gum (weight average molecular weight of about 400,000 to about 600,000) 3 Polytrimethyl hydrosilylsilicate, added as a 50 wt % solution in decamethylcyclopentasiloxane, General Electric Silicone Products, SS 4320
  • the pre-treated hair is then washed with currently marketed Pantene(RTM) shampoo and rinsed with water.
  • the washed hair is then conditioned currently marketed Pantene(RTM) conditioner and rinsed with water. 4. The hair is then treated with currently marketed Pantene(RTM) Serum Spray.
  • compositions useful herein comprising ultra violet filtering agents include:
  • Polyquatermium 37 propylene glycol 1.000 dicaprylate/dicaprate, PPG-1 trideceth-6
  • Emulsifying Wax (Polawax/Lipowax) 0.5000

Abstract

Cette invention se rapporte à un procédé cosmétique servant à traiter les cheveux teints afin de réduire ou d'empêcher l'affaiblissement des couleurs et/ou la dégradation de la couleur, ce procédé consistant: (a) à traiter les cheveux à l'aide d'une composition contenant un agent traitant hydrophobe et/ou cationique; puis (b) à mouiller les cheveux. Ce procédé peut éventuellement consister à traiter les cheveux, après l'étape (b), avec une composition contenant un agent traitant et/ou un agent filtrant les ultraviolets. Ce procédé permet de réduire ou d'empêcher l'affaiblissement des couleurs et/ou la dégradation de la couleur des cheveux teints. Ce procédé peut contribuer à préserver une couleur plus uniforme et, par conséquent, peut augmenter la période entre les applications de teinture.
EP98940819A 1998-04-27 1998-08-07 Procede cosmetique pour traiter les cheveux teints afin de reduire l'affaiblissement des couleurs Withdrawn EP1073406A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/US98/08128 1998-04-27
US9808128 1998-04-27
PCT/US1998/016496 WO1999055295A1 (fr) 1998-04-27 1998-08-07 Procede cosmetique pour traiter les cheveux teints afin de reduire l'affaiblissement des couleurs

Publications (1)

Publication Number Publication Date
EP1073406A1 true EP1073406A1 (fr) 2001-02-07

Family

ID=22266895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98940819A Withdrawn EP1073406A1 (fr) 1998-04-27 1998-08-07 Procede cosmetique pour traiter les cheveux teints afin de reduire l'affaiblissement des couleurs

Country Status (8)

Country Link
EP (1) EP1073406A1 (fr)
JP (1) JP2003522726A (fr)
CN (1) CN1292676A (fr)
AU (1) AU8900998A (fr)
BR (1) BR9815811A (fr)
CA (1) CA2330483A1 (fr)
CO (1) CO5021192A1 (fr)
WO (1) WO1999055295A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048922A1 (de) * 2000-10-04 2002-04-11 Henkel Kgaa Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen
JP4171411B2 (ja) 2003-12-26 2008-10-22 花王株式会社 毛髪洗浄剤
JP4607505B2 (ja) * 2004-07-15 2011-01-05 ホーユー株式会社 油性毛髪化粧料
KR100665342B1 (ko) * 2004-11-04 2007-01-09 동성제약주식회사 자외선 차단제를 함유하는 산화형 염모제
JP4632040B2 (ja) * 2005-06-30 2011-02-16 ライオン株式会社 毛髪化粧料
US8277790B2 (en) 2006-06-06 2012-10-02 Conopco, Inc. Method for inhibiting fading and enhancing color intensity of color-treated hair
WO2007146672A2 (fr) * 2006-06-06 2007-12-21 Alberto-Culver Company Méthode d'inhibition du délavement et amplification de l'intensité de la couleur de cheveux colorés
DE102006030090A1 (de) * 2006-06-28 2008-01-03 Beiersdorf Ag Pflegendes Haarshampoo, das messbar die Farbbrillanz und Farbfrische von gefärbten Kerationfasern verlängert
EP1902703A3 (fr) 2006-09-13 2008-06-11 The Procter and Gamble Company Procédés pour le pré-traitement de cheveux avec des solvants organiques
ES2320956B1 (es) * 2007-03-05 2010-03-10 Kao Corporation S.A. Composiciones para el cuidado de fibras queratinosas.
FR2915376B1 (fr) * 2007-04-30 2011-06-24 Oreal Utilisation d'un agent de couplage multi-carbo sites multi-groupements pour proteger la couleur vis-a-vis du lavage de fibres keratiniques teintes artificiellement; procedes de coloration
CN101827580B (zh) 2007-07-27 2013-09-25 禾大公司 作为聚合物阳离子化合物沉积助剂的含磷表面活性剂
EP2022478A1 (fr) 2007-08-07 2009-02-11 KPSS-Kao Professional Salon Services GmbH Composition de conditionnement pour cheveux
EP2022469A1 (fr) * 2007-08-07 2009-02-11 KPSS-Kao Professional Salon Services GmbH Composition de conditionnement pour cheveux
EP2022475A1 (fr) * 2007-08-07 2009-02-11 KPSS-Kao Professional Salon Services GmbH Composition pour fibres de kératine
EP2022479A1 (fr) * 2007-08-07 2009-02-11 KPSS-Kao Professional Salon Services GmbH Composition de coiffage
WO2009024938A2 (fr) * 2007-08-20 2009-02-26 The Procter & Gamble Company Procédé de maintien de couleur de cheveux teints par oxydation
BRPI0914084A2 (pt) * 2008-10-07 2015-10-27 Union Carbide Chem Plastic composição para cuidado dos cabelos e método para prevenir o descoramento dos cabelos
FR2944967B1 (fr) * 2009-04-30 2011-04-08 Oreal Utilisation d'un polysaccharide oxyde pour proteger la couleur de fibres keratiniques ; procedes de coloration
WO2011045840A1 (fr) * 2009-10-15 2011-04-21 株式会社アスター美容 Composition cosmétique pour cheveux
DE102010041887A1 (de) * 2010-10-01 2012-04-05 Beiersdorf Ag Pflegeprodukte zum Schützen colorierter Haare mit Silikonharzen
DE102010063575A1 (de) * 2010-12-20 2012-06-21 Henkel Ag & Co. Kgaa Verwendung kationischer Copolymere zur Verbesserung der Echtheitseigenschaften gefärbter keratinischer Fasern
US10357668B2 (en) 2016-03-31 2019-07-23 L'oreal Inhibiting color fading with layer-by-layer films
WO2017172516A1 (fr) * 2016-03-31 2017-10-05 L'oreal Inhibition d'atténuation de couleur avec des films couche par couche
US10383810B2 (en) 2016-03-31 2019-08-20 L'oreal Inhibiting color fading with layer-by-layer films
GB201616660D0 (en) * 2016-09-30 2016-11-16 Innospec Ltd Methods, compositions and uses relating thereto
JP2020070273A (ja) * 2018-11-02 2020-05-07 株式会社 資生堂 毛髪化粧料及びそれを用いた毛髪処理方法
JP7353058B2 (ja) * 2019-03-29 2023-09-29 株式会社コーセー 染色された毛髪の褪色抑制剤及びこれを含有する毛髪洗浄料
CN113584604B (zh) * 2021-08-14 2022-06-14 嘉兴邵氏家纺有限公司 一种保留天然香味和颜色的黄金丝被制作工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973901A (en) * 1973-12-06 1976-08-10 National Starch And Chemical Corporation Hair coloring composition containing a water-soluble cationic polymer and a process for use thereof
GB2186889A (en) * 1986-02-26 1987-08-26 Dow Corning Colouring keratinous material
US5045307A (en) * 1990-01-09 1991-09-03 Colgate-Palmolive Company Composition that protects dyed hair from fading

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9955295A1 *

Also Published As

Publication number Publication date
CO5021192A1 (es) 2001-03-27
WO1999055295A8 (fr) 2000-10-12
JP2003522726A (ja) 2003-07-29
BR9815811A (pt) 2000-11-28
AU8900998A (en) 1999-11-16
WO1999055295A1 (fr) 1999-11-04
CA2330483A1 (fr) 1999-11-04
CN1292676A (zh) 2001-04-25

Similar Documents

Publication Publication Date Title
WO1999055295A1 (fr) Procede cosmetique pour traiter les cheveux teints afin de reduire l'affaiblissement des couleurs
US6365142B1 (en) Hair conditioning compositions which provide superior wet hair feel attributes and which are substantially free of quaternary ammonium compounds
US6540791B1 (en) Stable alkaline hair bleaching compositions and method for use thereof
EP0743846B1 (fr) Compositions de soins pour les cheveux contenant un alcool gras a point de fusion peu eleve et un polymere d'oxyde d'ethylene/oxyde de propylene
CA2605936A1 (fr) Composition de revitalisant capillaire contenant un derive polymere de galactomannane sans guar
WO2002074271A1 (fr) Traitement capillaire oxydant a sensibilisation reduite
IE913312A1 (en) Mild shampoo compositions
WO1995009600A1 (fr) Compositions de soins capillaires contenant des alcools gras a bas point de fusion et des epaississants polymeres reticules
EP0946132A1 (fr) Apres-shampoing comprenant un compose huileux insoluble dans l'eau a poids moleculaire eleve
WO2001072271A2 (fr) Compositions stables alcalines de decoloration et de coloration capillaire et procede d'utilisation
EP2043595A1 (fr) Composition revitalisante capillaire contenant un dérivé polymère du galactomannane non guar
EP0859587B1 (fr) Produits de conditionnement doux pour les cheveux
US20100249080A1 (en) Personal care composition
CA2274110C (fr) Compositions de conditionnement des cheveux comprenant un compose huileux insoluble dans l'eau de poids moleculaire eleve
EP0859586A1 (fr) Compositions douce de conditionnement des cheveux
WO2001062215A2 (fr) Compositions de traitement capillaire et leur utilisation
MXPA00010603A (es) Metodo cosmetico para el tratamiento de cabello teñido y para reducir el desvanecimiento del color
US20110251161A1 (en) Personal care composition
US20100094053A1 (en) Use of personal care composition
WO2001062216A9 (fr) Compositions de traitement de la chevelure et leur utilisation
EP1752134A1 (fr) Usage d'epaississants polymères dans des compositions de traitement de la chevelure, method et composition
AU7675696A (en) Mild hair conditioning compositions
AU1979197A (en) Mild hair conditioning compositions
AU2893400A (en) Mild hair conditioning compositions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUREIKO, ANDREI

Inventor name: HUGHES, BLAKE, GARETH

Inventor name: SAMI, CHRISTINA, HARCHARAN, KAUR

Inventor name: MONICH, MELISSA, SMITH

Inventor name: MACGILP, NEIL, ARCHIBALD

Inventor name: LANGSCH, DIETER, HANS, JOSEF

Inventor name: DIAS, LOUIS, CARLOS

Inventor name: CASTAING, BERNARD

17Q First examination report despatched

Effective date: 20030407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030818