DE10048922A1 - Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen - Google Patents

Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen

Info

Publication number
DE10048922A1
DE10048922A1 DE2000148922 DE10048922A DE10048922A1 DE 10048922 A1 DE10048922 A1 DE 10048922A1 DE 2000148922 DE2000148922 DE 2000148922 DE 10048922 A DE10048922 A DE 10048922A DE 10048922 A1 DE10048922 A1 DE 10048922A1
Authority
DE
Germany
Prior art keywords
acid
compounds
alcohol
hair
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2000148922
Other languages
English (en)
Inventor
Astrid Kleen
Horst Hoeffkes
Doris Oberkobusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2000148922 priority Critical patent/DE10048922A1/de
Priority to AU2002223557A priority patent/AU2002223557A1/en
Priority to EP01986594A priority patent/EP1322281A2/de
Priority to PCT/EP2001/011056 priority patent/WO2002030373A2/de
Publication of DE10048922A1 publication Critical patent/DE10048922A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen

Abstract

Durch die Verwendung von kurzkettigen Aldehyden und/oder Formaldehyd und/oder Formaldehyd abspaltenden Verbindungen wird die Farbstabilität gefärbter Fasern, insbesondere keratinischer Fasern, deutlich erhöht.

Description

Die Erfindung betrifft die Verwendung von kurzkettigen Aldehyden und/oder Formaldehyd abspaltenden Verbindungen zur Farbstabilisierung von Färbungen keratinischer Fasern, entsprechende Zubereitungen sowie Verfahren zum Pflegen und Färben und Pflegen gefärbter Fasern.
Menschliches Haar wird heute in vielfältiger Weise mit haarkosmetischen Zubereitungen behandelt. Dazu gehören etwa die Reinigung der Haare mit Shampoos, die Pflege und Re­ generation mit Spülungen und Kuren sowie das Bleichen, Färben und Verformen der Haare mit Färbemitteln, Tönungsmitteln, Wellmitteln und Stylingpräparaten. Dabei spielen Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares eine herausragende Rolle. Sieht man von den Blondiermitteln, die eine oxidative Aufhellung der Haare durch Abbau der natürlichen Haarfarbstoffe bewirken, ab, so sind im Bereich der Haarfärbung im wesentlichen drei Typen von Haarfärbemitteln von Bedeutung:
Für dauerhafte, intensive Färbungen mit entsprechenden Echtheitseigenschaften werden sogenannte Oxidationsfärbemittel verwendet. Solche Färbemittel enthalten üblicherweise Oxidationsfarbstoffvorprodukte, sogenannte Entwicklerkomponenten und Kupplerkom­ ponenten. Die Entwicklerkomponenten bilden unter dem Einfluß von Oxidationsmitteln oder von Luftsauerstoff untereinander oder unter Kupplung mit einer oder mehreren Kupplerkomponenten die eigentlichen Farbstoffe aus. Die Oxidationsfärbemittel zeichnen sich zwar durch hervorragende, lang anhaltende Färbeergebnisse aus. Für natürlich wirkende Färbungen muß aber üblicherweise eine Mischung aus einer größeren Zahl von Oxidationsfarbstoffvorprodukten eingesetzt werden; in vielen Fällen werden weiterhin direktziehende Farbstoffe zur Nuancierung verwendet. Weisen die im Verlauf der Farbaus­ bildung gebildeten bzw. direkt eingesetzten Farbstoffe deutlich unterschiedliche Echtheiten (z. B. UV-Stabilität, Schweißechtheit, Waschechtheit etc.) auf, so kann es mit der Zeit zu einer erkennbaren und daher unerwünschten Farbverschiebung kommen. Dieses Phänomen tritt verstärkt auf, wenn die Frisur Haare oder Haarzonen unterschiedlichen Schädigungsgrades aufweist. Ein Beispiel dafür sind lange Haare, bei denen die lange Zeit allen möglichen Umwelteinflüssen ausgesetzten Haarspitzen in der Regel deutlich stärker geschädigt sind als die relativ frisch nachgewachsenen Haarzonen.
Für temporäre Färbungen werden üblicherweise Färbe- oder Tönungsmittel verwendet, die als färbende Komponente sogenannte Direktzieher enthalten. Hierbei handelt es sich um Farbstoffmoleküle, die direkt auf das Haar aufziehen und keinen oxidativen Prozeß zur Ausbildung der Farbe benötigen. Zu diesen Farbstoffen gehört beispielsweise das bereits aus dem Altertum zur Färbung von Körper und Haaren bekannte Henna. Diese Färbungen sind gegen Shampoonieren in der Regel deutlich empfindlicher als die oxidativen Färbun­ gen, so daß dann sehr viel schneller eine vielfach unerwünschte Nuancenverschiebung oder gar eine sichtbare "Entfärbung" eintritt.
Schließlich hat in jüngster Zeit ein neuartiges Färbeverfahren große Beachtung gefunden. Bei diesem Verfahren werden Vorstufen des natürlichen Haarfarbstoffes Melanin auf das Haar aufgebracht; diese bilden dann im Rahmen oxidativer Prozesse im Haar naturanaloge Farbstoffe aus. Ein solches Verfahren mit 5,6-Dihydroxyindolin als Farbstoffvorprodukt wurde in der EP-B1-530 229 beschrieben. Bei, insbesondere mehrfacher, Anwendung von Mitteln mit 5,6-Dihydroxyindolin ist es möglich, Menschen mit ergrauten Haaren die na­ türliche Haarfarbe wiederzugeben. Die Ausfärbung kann dabei mit Luftsauerstoff als einzi­ gem Oxidationsmittel erfolgen, so daß auf keine weiteren Oxidationsmittel zurückgegriffen werden muß. Bei Personen mit ursprünglich mittelblondem bis braunem Haar kann das Indolin als alleinige Farbstoffvorstufe eingesetzt werden. Für die Anwendung bei Personen mit ursprünglich roter und insbesondere dunkler bis schwarzer Haarfarbe können dagegen befriedigende Ergebnisse häufig nur durch Mitverwendung weiterer Farbstoffkomponenten, insbesondere spezieller Oxidationsfarbstoffvorprodukte, erzielt werden. Auch hier können dann Probleme hinsichtlich der Echtheit der Färbungen auftreten.
Es hat nicht an Anstrengungen gefehlt, die Echtheit von Färbungen keratinischer Fasern zu verbessern. Eine Entwicklungsrichtung ist die Optimierung der Farbstoffe selbst bzw. die Synthese neuer, modifizierter Farbstoffmoleküle. Eine weitere Entwicklungsrichtung ist die Suche nach Zusätzen für die Färbemittel, um die Echtheit der Färbungen zu erhöhen. Eine bekannte Problemlösung ist, dem Färbemittel UV-Filter zuzusetzen. Diese Filtersub­ stanzen werden beim Färbeprozeß zusammen mit dem Farbstoff auf das Haar aufgebracht, wodurch in vielen Fällen eine deutliche Steigerung der Stabilität der Färbung gegen die Einwirkung von Tages- oder Kunstlicht erzielt wird.
Überraschenderweise wurde nun gefunden, daß durch den Einsatz von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen als Wirkstoffe die Farbstabilität von Färbungen insbesondere keratinischer Fasern signifikant gesteigert werden kann. Unter Farbstabilität im Sinne der Erfindung ist die Erhaltung der ursprünglichen Färbung hinsichtlich Nuance und/oder Intensität zu verstehen, wenn die keratinische Faser dem wiederholten Einfluß von wäßrigen Mitteln, insbesondere tensidhaltigen Mitteln wie Shampoos, ausgesetzt wird.
Ein erster Gegenstand der vorliegenden Erfindung sind daher kosmetische Mittel enthaltend kurzkettige Aldehyde und/oder Formaldehyd abspaltende Verbindungen (A) als Wirkstoffe zur Farbstabilisierung der Färbung von Fasern.
Unter keratinischen Fasern werden erfindungsgemäß Pelze, Wolle, Federn und insbeson­ dere menschliche Haare verstanden.
Unter kurzkettigen Aldehyden im Sinne der Erfindung werden Aldehyde verstanden, wel­ che gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 500 aufweisen. Die kurzkettigen Aldehyde im Sinne der Erfindung können ein, zwei oder drei Formylgruppen aufweisen. Die Formylgruppen können ganz oder teilweise als Halbacetale, Acetale, Oxime, Hydrazone, Semicarbazone oder Imine vorliegen. Zu den erfindungsge­ mäßen Wirkstoffen zählen neben dem Formaldehyd auch alle Verbindungen, welche Formaldehyd freisetzen können, so daß dieser als Wirkstoff in einem kosmetischen Mittel zur Farbstabilisierung zur Verfügung steht.
Aldehyde im allgemeinen sowie Formaldehyd und Formaldehyd abspaltende Verbin­ dungen sind bereits seit langem bekannt und werden vielfach in kosmetischen Mitteln zur Konservierung, das heißt zur Stabilisierung der Mittel gegen mikrobiellen Befall, einge­ setzt. Weiterhin ist bekannt, daß Formaldehyd und Formaldehyd abspaltende Substanzen die Haarstruktur durch Vernetzungen stabilisieren können.
Als Beispiele für erfindungsgemäße Wirkstoffe seien genannt Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, Isobutyraldehyd, Valeraldehyd, Acrolein, Crotonaldehyd, Benzaldehyd, Zimtaldehyd, o-, m- und p-Anisaldehyd, Nicotinaldehyd, Furfural, Glyceral­ dehyd, Glycolaldehyd, Citral, Vanillin, Piperonal, Glyoxal, Methylglyoxal, Malonaldehyd, Succinaldehyd, Glutaraldehyd, Adipaldehyd, Phthalaldehyd, Isophthalaldehyd, Terephthalaldehyd, 5-Bromo-5-nitro-1,3-dioxan, 2-Bromo-2-nitropropan-1,3-diol, DEDM Hydantoin, DEDM Hydantoin Dilaurate, Benzisothiazolinon, Benzylhemiformal, Diazolidinyl Urea, DMDM Hydantoin, DMHF, Dehydroacetsäure, Glycerolformal, Hydroxymethyl Dioxoazabicylooctan, Imidazolidinylharnstoff, MDM Hydantoin, Methylchloroisothiazolinon, Methylisothiazolinon, Octylisothiazolinon, PEG-5 DEDM Hydantoin, PEG-15 DEDM Hydantoin, PEG-5 DEDM Hydantoin Oleat, PEG-15 DEDM Hydantoin Stearat sowie Hexamethylentetramin.
Die erfindungsgemäßen Wirkstoffe sind in den Mitteln in Konzentrationen von 0,01 Gew.-% bis zu 10 Gew.-%, vorzugsweise von 0,05 Gew.-% bis zu 7,5 Gew.-% und ganz be­ sonders bevorzugt in Mengen von 0,1 Gew.-% bis zu 5 Gew.-% enthalten.
Selbstverständlich können auch mehrere erfindungsgemäße Wirkstoffe gleichzeitig enthalten sein.
Gemäß einer ersten Ausführungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, den farberhaltenden Wirkstoff (A) direkt in Färbe- oder Tönungsmittel einzuarbeiten, das bedeutet, den erfindungsgemäßen Wirkstoff (A) in Kombination mit Oxidationsfarbstoff - Vorprodukten (B) einzusetzen. Es kann dabei von Vorteil sein, den Wirkstoff (A) unmittelbar vor der Anwendung dem Färbe- oder Tönungsmittel zuzusetzen.
Als Farbstoffvorprodukte können Oxidationsfarbstoffvorprodukte vom Entwickler- (B1) und Kuppler-Typ (B2), natürliche und synthetische direktziehende Farbstoffe (C) und Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ (B1) werden üblicherweise pri­ märe aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocy­ clische Hydrazone, 4-Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phe­ nylendiamin, p-Toluylendiamin, p-Aminophenol, o-Aminophenol, 1-(2'-Hydroxyethyl)- 2,5-diaminobenzol, N,N-Bis-(2-hydroxyethyl)-p-phenylendiamin, 2-(2,5-Diamino­ phenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy- 4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6- diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino-4- aminophenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-Aminomethyl-4- aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)-phe­ nol, Bis-(2-hydroxy-5-aminophenyl)-methan, 1,4-Bis-(4-aminophenyl)-diazacycloheptan, 1,3-Bis(N(2-hydroxyethyl)-N(4-aminophenylamino))-2-propanol, 4-Amino-2-(2-hy­ droxyethoxy)-phenol, 1,10-Bis-(2,5-diaminophenyl)-1,4,7,10-tetraoxadecan sowie 4,5- Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-1- (2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phe­ nylendiamin, p-Toluylendiamin, p-Aminophenol, 1-(2'-Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin.
Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ (B2) werden in der Regel m-Phe­ nylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m- Aminophenolderivate verwendet. Beispiele für solche Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5-(3- Hydroxypropylamino)-2-methylphenol, 3-Amino-2-chlor-6-methylphenol, 2-Hydroxy-4- aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor-6- methylphenol, 5-Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, 5- (2'-Hydroxyethyl)-amino-2-methylphenol, 3-(Diethylamino)-phenol, N-Cyclopentyl-3- aminophenol, 1,3-Dihydroxy-5-(methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3-aminophenol, o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxyethanol, 1,3-Bis-(2,4-dia­ minophenoxy)-propan, 1-Methoxy-2-amino-4-(2'-hydroxyethylamino)benzol, 1,3-Bis- (2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol und 1- Amino-3-bis-(2'-hydroxyethyl)-aminobenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-1-methylbenzol, Di- bezie­ hungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Resorcin-mono­ methylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2-Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1,2,4-Trihydroxybenzol, Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2- Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6-Dihy­ droxy-3,4-dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3- Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin, Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-1-naphthol, 2-Hydroxyme­ thyl-1-naphthol, 2-Hydroxyethyl-1-naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihydroxy­ naphthalin, 1,7-Dihydroxynaphthalin, 1,8-Dihydroxynaphthalin, 2,7-Dihydroxynaphthalin und 2,3-Dihydroxynaphthalin, Morpholinderivate wie beispielsweise 6-Hydroxyben­ zomorpholin und 6-Amino-benzomorpholin, Chinoxalinderivate wie beispielsweise 6- Methyl-1,2,3,4-tetrahydrochinoxalin, Pyrazolderivate wie beispielsweise 1-Phenyl-3- methylpyrazol-5-on, Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol, Methylendioxybenzolderivate wie beispielsweise 1-Hydroxy-3,4- methylendioxybenzol, 1-Amino-3,4-methylendioxybenzol und 1-(2'-Hydroxyethyl)- amino-3,4-methylendioxybenzol.
Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1,7-Dihydroxy­ naphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3-hydroxypyridin, Re­ sorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5- Methylresorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
In einer zweiten Ausführungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, den farberhaltenden Wirkstoff (A) direkt in die Färbe- oder Tönungsmittel einzuarbeiten, und zwar in Kombination mit direkt ziehenden Farbstoffen (C). Auch hier hat es sich als besonders günstig herausgestellt, den Wirkstoff (A) unmittelbar vor der Anwendung dem Färbe- oder Tönungsmittel zuzusetzen.
Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 1,4-Bis-(β-hydroxyethyl)-amino- 2-nitrobenzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 6-Nitro-1,2,3,4-tetrahydro­ chinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6-chloro-4- nitrophenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-1-hydroxy-4- nitrobenzol.
In der Natur vorkommende direktziehende Farbstoffe sind beispielsweise Henna rot, Henna neutral, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfin­ dungsgemäßen Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxi­ kologischen, ausgeschlossen werden müssen.
Bezüglich der in den erfindungsgemäßen Haarfarbe- und -tönungsmitteln einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe "Dermato­ logy" (Hrg.: Ch. Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das "Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemit­ tel e. V., Mannheim, Bezug genommen.
Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Sub­ stituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N- Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxy­ indolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure, 6-Hydroxy­ indolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6-Dihydroxyindol, N-Methyl-5,6- dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6- dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4- Aminoindol.
Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxy­ indolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
Die Indolin- und Indol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch ver­ träglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
Bei der Verwendung von Farbstoff-Vorstufen vom Indolin- oder Indol-Typ kann es bevor­ zugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere α-Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocarbonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlorid eingesetzt.
Sowohl die Oxidationsfarbstoffvorprodukte als auch die direktziehenden Farbstoffe sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,01 bis 20 Gew.-%, vorzugs­ weise 0,1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
Haarfärbemittel, insbesondere wenn die Ausfärbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH-Werte im Bereich von etwa 5 bis 11, eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkali- oder Erdal­ kalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl-propanol, 2-Amino-2- methyl-1,3-propandiol, 2-Amino-2-ethyl-1,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoetha­ nolamin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-1,3- propandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω- Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Pro­ zesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungsprodukte an Harnstoff, Melamin oder Natriumborat verwendet werden.
Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per-Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidationsmittel, oder auch Enzyme verwendet werden, die Elektronen aus geeigneten Entwicklerkomponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxidasen wie Tyrosinase, Ascorbatoxidase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1% und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxidasen zu verstärken.
Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH-Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40°C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfärbemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit einem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.
Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorpro­ dukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufge­ bracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann - gegebenenfalls nach einer Zwischenspülung - die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachsham­ pooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorhe­ rige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH-Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH-Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösun­ gen als Oxidationsmittel bevorzugt sein.
Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, daß dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind bei­ spielsweise Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Mn4+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metall­ salze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance ge­ zielt beeinflußt werden.
In einer bevorzugten Ausführungsform der Erfindung kann die Wirkung des er­ findungsgemäßen Wirkstoffes (A) durch Fettstoffe (D) weiter verbessert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
Als Fettsäuren können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6-30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10-22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotride­ cansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Ara­ chinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
Die Einsatzmenge beträgt dabei 0,1-15 Gew.-%, bezogen auf das gesamte Mittel. In einer bevorzugten Ausführungsform beträgt die Menge 0,5-10 Gew.-%, wobei ganz besonders vorteilhaft Mengen von 1-5 Gew.-% sein können.
Als Fettalkohole können eingesetzt werden gesättigte, ein- oder mehrfach ungesättigte, verzweigte oder unverzweigte Fettalkohole mit C6-C30-, bevorzugt C10-C22- und ganz besonders bevorzugt C12-C22-Kohlenstoffatomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkohol­ schnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z. B. Stenol® 1618 oder Lanette®, z. B. Lanette® O oder Lorol®, z. B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z. B. Crodacol® CS, Novol®, Eutanol® G, Guer­ bitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Iso­ carb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeich­ nungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, einge­ setzt werden. Die Fettalkohole werden in Mengen von 0,1-30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1-20 Gew.-% eingesetzt.
Als natürliche oder synthetische Wachse können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhält­ lich über die Fa. Kahl & Co., Trittau.
Die Einsatzmenge beträgt 0,1-50 Gew.-% bezogen auf das gesamte Mittel, bevorzugt 0,1-20 Gew.-% und besonders bevorzugt 0,1-15 Gew.-% bezogen auf das gesamte Mittel.
Zu den natürlichen und synthetischen kosmetischen Ölkörpern, welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
  • - pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
  • - flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert.- butylether, Di-isopentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pen­ tyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhält­ lichen Verbindungen 1,3-Di-(2-ethylhexyl)-cyclohexan (Cetiol® S) und Di-n-octyl­ ether (Cetiol® OE) können bevorzugt sein.
  • - Esteröle. Unter Esterölen sind zu verstehen die Ester von C6-C30- Fettsäuren mit C2- C30-Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotri­ decansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearin­ säure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearin­ säure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren techni­ sche Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexyial­ kohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylal­ kohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalko­ hol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylal­ kohol sowie deren technische Mischungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Iso­ propylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2- Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Ce­ tyloleat, Glycerintricaprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Bu­ tylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmy­ ristat (Cetiol® mm), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
  • - Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol­ di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykol­ dicaprylat,
  • - symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoho­ len, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dica­ prylylcarbonat (Cetiol® CC),
  • - Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
  • - Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (I),
    in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugs­ weise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine die­ ser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m + n + q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m + n + q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostea­ rinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostea­ rinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren techni­ sche Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfin­ dungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1-30 Gew.-%, bezogen auf das gesamte Mittel, bevorzugt 0,1-20 Gew.-%, und insbesondere 0,1-15 Gew.-%.
Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5-75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5-35 Gew.-% sind erfindungsgemäß bevorzugt.
Weiterhin hat sich gezeigt, daß die Wirkung des erfindungsgemäßen Wirkstoffes gesteigert werden kann, wenn er mit Hydroxycarbonsäureestern kombiniert wird. Bevorzugte Hydroxycarbonsäureester sind Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Wein­ säure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der β-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, Zuckersäure, Schleimsäure oder Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich pri­ märe, lineare oder verzweigte aliphatische Alkohole mit 8-22 C-Atomen, also z. B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalko­ holen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z. B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Die Einsatzmenge der Hydroxycarbonsäureester beträgt dabei 0,1-15 Gew.-% bezogen auf das Mittel, bevorzugt 0,1-10 Gew.-% und ganz besonders bevorzugt 0,1-5 Gew.-%.
Ebenfalls als vorteilhaft hat sich die Kombination des farberhaltenden Wirkstoffes mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß verwendeten Mittel daher Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in "H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natri­ um-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
  • - lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
  • - Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
  • - Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
  • - Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
  • - Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
  • - Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
  • - lineare Alkansulfonate mit 8 bis 24 C-Atomen,
  • - lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
  • - Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
  • - Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
  • - Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,
  • - sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
  • - Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbin­ dungen gemäß DE-A-39 26 344,
  • - Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
  • - Alkyl- und/oder Alkenyletherphosphate der Formel (II),
    in der R4 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlen­ stoffatomen, R5 für Wasserstoff, einen Rest (CH2CH2O)nR18 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR6R7R8R9, mit R6 bis R9 unabhängig voneinander stehend für Wasserstoff oder einen C1- bis C4-Kohlen­ wasserstoffrest, steht,
  • - sulfatierte Fettsäurealkylenglykolester der Formel (III),
    R10CO(AlkO)nSO3M (III)
    in der R10CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE- OS 197 36 906.5 beschrieben sind,
  • - Monoglyceridsulfate und Monoglyceridethersulfate der Formel (IV),
    in der R11CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoff­ atomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (IV) eingesetzt, in der R25CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-B1 0 561 825, der EP-B1 0 561 999, der DE-A 142 04 700 oder von A. K. Biswas et al. in J. Am. Oil. Chem. Soc. 37, 171 (1960) und F. U. Ahmed in J. Am. Oil. Chem. Soc. 67, 8 (1990) beschrieben worden sind,
  • - Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
  • - Kondensationsprodukte aus C8-C30- Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten, welche dem Fachmann als Eiweissfettsäurekonden­ sate bekannt sind, wie beispielsweise die Lamepon®-Typen, Gluadin®-Typen, Hostapon® KCG oder die Amisoft®-Typen.
Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykol­ ethergruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C- Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeich­ net, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(-)- oder -SO3 (-)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl­ dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylamino­ ethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen ver­ standen, die außer einer C8-C24-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18-Acylsarcosin.
Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z. B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolether­ gruppe. Solche Verbindungen sind beispielsweise
  • - Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen­ oxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
  • - mit einem Methyl- oder C2-C6- Alkylrest endgruppenverschlossene Anlagerungspro­ dukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhältlichen Typen,
  • - C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
  • - Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizi­ nusöl,
  • - Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol-Typen (Cognis),
  • - alkoxilierte Triglyceride,
  • - alkoxilierte Fettsäurealkylester der Formel (V),
    R12CO-(OCH2CHR13)wOR14 (V)
    in der R12CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R13 für Wasserstoff oder Methyl, R14 für li­ neare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
  • - Aminoxide,
  • - Hydroxymischether, wie sie beipielsweise in der DE-OS 197 38 866 beschrieben sind,
  • - Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäure­ ester wie beispielsweise die Polysorbate,
  • - Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäure­ ester,
  • - Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
  • - Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (VI),
    R15O-[G]p (VI)
    in der R15 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm. Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen. Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (VI) gibt den Oligo­ merisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Lauryl­ alkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
  • - Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, nichtionische Tenside der Formel (VII),
    in der R16CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R17 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoff­ atomen und 3 bis 10 Hydroxylgruppen steht.
    Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US- Patentschriften US 1,985,424, US 2,016,962 und US 2,703,798 sowie die Interna­ tionale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H. Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N- alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (III) wiedergegeben werden:
    Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (VIII) eingesetzt, in der R17 für Wasserstoff oder eine Alkylgruppe steht und R16CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (III), die durch reduktive Ami­ nierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigen­ schaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Be­ vorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1- Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwen­ dung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.
Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1-20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5-15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5-7,5 Gew.-%.
Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Pro­ dukte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhy­ droxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homolo­ genverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkali­ metallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
Die Tenside (E) werden in Mengen von 0,1-45 Gew.-%, bevorzugt 0,5-30 Gew.-% und ganz besonders bevorzugt von 0,5-25 Gew.-%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside (E6) vom Typ der quar­ tärnen Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quater­ näre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltri­ methylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethyl­ ammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethyl­ ammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quater­ nium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben ge­ nannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunk­ tion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Ester­ salzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethyl­ ammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthe­ tischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfin­ dungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Die kationischen Tenside (E6) sind in den erfindungsgemäß verwendeten Mitteln bevor­ zugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Men­ gen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
In einer weiteren bevorzugten Ausführungsform kann die Wirkung des erfindungsgemäßen Wirkstoffes durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, wel­ che die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabi­ lisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydro­ philen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W-Emulsio­ nen und hydrophobe Emulgatoren bilden bevorzugt W/O-Emulsionen. Unter einer Emul­ sion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Weiterführende Definitionen und Eigenschaften von Emulgatoren finden sich in "H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß ver­ wendbare Emulgatoren sind beispielsweise
  • - Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen­ oxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
  • - C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
  • - Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäure­ ester, Fettsäurealkanolamide und Fettsäureglucamide,
  • - C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oli­ gomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zuc­ kerkomponente bevorzugt sind,
  • - Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen, zum Beispiel das im Handel erhältliche Produkt Montanov®68,
  • - Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Ri­ zinusöl,
  • - Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
  • - Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytoste­ rine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
  • - Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z. B. als Lecithine bzw. Phospahtidylcholine aus z. B. Eidotter oder Pflanzensamen (z. B. Soja­ bohnen) gewonnen werden, verstanden.
  • - Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
  • - Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12- hydroxystearat (Handelsprodukt Dehymuls® PGPH),
  • - Lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn-Salze.
Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1-25 Gew.-%, insbesondere 0,5-15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtio­ nogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M. Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10-15 können erfindungsgemäß besonders bevorzugt sein.
Weiterhin hat es sich gezeigt, daß Polymere (G) die farberhaltende Wirkung des erfindungsgemäßen Wirkstoffes unterstützen können. In einer bevorzugten Ausfüh­ rungsform werden den erfindungsgemäß verwendeten Mitteln daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirksam erwiesen haben.
Unter kationischen Polymeren (G1) sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" katio­ nisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammo­ niumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
Homopolymere der allgemeinen Formel (IX),
in der R18 = -H oder -CH3 ist, R19, R20 und R21 unabhängig voneinander ausgewählt sind aus C14-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X ein physiologisch verträgliches organisches oder anorganisches Anion ist, so­ wie Copolymere, bestehend im wesentlichen aus den in Formel (IX) aufgeführten Mono­ mereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationi­ sche Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt:
R18 steht für eine Methylgruppe,
R19, R20 und R21 stehen für Methylgruppen,
m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X- kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlo­ rid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylen­ bisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymer­ dispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50% Polymeranteil, wei­ tere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypro­ pylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50% Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylen­ glykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI- Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (IX) enthalten als nichtionogene Mono­ mereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1-4-alkylester und Methacrylsäure-C1-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20 : 80 vorliegen, sind im Handel als ca. 50%ige nichtwäßrige Polymerdispersion unter der Be­ zeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise
  • - quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Po­ lymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate,
  • - kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,
  • - kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
  • - kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosme­ dia®Guar und Jaguar® vertriebenen Produkte,
  • - Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl­ silylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino- modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquaternäre Polydimethylsiloxane, Quater­ nium-80),
  • - polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Ami­ den von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat® 100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammo­ niumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
  • - Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoal­ kylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinyl­ pyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
  • - Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Be­ zeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
  • - quaternierter Polyvinylalkohol,
  • - sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyqua­ ternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoff­ atomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeich­ nungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Poly­ mere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 er­ hältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten "temporär kationi­ schen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei be­ stimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevor­ zugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer®JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Deri­ vate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquatemium-37.
Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus bei­ den Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, be­ vorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydroly­ saten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammonium­ salzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)- ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydroly­ sate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N. W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Ke­ ratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Coco­ dimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypropyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyl­ trimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimo­ nium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyl­ trimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Pro­ tein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxy­ propyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydro­ lyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
Bei den anionischen Polymeren (G2), welche die farberhaltende Wirkung des erfindungs­ gemäßen Wirkstoffes unterstützen können, handelt es sich um anionische Polymere, wel­ che Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acryl­ amido-2-methylpropansulfonsäure und Acrylsäure.
Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als allei­ niges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik®11-80 im Handel erhältlich ist.
Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwie­ sen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäure­ ester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbe­ sondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein be­ sonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammo­ nium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernet­ zungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyl­ oxyethan, Allylsucrose, Allylpentaerythrit und Methylenbisacrylamid zum Einsatz kom­ men. Ein solches Polymer ist in dem Handelsprodukt Sepigel®305 der Firma SEPPIC ent­ halten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vor­ teilhaft erwiesen.
Auch die unter der Bezeichnung Simulgel®600 als Compound mit Isohexadecan und Poly­ sorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfin­ dungsgemäß besonders wirksam erwiesen.
Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacryl­ säuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevor­ zugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Ver­ netzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Mal­ einsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze® QM im Handel erhältlich.
Weiterhin können als Polymere zur Steigerung der Wirkung der erfindungsgemäßen Wirk­ stoffkombination amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Ami­ nogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung in­ nerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3 --Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Be­ zeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylamino­ ethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Mono­ meren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der europäischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesent­ lichen zusammensetzen aus
  • a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (X),
    R22-CH=CR23-CO-Z-(CnH2n)-N(+)R24R25R26A(-) (X)
    in der R22 und R23 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R24, R25 und R26 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlen­ stoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A(-) das Anion einer organischen oder anorganischen Säure ist, und
  • b) monomeren Carbonsäuren der allgemeinen Formel (XI),
    R27-CH=CR28-COOH (XI)
    in denen R27 und R28 unabhängig voneinander Wasserstoff oder Methylgruppen sind.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsge­ mäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug ge­ nommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R24, R25 und R26 Methylgruppen sind, Z eine NH- Gruppe und A(-) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamido­ propyl-trimethylammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
Geeignete nichtionogene Polymere sind beispielsweise:
  • - Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Waren­ zeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.
  • - Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhy­ droxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
  • - Schellack.
  • - Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
  • - Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nicht- flüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200°C liegt. Bevorzugte Siloxane sind Polydialkylsi­ loxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie bei­ spielsweise Polyphenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Poly­ dialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
  • - Glycosidisch substituierte Silicone gemäß der EP 0612759 B1.
Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbe­ sondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
Die Polymere (G) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
Weiterhin können in den erfindungsgemäß verwendeten Zubereitungen Proteinhydrolysate und/oder Aminosäuren und deren Derivate (H) enthalten sein. Proteinhydrolysate sind Pro­ duktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Pro­ teinen (Eiweißen) erhalten werden.
Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ur­ sprungs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Dia­ malt), Lexein® (Inolex) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Die Proteinhydrolysate oder deren Derivate sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, ent­ halten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Weiterhin kann in einer bevorzugten Ausführungsform der Erfindung die Wirkung der Wirkstoffe (A) durch UV-Filter (I) gesteigert werden. Die erfindungsgemäß zu verwen­ denden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigen­ schaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbe­ reich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315-400 nm)-, im UVB(280-315 nm)- oder im UVC(< 280 nm)-Bereich liegt. UV-Filter mit einem Ab­ sorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäureestern.
Beispiele für erfindungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N,N,N- Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyl­ salicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®4360), 2-Phenylbenzimidazol-5-sulfon­ säure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Heliopan®Hydro), 3,3'-(1,4-Phenylendimethylen)-bis(7,7- dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.- Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion (Butyl methoxydibenzoylmethane; Parsol®1789, Eusolex®9020), α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Di­ methylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol®587, Neo Heliopan®OS, Uvinul®O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p- Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol®MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzylidene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4- Isopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3- Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3- ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxybenzophenon (Benzophenone-1; Uvasorb®20 H, Uvinul®400), 1,1'-Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o-Aminoben­ zoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahy­ droxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxy­ benzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natri­ umsulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4- Amino-benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylben­ zimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(1,4- Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfon­ säure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, α- (2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoe­ säure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethyl­ hexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2- Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methyl­ benzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Tri­ anilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2- Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, 4-Methoxyzimtsäure-2- ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptions­ maximum oberhalb von 15 000, insbesondere oberhalb von 20 000, liegt.
Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wir­ kung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20°C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
Diese UV-Filter weisen die allgemeine Struktur U-Q auf.
Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genann­ ten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV- Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Aminofunktion, ersetzt wird.
Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise
  • - substituierte Benzophenone,
  • - p-Aminobenzoesäureester,
  • - Diphenylacrylsäureester,
  • - Zimtsäureester,
  • - Salicylsäureester,
  • - Benzimidazole und
  • - o-Aminobenzoesäureester.
Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäu­ reamid ableiten, sind erfindungsgemäß bevorzugt.
Die Strukturteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315 nm)- oder im UVC(< 280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB- Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20 000, liegt.
Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammonium­ gruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv gela­ denen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH2)x-N+R1R2R3X-, in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für C1-4- Alkylgruppen, R3 steht für eine C1-22-Alkylgruppe oder eine Benzylgruppe und X für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevor­ zugt für die die Zahl 3, R1 und R2 jeweils für eine Methylgruppe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlen­ wasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halo­ genide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte er­ hältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incro­ quat®UV-283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kom­ bination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombina­ tion mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Men­ gen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.-% sind bevorzugt.
Die farberhaltende Wirkung des erfindungsgemäßen Wirkstoffes kann weiterhin durch eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Gegenstand der Erfindung ist daher die Verwendung des farberhaltenden Wirkstoffes in Kombination mit Derivaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sind die Na­ trium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoni­ umion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.-%.
Ebenfalls als vorteilhaft hat sich die Kombination des farberhaltenden Wirkstoffes mit Vit­ aminen, Provitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevor­ zugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das β-Carotin ist das Provitamin des Re­ tinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A- Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zuberei­ tungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.
Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.:
  • - Vitamin B1 (Thiamin).
  • - Vitamin B2 (Riboflavin).
  • - Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nico­ tinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Men­ gen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
  • - Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1-5 Gew.-% sind besonders bevorzugt.
  • - Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann be­ vorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S,6aR)-2-Oxohexahy­ drothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber zwischenzeitlich der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvors 33692 00070 552 001000280000000200012000285913358100040 0002010048922 00004 33573tufen aus den Gruppen A, B, E und H.
Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Schließlich läßt sich die Wirkung des farberhaltenden Wirkstoffes (A) auch durch den kombinierten Einsatz mit Pflanzenextrakten (L) steigern.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhalts­ stoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e. V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmann, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hama­ melis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmann, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Gin­ seng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Al­ kohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei nie­ dere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1 : 10 bis 10 : 1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2-80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Ge­ winnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Der erfindungsgemäße farberhaltende Wirkstoff kann prinzipiell direkt dem Färbemittel zugegeben werden. Das Aufbringen des farberhaltenden Wirkstoffes auf die gefärbte kera­ tinische Faser kann aber auch in einem getrennten Schritt, entweder vor oder im Anschluß an den eigentlichen Färbevorgang erfolgen. Auch getrennte Behandlungen, gegebenenfalls auch Tage oder Wochen vor oder nach dem Färbevorgang werden von der erfindungsge­ mäßen Lehre umfaßt. Bevorzugt kann jedoch die Anwendung des erfindungsgemäßen Wirkstoffes nach der Färbung und insbesondere im Färbemittel.
Der Begriff Färbevorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei de­ nen auf das, gegebenenfalls angefeuchtete, Haar ein Färbemittel aufgebracht wird und die­ ses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird oder ganz auf dem Haar belassen wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. K. H. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben.
Hinsichtlich der Art, gemäß der die erfindungsgemäße farberhaltende Wirkstoffkombina­ tion auf die keratinische Faser, insbesondere das menschliche Haar, aufgebracht wird, be­ stehen keine prinzipiellen Einschränkungen. Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikro­ emulsionen und multiple Emulsionen, Gele, Sprays, Aerosole und Schaumaerosole geeig­ net. Der pH-Wert dieser Zubereitungen kann prinzipiell bei Werten von 2-11 liegen. Er liegt bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Zur Einstellung dieses pH-Wertes kann praktisch jede für kosmetische Zwecke verwend­ bare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genußsäuren verwendet. Unter Genußsäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genußsäuren sind beispielsweise Essigsäure, Milch­ säure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'-.Tetrakis-(2-hydroxypropyl)-ethylendiamin.
Auf dem Haar verbleibende Zubereitungen haben sich als besonders wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Se­ kunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigen Lösung wieder aus dem Haar ausgespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Haarwäsche, d. h. in der Regel mehr als 12 Stunden, auf dem Haar.
Gemäß einer bevorzugten Ausführungsform werden diese Zubereitungen als Haarkur oder Haar-Conditioner formuliert. Die erfindungsgemäßen Zubereitungen gemäß dieser Aus­ führungsform können nach Ablauf dieser Einwirkzeit mit Wasser oder einem zumindest überwiegend wasserhaltigen Mittel ausgespült werden; sie können jedoch, wie oben ausgeführt, auf dem Haar belassen werden. Dabei kann es bevorzugt sein, die erfindungsgemäße Zubereitung vor der Anwendung eines reinigenden Mittels, eines Wellmittels oder anderen Haarbehandlungsmitteln auf das Haar aufzubringen. In diesem Falle dient die erfindungsgemäße Zubereitung als Farbschutz für die nachfolgenden Anwendungen.
Gemäß weiteren bevorzugten Ausführungsformen kann es sich bei den erfindungsgemäßen Mitteln aber beispielsweise auch um reinigende Mittel wie Shampoos, pflegende Mittel wie Spülungen, festigende Mittel wie Haarfestiger, Schaumfestiger, Styling Gels und Fönwellen, dauerhafte Verformungsmittel wie Dauerwell- und Fixiermittel sowie insbesondere im Rahmen eines Dauerwellverfahrens oder Färbeverfahrens eingesetzte Vorbehandlungsmittel oder Nachspülungen handeln.
Neben dem erfindungsgemäß zwingend erforderlichen farberhaltenden Wirkstoff und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prin­ zipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Kompo­ nenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
  • - nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Vinylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,
  • - Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi ara­ bicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxyme­ thylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dex­ trine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Po­ lyvinylalkohol,
  • - Strukturanten wie Maleinsäure und Milchsäure,
  • - haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
  • - Parfümöle, Dimethylisosorbid und Cyclodextrine,
  • - Lösungsmittel und -vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylen­ glykol, Glycerin und Diethylenglykol,
  • - symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n- dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyln-undecylether, n- Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tertbutylether, Di-iso­ pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
  • - Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C- Atomen,
  • - Monoester von C8- bis C30-Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen,
  • - faserstrukturverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharidewie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
  • - konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B. Sonnenblumenöl, Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie
  • - Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline,
  • - quaternierte Amine wie Methyl-1-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
  • - Entschäumer wie Silikone,
  • - Farbstoffe zum Anfärben des Mittels,
  • - Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
  • - weitere Substanzen zur Einstellung des pH-Wertes, wie beispielsweise α- und β-Hy­ droxycarbonsäuren,
  • - Wirkstoffe wie Allantoin und Bisabolol,
  • - Cholesterin,
  • - Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
  • - Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
  • - Fettsäurealkanolamide,
  • - Komplexbildner wie EDTA, NTA, β-Alanindiessigsäure und Phosphonsäuren,
  • - Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate,
  • - Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere,
  • - Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
  • - Pigmente,
  • - Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cy­ steamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
  • - Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
  • - Antioxidantien.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Kom­ ponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K. H. Schrader verwiesen.
Ein zweiter Gegenstand der Erfindung sind Mittel zur Verbesserung der Waschechtheit gefärbter Fasern sowie der Intensivierung der Färbung, insbesondere keratinischer Fasern, die eine Kombination aus
  • a) dem Wirkstoff (A) und
  • b) einem Farbstoffvorprodukt (B) und/oder einem direktziehenden Farbstoff (C)
enthalten. Hierbei ist eine besonders bevorzugte Ausführungsform diejenige, bei welcher der Wirkstoff (A) sowie Farbstoffvorprodukte (B) und/oder direktziehende Farbstoffe (C) getrennt konfektioniert und erst unmittelbar vor der Anwendung zusammen gegeben werden.
Bezüglich weiterer Komponenten dieser Mittel wird auf das oben gesagte verwiesen.
Ein dritter Gegenstand der Erfindung ist ein Mittel zur Verbesserung der Waschechtheit gefärbter Fasern sowie der Intensivierung der Färbung, insbesondere keratinischer Fasern, das eine Wirkstoffkombination aus
  • a) einer Verbindung (A) gemäß Anspruch 1 und
  • b) einem Polymer (G)
enthält, mit der Maßgabe, daß die Verbindung (A) nicht Formaldehyd oder eine Formaldehyd abspaltende Verbindung ist. Hierbei ist eine besonders bevorzugte Ausführungsform diejenige, bei welcher das Mittel, enthaltend den Wirkstoff (A) und das Polymer (G) als Wirkstoffkombination, nach der Färbung auf die gefärbte Faser aufgebracht wird. Als besonders vorteilhaft hat sich dabei in dieser Ausführungsform erwiesen, wenn zusätzlich neben der Wirkstoffkombination Tenside (E) und/oder Fettstoffe (D) enthalten sind.
Bezüglich weiterer Komponenten dieser Mittel wird auf das oben gesagte verwiesen.
Ein vierter Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Waschecht­ heit von Färbungen von Fasern, insbesondere keratinischer Fasern, bei dem ein färbendes Mittel mit dem erfindungsgemäßen Wirkstoff, wie in einem der Ansprüche 1 bis 9 verwendet auf die Fasern aufgetragen wird, wobei das Mittel gewünschtenfalls nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
Beispiele
Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
1. Wirkungsnachweis a. Vorbehandlung
Strähnen der Fa. Kerling (0,5 g Kerling, Naturweiß) wurden mittig abgebunden und eine Hälfte gebleicht. Die andere Hälfte wurde zweimal gebleicht und zwei herkömmlichen Dauerwellbehandlungen mit dem Handelsprodukt Poly Lock-Normale Dauerwelle unterzogen. Im Rahmen einer Dauerwellbehandlung wurden die Fasern jeweils in einem ersten Schritt für 30 Minuten bei Raumtemperatur der Reduktionslösung (enthaltend 7,9 Gew.-% Thioglykolsäure) ausgesetzt, mit reinem Wasser gespült und anschließend bei Raumtemperatur für 10 Minuten fixiert (Oxidationslösung, enthaltend 2,6 Gew.-% Wasserstoffperoxid). Nach der oxidativen Behandlung wurden die Fasern jeweils erneut gespült und getrocknet.
b. Färbung
Zur Färbung wurde auf die Strähnen eine Mischung aus 1 g einer Färbecreme (Handelsprodukt Poly Diadem Pflege-Creme-Coloration 718 Haselnuß) und 1 ml einer wäßrigen 6%igen Wasserstoffperoxidlösung aufgetragen und dort 30 Min bei 32°C belassen. Danach wurde das Haar mit Wasser gespült.
c. Farbfixierung und Waschverhalten
Nach der Beendigung des Färbeprozesses wurde das Haar für 5 Minuten mit 1 g eines Konditioniermittels der Tabelle 1 bei 32°C behandelt, ausgespült, getrocknet und farbmetrisch vermessen. Anschließend hieran wurden die Haarsträhnen mit einer wäßrigen Lösung, bestehend aus 1,0 Gew.-% Texapon® NSO, pH-Wert 6-7, 6 mal gewaschen, getrocknet und wiederum farbmetrisch vermessen.
d. Farbmetrische Vermessung
Zur farbmetrischen Vermessung wurde jede Haarsträhne an acht Stellen mit Hilfe des Farbmeßsystemes Text Flash der Firma Datacolor vermessen. Dabei wurde die zu vermessende Probe in einer Einspannvorrichtung am Spektralphotometer fixiert, die Remissionswerte über den Bereich des sichtbaren Lichtes von 390-700 nm im Abstand von 10 nm gemessen und über einen Rechner verarbeitet. Das Rechnerprogramm ermittelte die Normfarbwerte nach dem CIELAB-System entsprechend DIN 5033. Die Meßergebnisse des Gesamtfarbabstandes ΔE wurden mit der Software Data Color Tools QC gemäß Formel (I) ausgewertet und in der folgenden Tabelle zusammengefaßt. Als Standard diente die mit "V" gekennzeichnete Zusammensetzung
ΔE = √(ΔL)² + (ΔA)² + (ΔB)² (I)
Je größer der ΔE-Wert ist, desto stärker ist die Farbabnahme gegenüber dem Ausgangsfarbwert, d. h. umso schlechter ist die Waschechtheit.
Tabelle 1
Anwendungsbeispiele 1. Haarspülung
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Lamesoft® P0 654 0,5
Dehyquart®A-CA 2,0
Salcare®SC 965 1,0
Citronensäure 0,4
Gluadin® WQ6 2,0
Acetaldehyd 0,7
Phenonip® 0,8
Wasser ad 100
4. Gemisch aus Alkylpolyglycosid und Fettsäuremonoglycerid (INCI-Bezeichnung: Coco-Glucoside (and) Glyceryl Oleate)@ 5. N,N,N-Trimethyl-2[(methyl-1-oxo-2-propenyl)oxy]-Ethanaminiumchlorid-Homopolymer (50% Aktivsubstanz; INCI-Bezeichnung: Polyquaternium-37 (and) Propylenglycol Dicaprilate Dicaprate (and) PPG-1 Trideceth-6) (ALLIED COLLOIDS)@ 6. Kationisiertes Weizenproteinhydrolysat ca. 31% Aktivsubstanz (INCI-Bezeichnung: Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein) (COGNIS)
2. Haarspülung
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Paraffinöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart®L 807 0,4
Lamesoft® PO 65 1,5
Cosmedia Guar® C 2618 1,5
Promois® Milk-CAQ9 3,0
Citronensäure 0,4
DMDM Hydantoin 0,5
Phenonip® 0,8
Wasser ad 100
7. Bis(cocoylethyl)-hydroxyethyl-methyl-ammonium-methosulfat (ca. 76% Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Dicocoylethyl Hydroxyethylmonium Methosulfat, Propylene Glycol) (COGNIS)@ 8. Guarhydroxypropyltrimethylammonium Chlorid; INCI-Bezeichnung: Guar Hydroxypropyl Trimonium Chloride (COGNIS)@ 9. INCI-Bezeichnung: Cocodimonium Hydroxypropyl Hydrolyzed Casein (SEIWA KASEI)
3. Haarkur
Dehyquart® F7510 4,0
Cetyl/Stearylalkohol 4,0
Paraffinöl perliquidum 15 cSt DAB 9 1,5
Dehyquart®A-CA 4,0
Lamesoft® PO 65 1,0
Salcare®SC 96 1,5
Amisafe-LMA-60®11 1,0
Gluadin®W 2012 3,0
Germall® 11513 1,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
10. Fettalkohole-Methyltriethanolammoniummethylsulfatdialkylester-Gemisch (INCI-Bezeichnung: Distearoylethyl Hydroxyethylmonium Methosulfate, Cetearyl Alcohol) (COGNIS)@ 11. INCI-Bezeichnung Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl (Ajinomoto)@ 12. Weizenproteinhydrolysat (20% Aktivsubstanz in Wasser; INCI-Bezeichnung: Aqua (and) Hydrolized Wheat Protein (and) Sodium Benzoate (and) Phenoxyethanol (and) Methylparaben (and) Propylparaben) (COGNIS)@ 13. INCI-Bezeichnung: Imidazolidinyl Urea (Sutton Laboratories)
4. Haarkur
Dehyquart® L80 2,0
Cetyl/Stearylalkohol 6,0
Paraffinöl perliquidum 15 cSt DAB 9 2,0
Rewoquat®W 7514 2,0
Cosmedia Guar® C261 0,5
Lamesoft® PO 65 0,5
Sepigel®30515 3,5
Honeyquat® 5016 1,0
Gluadin® WQ 2,5
Gluadin®W 20 3,0
Butyraldehyd 1,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100
14. 1-Methyl-2-nortalgalkyl-3-talgfettsäureamidoethylimidazolinium-methosulfat (ca. 75% Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Quaternium-27, Propylene Glycol) (WITCO)@ 15. Copolymer aus Acrylamid und 2-Acrylamido-2-methylpropansulfonsäure (INCI-Bezeichnung: Polyacrylamide (and) C13-C14 Isoparaffin (and) Laureth-7) (SEPPIC)@ 16. INCI-Bezeichnung: Hydroxypropyltrimonium Honey (BROOKS)
5. Haarkur
Dehyquart® F75 0,3
Salcare®SC 96 5,0
Gluadin® WQ 1,5
Lamesoft® PO 65 0,5
Dow Corning®200 Fluid, 5 cSt.17 1,5
Gafquat®755N18 1,5
Hexamethylentetraamin 1,5
Biodocarb® 19 0,02
Parfümöl 0,25
Wasser ad 100
17. Polydimethylsiloxan (INCI-Bezeichnung: Dimethicone) (DOW CORNING)@ 18. Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymer, mit Diethylsulfat quaterniert (19% Aktivsubstanz in Wasser; INCI-Bezeichnung: Polyquaternium-11) (GAF)@ 19. 3-Iod-2-propinyl-n-butylcarbamat (INCI-Bezeichnung: Iodopropynyl Butylcarbamate) (MILKER & GRÜNING)
6. Haarkur
Sepigel®305 5,0
Dow Corning®Q2-522020 1,5
Promois® Milk Q21 3,0
Lamesoft® PO 65 0,5
Polymer P1 entsprechend DE 39 29 173 0,6
Genamin®DSAC22 0,3
Methylglyoxal 0,8
Phenonip® 0,8
Parfümöl 0,25
Wasser ad 100
20. Silicon-Glykol-Copolymer (INCI-Bezeichnung: Dimethicone Copolyol) (DOW CORNING)@ 21. INCI-Bezeichnung Hydroxypropyltrimonium Hydrolyzed Casein ca. 30% Aktivsubstanz (SEIWA KASEI)@ 22. Dimethyldistearylammoniumchlorid (INCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
7. Shampoo
Texapon® NSO23 40,0
Dehyton® G24 6,0
Polymer JR 400®25 0,5
Cetiol® HE26 0,5
Ajidew® NL 5027 1,0
Lamesoft® PO 65 3,0
Gluadin® WQT28 2,5
Gluadin® W 20 0,5
Panthenol (50%) 0,3
Glutardialdehyd 1,0
Vitamin E 0,1
Vitamin H 0,1
Citronensäure 0,5
Natriumbenzoat 0,5
Parfüm 0,4
NaCl 0,5
Wasser ad 100
23. Natriumlaurylethersulfat ca. 28% Aktivsubstanz (INCI-Bezeichnung: Sodium Laureth Sulfate) (COGNIS)@ 24. INCI-Bezeichnung: Sodium Cocoamphoacetate, ca. 30% Aktivsubstanz in Wasser) (COGNIS)@ 25. quaternierte Hydroxyethylcellulose (INCI-Bezeichnung: Polyquaternium-10) (UNION CARBIDE)@ 26. Polyol-Fettsäure-Ester (INCI-Bezeichnung: PEG-7 Glyceryl Cocoate) (COGNIS)@ 27. Natrium-Salz der 2-Pyrrolidinon-5-carbonsäure (50% Aktivsubstanz: INCI-Bezeichnung: Sodium PCA) (AJINOMOTO)@ 28. INCI-Bezeichnung: Hydroxypropyltrimonium Hydrolyzed Wheat Protein (COGNIS)
8. Shampoo
Texapon® NSO 43,0
Dehyton® K29 10,0
Plantacare® 1200 UP30 4,0
Lamesoft® PO 65 2,5
Euperlan®PK 300031 1,6
Arquad®31632 0,8
Polymer JR® 400 0,3
Gluadin® WQ 4,0
Glycerol Formal 1,5
Glucamate®DOE 12033 0,5
Natriumchlorid 0,2
Wasser ad 100
29. INCI-Bezeichnung: Cocamidopropyl Betaine ca. 30% Aktivsubstanz (COGNIS)@ 30. C12-C16 Fettalkoholglycosid ca. 50% Aktivsubstanz (INCI-Bezeichnung: Lauryl Glucoside) (COGNIS)@ 31. Flüssige Dispersion von perlglanzgebenden Substanzen und Amphotensid (ca. 62% Aktivsubstanz; CTFA-Bezeichnung: Glycol Distearate (and) Glycerin (and) Laureth-4 (and) Cocoamidopropyl Betaine) (COGNIS)@ 32. Tri-C16-alkylmethylammoniumchlorid (AKZO)@ 33. ethoxyliertes Methylglucosid-dioleat (CTFA-Bezeichnung: PEG-120 Methyl Glucose Dioleate) (AMERCHOL)
9. Shampoo
Texapon®N 7034 21,0
Plantacare® 1200 UP 8,0
Lamesoft® PO 65 3,0
Gluadin® WQ 1,5
Cutina® EGMS35 0,6
Honeyquat® 50 2,0
Ajidew® NL 50 2,8
Antil® 14136 1,3
Glyoxal 2,0
Natriumchlorid 0,2
Magnesiumhydroxid ad pH 4,5
Wasser ad 100
34. Natriumlaurylethersulfat mit 2 Mol EO ca. 70% Aktivsubstanz (INCI-Bezeichnung: Sodium Laureth Sulfate) (COGNIS)@ 35. Ethylenglykolmonostearat (ca. 25-35% Monoester, 60-70% Diester; INCI:Bezeichnung: Glycol Stearate) (COGNIS)@ 36. Polyoxyethylen-propylenglykoldioleat (40% Aktivsubstanz; INCI-Bezeichnung: Propylene Glycol (and) PEG-55 Propylene Glycol Oleate) (GOLDSCHMIDT)
10. Shampoo
Texapon® K 14 S37 50,0
Dehyton® K 10,0
Plantacare® 818 UP38 4,5
Lamesoft® PO 65 2,0
Polymer P1, entsprechend DE 39 29 973 0,6
Cutina® AGS39 2,0
D-Panthenol 0,5
Glucose 1,0
Butyraldehyd 0,8
Salicylsäure 0,4
Natriumchlorid 0,5
Gluadin® WQ 2,0
Wasser ad 100
37. Natriumlaurylmyristylethersulfat ca 28% Aktivsubstanz (INCI-Bezeichnung: Sodium Myreth Sulfate) (COGNIS)@ 38. C8-C16 Fettalkoholglycosid ca. 50% Aktivsubstanz (INCI-Bezeichnung: Coco Glucoside) (COGNIS)@ 39. Ethylenglykolstearat (ca. 5-15% Monoester, 85-95% Diester; INCI-Bezeichnung: Glycol Distearate) (COGNIS)
11. Haarkur
Celquat® L 20040 0,6
Luviskol® K3041 0,2
D-Panthenol 0,5
Polymer P1, entsprechend DE 39 29 973 0,6
Dehyquart® A-CA 1,0
Lamesoft® PO 65 0,5
Acetaldehyd 1,0
Methylglyoxal 0,5
Gluadin® W 4042 1,0
Natrosol® 250 HR43 1,1
Gluadin® WQ 2,0
Wasser ad 100
40. quaterniertes Cellulose-Derivat (95% Aktivsubstanz; CTFA-Bezeichnung: Polyquaternium-4) (DELFT NATIONAL)@ 41. Polyvinylpyrrolidon (95% Aktivsubstanz; CTFA-Bezeichnung: PVP) (BASF)@ 42. Partialhydrolysat aus Weizen ca. 40% Aktivsubstanz (INCI-Bezeichnung: Hydrolyzed Wheat Gluten Hydrolyzed Wheat Protein) (COGNIS)@ 43. Hydroxyethylcellulose (AQUALON)
12. Färbecreme
C12-18-Fettalkohol 1,2
Lanette® O44 4,0
Eumulgin® B 2 0,8
Cutina® KD 1645 2,0
Lamesoft® PO 65 4,0
Natriumsulfit 0,5
L(+)-Ascorbinsäure 0,5
Ammoniumsulfat 0,5
1,2-Propylenglykol 1,2
Polymer JR®400 0,3
p-Aminophenol 0,35
p-Toluylendiamin 0,85
2-Methylresorcin 0,14
6-Methyl-m-aminophenol 0,42
Cetiol® OE46 0,5
Honeyquat® 50 1,0
Ajidew® NL 50 1,2
Gluadin® WQ 1,0
Formaldehyd 0,5
Ammoniak 1,5
Wasser ad 100
44. Cetylstearylalkohol (INCI-Bezeichnung: Cetearyl Alcohol) (COGNIS)@ 45. Selbstemulgierendes Gemisch aus Mono-/Diglyceriden höherer gesättigter Fettsäuren mit Kaliumstearat (INCI-Bezeichnung: Glyceryl Stearate SE) (COGNIS)@ 46. Di-n-octylether (INCI-Bezeichnung: Dicaprylyl Ether) (COGNIS)
Die Zugabe des Formaldehyd erfolgt in diesem Beispiel unmittelbar vor der Verwendung.
13. Entwicklerdispersion für Färbecreme 12.
Texapon® NSO 2,1
Wasserstoffperoxid (50%ig) 12,0
Turpinal® SL47 1,7
Latekoll® D48 12,0
Lamesoft® PO 65 2,0
Gluadin® WQ 0,3
Salcare® SC 96 1,0
Hexamethylentetraamin 0,8
Wasser ad 100
47. 1-Hydroxyethan-1,1-diphosphonsäure (60% Aktivsubstanz; INCI-Bezeichnung: Etidronic Acid) (COGNIS)@ 48. Acrylester-Methacrylsäure-Copolymer (25% Aktivsubstanz) (BASF)
Die Zugabe des Hexamethylentetraamin erfolgt in diesem Beispiel unmittelbar vor der Verwendung.
14. Tönungsshampoo
Texapon® N 70 14,0
Dehyton® K 10,0
Akypo® RLM 45 NV49 14,7
Plantacare® 1200 UP 4,0
Lamesoft® PO 65 3,0
Polymer P1, entsprechend DE 39 29 973 0,3
Cremophor® RH 4050 0,8
Propionaldehyd 0,3
Benzaldehyd 0,3
Salicylaldehyd 0,3
Farbstoff C. I. 12 719 0,02
Farbstoff C. I. 12 251 0,02
Farbstoff C. I. 12 250 0,04
Farbstoff C. I. 56 059 0,03
Konservierung 0,25
Parfümöl q. s.
Eutanol® G51 0,3
Gluadin® WQ 1,0
Honeyquat® 50 1,0
Salcare® SC 96 0,5
Wasser ad 100
49. Laurylalkohol + 4,5 Ethylenoxid-essigsäure-Natriumsalz (20,4% Aktivsubstanz) (CHEM-Y)@ 50. Rizinus-Öl, hydriert + 45 Ethylenoxid (INCI-Bezeichnung: PEG-40 Hydrogenated Castor Oil) (BASF)@ 51. 2-Octyldodecanol (Guerbet-Alkohol) (INCI-Bezeichnung: Octyldodecanol) (COGNIS)
Die Zugabe des Salicylaldehydes, des Benzaldehydes und des Propionaldehydes erfolgt in diesem Beispiel unmittelbar vor der Verwendung.
15. Cremedauerwelle
AL=L<Wellcreme
Plantacare® 810 UP52 5,0
Thioglykolsäure 8,0
Turpinal® SL 0,5
Ammoniak (25%ig) 7,3
Ammoniumcarbonat 3,0
Cetyl/Stearyl-Alkohol 5,0
Lamesoft® PO 65 0,5
Guerbet-Alkohol 4,0
Salcare® SC 96 3,0
Gluadin® WQ 2,0
Hexamethylentetraamin 0,5
Parfümöl q. s.
Wasser ad 100
52. C8-C10-Alkylglucosid mit Oligomerisationsgrad 1,6 (ca. 60% Aktivsubstanz) (COGNIS)
Fixierlösung
Plantacare® 810 UP 5,0
gehärtetes Rizinusöl 2,0
Lamesoft® PO 65 1,0
Kaliumbromat 3,5
Nitrilotriessigsäure 0,3
Zitronensäure 0,2
Merquat® 55053 0,5
Hydagen® HCMF54 0,5
Glutardialdehyd 0,5
Gluadin® WQ 0,5
Parfümöl q. s.
Wasser ad 100
53. Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer (8% Aktivsubstanz; INCI-Bezeichnung: Polyquarternium 7) (MOBIL OIL)@ 54. Chitosan Pulver (INCI-Bezeichnung: Chitosan) (COGNIS)
Die Zugabe des Glutardialdehydes erfolgt in diesem Beispiel unmittelbar vor der Verwendung.

Claims (11)

1. Verwendung von Verbindungen (A) ausgewählt aus kurzkettigen Aldehyden mit einem Molgewicht von kleiner 500 und/oder Formaldehyd abspaltenden Verbindungen, als Wirkstoff zur Farbstabilisierung der Färbung keratinischer Fasern in kosmetischen Mitteln.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Polymere (G) enthalten sind.
3. Verwendung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Tenside (E) enthalten sind.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Fettstoffe (D) enthalten sind.
5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) Proteinhydrolysate und/oder deren Derivate (H) enthalten sind.
6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) UV-Filter (J) enthalten sind.
7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) oxidativ wirkende Farbstoffe (B) enthalten sind.
8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen (A) direktziehende Farbstoffe (C) enthalten sind.
9. Verfahren zur Verbesserung der Farbstabilität der Färbung von Fasern, insbesondere keratinischen Fasern, dadurch gekennzeichnet, daß ein Mittel, in dem ein Wirkstoff (A) sowie weitere Wirkstoffe, wie in einem der Ansprüche 1 bis 8 verwendet werden, auf die Fasern aufgetragen wird, wobei das Mittel nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
10. Mittel zur Verbesserung der Farbstabilität der Färbung von Fasern, insbesondere keratinischer Fasern, dadurch gekennzeichnet, daß es eine Wirkstoffkombination bestehend aus
  • a) einer Verbindung (A) gemäß Anspruch 1 und
  • b) einem Farbstoffvorprodukt (B) und/oder einem direktziehenden Farbstoff (C)
enthält.
11. Mittel zur Verbesserung der Farbstabilität der Färbung von Fasern, insbesondere keratinischer Fasern, dadurch gekennzeichnet, daß es eine Wirkstoffkombination aus
  • a) einer Verbindung (A) gemäß Anspruch 1 und
  • b) einem Polymer (G) enthält, mit der Maßgabe, daß die Verbindung (A) nicht Formaldehyd oder eine Formaldehyd abspaltende Verbindung ist.
DE2000148922 2000-10-04 2000-10-04 Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen Withdrawn DE10048922A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE2000148922 DE10048922A1 (de) 2000-10-04 2000-10-04 Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen
AU2002223557A AU2002223557A1 (en) 2000-10-04 2001-09-25 Novel use of short-chained aldehydes and compoundsseparating formaldehyde
EP01986594A EP1322281A2 (de) 2000-10-04 2001-09-25 Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen
PCT/EP2001/011056 WO2002030373A2 (de) 2000-10-04 2001-09-25 Neue verwendung von kurzkettigen aldehyden und formaldehyd abspaltenden verbindungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000148922 DE10048922A1 (de) 2000-10-04 2000-10-04 Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen

Publications (1)

Publication Number Publication Date
DE10048922A1 true DE10048922A1 (de) 2002-04-11

Family

ID=7658525

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000148922 Withdrawn DE10048922A1 (de) 2000-10-04 2000-10-04 Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen

Country Status (4)

Country Link
EP (1) EP1322281A2 (de)
AU (1) AU2002223557A1 (de)
DE (1) DE10048922A1 (de)
WO (1) WO2002030373A2 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030848A1 (de) 2001-10-02 2003-04-17 Henkel Kommanditgesellschaft Auf Aktien Verfahren zum färben von keratinfasern unter verwendung von carbonylverbindungen zur verbesserung der farbstabilität von haarfärbungen
FR2838961A1 (fr) * 2002-04-25 2003-10-31 Oreal Utilisation d'alpha-dialdehydes en presence d'un sel d'ammonium d'un acide de bronsted pour la teinture des fibres keratiniques
WO2003090701A1 (en) * 2002-04-25 2003-11-06 L'oreal USE OF α-DIALDEHYDES IN THE PRESENCE OF AN AMMONIUM SALT OF A BRÖNSTED ACID FOR DYEING KERATIN FIBRES
WO2003090700A1 (de) * 2002-04-26 2003-11-06 Wella Aktiengesellschaft Mittel zum oxidativen färben von keratinfasern
EP1433469A1 (de) * 2002-12-23 2004-06-30 Henkel Kommanditgesellschaft auf Aktien Mittel zum Färben von keratinhaltigen Fasern
WO2008019986A1 (de) * 2006-08-15 2008-02-21 Henkel Ag & Co. Kgaa Aufhell- und/oder färbemittel mit aldehyd(en)
FR2915376A1 (fr) * 2007-04-30 2008-10-31 Oreal Utilisation d'un agent de couplage multi-carbo sites multi-groupements pour proteger la couleur vis-a-vis du lavage de fibres keratiniques teintes artificiellement; procedes de coloration
WO2018059784A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende haarbehandlungsmittel mit auswaschschutz
WO2018060727A1 (en) * 2016-09-30 2018-04-05 Innospec Limited Methods, compositions and uses relating thereto
WO2018059786A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende haarbehandlungsmittel im auswaschschutz
WO2018059787A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Konditionierende haarbehandlungsmittel mit auswaschschutz enthaltend ein alpha substituiertes aldehyd
WO2018060724A1 (en) * 2016-09-30 2018-04-05 Innospec Limited Methods, compositions and uses relating thereto
WO2022118980A1 (en) * 2020-12-01 2022-06-09 L'oreal Composition for keratin fibers
FR3118708A1 (fr) * 2021-01-11 2022-07-15 L'oreal Composition pour fibres kératineuses

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151570A1 (de) * 2001-10-23 2003-04-30 Henkel Kgaa Neue Verwendung von Zuckertensiden und Fettsäurepartialglyceriden in farbverändernden Mitteln
WO2017182821A1 (en) * 2016-04-22 2017-10-26 Innospec Limited Methods, compositions and uses relating thereto
JP7105196B2 (ja) * 2016-04-22 2022-07-22 インノスペック リミテッド 方法、組成物、及びそれらに関する使用
US11253452B2 (en) * 2016-04-22 2022-02-22 Innospec Limited Methods and compositions for combatting color loss
US10799440B2 (en) 2016-04-22 2020-10-13 Innospec Limited Methods, compositions and uses relating thereto
GB201616657D0 (en) * 2016-09-30 2016-11-16 Innospec Ltd Methods, compositions and uses relating thereto
AU2017334287B2 (en) * 2016-09-30 2023-06-08 Innospec Limited Cosmetic compositions for combatting colour loss from a dyed material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1252400A (fr) * 1960-03-22 1961-01-27 Nestle Lemur Company Procédé et produits pour la coloration de substances kératiniques
FR1408167A (fr) * 1962-10-18 1965-08-13 Clairol Inc Compositions de teinture stabilisées pour cheveux
US3871818A (en) * 1972-10-30 1975-03-18 Avon Prod Inc Promoting color change in human hair with a dialdehyde compound and a nitrogen containing compound
GB2062016B (en) * 1979-10-03 1983-05-25 Elf Aquitaine Process and composition for the colouration of keratin-containing substances
DE3101011C2 (de) * 1981-01-15 1985-06-05 Wella Ag, 6100 Darmstadt Haarbehandlungsmittel
US5993792A (en) * 1997-11-13 1999-11-30 Tiro Industries Incorporated System for customized hair products containing surfactants
WO1999055295A1 (en) * 1998-04-27 1999-11-04 The Procter & Gamble Company Cosmetic method for treating coloured hair to reduce colour fade
DE19820894A1 (de) * 1998-05-09 1999-11-11 Wella Ag Mittel und Verfahren zum Färben von Fasern
DE10029441A1 (de) * 2000-06-21 2002-01-03 Henkel Kgaa Mittel zum Färben von keratinhaltigen Fasern

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030848A1 (de) 2001-10-02 2003-04-17 Henkel Kommanditgesellschaft Auf Aktien Verfahren zum färben von keratinfasern unter verwendung von carbonylverbindungen zur verbesserung der farbstabilität von haarfärbungen
FR2838961A1 (fr) * 2002-04-25 2003-10-31 Oreal Utilisation d'alpha-dialdehydes en presence d'un sel d'ammonium d'un acide de bronsted pour la teinture des fibres keratiniques
WO2003090701A1 (en) * 2002-04-25 2003-11-06 L'oreal USE OF α-DIALDEHYDES IN THE PRESENCE OF AN AMMONIUM SALT OF A BRÖNSTED ACID FOR DYEING KERATIN FIBRES
WO2003090700A1 (de) * 2002-04-26 2003-11-06 Wella Aktiengesellschaft Mittel zum oxidativen färben von keratinfasern
US7132000B2 (en) 2002-04-26 2006-11-07 Wella Ag Agents for oxidatively dying keratin fibers
EP1433469A1 (de) * 2002-12-23 2004-06-30 Henkel Kommanditgesellschaft auf Aktien Mittel zum Färben von keratinhaltigen Fasern
WO2008019986A1 (de) * 2006-08-15 2008-02-21 Henkel Ag & Co. Kgaa Aufhell- und/oder färbemittel mit aldehyd(en)
FR2915376A1 (fr) * 2007-04-30 2008-10-31 Oreal Utilisation d'un agent de couplage multi-carbo sites multi-groupements pour proteger la couleur vis-a-vis du lavage de fibres keratiniques teintes artificiellement; procedes de coloration
EP1997473A2 (de) 2007-04-30 2008-12-03 L'Oreal Verwendung von Multikohlenstoffen- und Multigruppen- Kupplungsmittel zum Schutz der Farbe gegenüber dem Auswaschen von künstlichen gefärbten Keratinfasern, und deren Färbverfahren
EP1997473A3 (de) * 2007-04-30 2015-04-15 L'Oréal Verwendung von Multikohlenstoffen- und Multigruppen- Kupplungsmittel zum Schutz der Farbe gegenüber dem Auswaschen von künstlichen gefärbten Keratinfasern, und deren Färbverfahren
EP1997473B1 (de) 2007-04-30 2017-08-16 L'Oréal Verwendung von multikohlenstoffsituiertem Multigruppen- Kupplungsmittel zum Schutz der Farbe gegenüber Auswaschen von gefärbter Keratinfasern; Färbeverfahren
CN109789064A (zh) * 2016-09-30 2019-05-21 因诺斯佩克有限公司 方法、组合物及与其有关的用途
GB2559644B (en) * 2016-09-30 2020-04-01 Innospec Ltd Methods, compositions and uses relating thereto
WO2018059786A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende haarbehandlungsmittel im auswaschschutz
WO2018059787A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Konditionierende haarbehandlungsmittel mit auswaschschutz enthaltend ein alpha substituiertes aldehyd
WO2018060724A1 (en) * 2016-09-30 2018-04-05 Innospec Limited Methods, compositions and uses relating thereto
GB2559645A (en) * 2016-09-30 2018-08-15 Innospec Ltd Methods, compositions and uses relating thereto
GB2559644A (en) * 2016-09-30 2018-08-15 Innospec Ltd Methods compositions and uses relating thereto
WO2018059784A1 (de) * 2016-09-30 2018-04-05 Henkel Ag & Co. Kgaa Verbessert konditionierende haarbehandlungsmittel mit auswaschschutz
CN109890360A (zh) * 2016-09-30 2019-06-14 因诺斯佩克有限公司 方法、组合物及与其有关的用途
JP2019529369A (ja) * 2016-09-30 2019-10-17 インノスペック リミテッドInnospec Limited 方法、組成物、及びそれに関連した使用
JP2019529370A (ja) * 2016-09-30 2019-10-17 インノスペック リミテッドInnospec Limited 方法、組成物、及びそれに関連した使用
GB2577456A (en) * 2016-09-30 2020-03-25 Innospec Ltd Methods, compositions and uses relating thereto
GB2559645B (en) * 2016-09-30 2020-04-01 Innospec Ltd Methods, compositions and uses relating thereto
WO2018060727A1 (en) * 2016-09-30 2018-04-05 Innospec Limited Methods, compositions and uses relating thereto
GB2577456B (en) * 2016-09-30 2020-12-16 Innospec Ltd Methods, compositions and uses relating thereto
US11234917B2 (en) 2016-09-30 2022-02-01 Innospec Limited Methods, compositions and uses relating thereto
US11311471B2 (en) 2016-09-30 2022-04-26 Innospec Limited Methods, compositions and uses relating thereto
CN109890360B (zh) * 2016-09-30 2023-11-21 因诺斯佩克有限公司 方法、组合物及与其有关的用途
CN109789064B (zh) * 2016-09-30 2023-11-21 因诺斯佩克有限公司 方法、组合物及与其有关的用途
JP7143281B2 (ja) 2016-09-30 2022-09-28 インノスペック リミテッド 方法、組成物、及びそれに関連した使用
JP7143282B2 (ja) 2016-09-30 2022-09-28 インノスペック リミテッド 方法、組成物、及びそれに関連した使用
AU2017334286B2 (en) * 2016-09-30 2023-02-16 Innospec Limited Methods, compositions and uses relating thereto
AU2017336596B2 (en) * 2016-09-30 2023-06-22 Innospec Limited Methods, compositions and uses relating thereto
WO2022118980A1 (en) * 2020-12-01 2022-06-09 L'oreal Composition for keratin fibers
FR3118708A1 (fr) * 2021-01-11 2022-07-15 L'oreal Composition pour fibres kératineuses

Also Published As

Publication number Publication date
WO2002030373A3 (de) 2002-08-22
EP1322281A2 (de) 2003-07-02
AU2002223557A1 (en) 2002-04-22
WO2002030373A2 (de) 2002-04-18

Similar Documents

Publication Publication Date Title
EP1326577B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1276451B2 (de) Verwendung von zuckertensiden und fettsäurepartialglyceriden
EP1326579B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1432395B1 (de) Verfahren zum färben von keratinfasern unter verwendung von carbonylverbindungen zur verbesserung der farbstabilität von haarfärbungen
EP1771144B1 (de) Haarkonditionierende mittel mit aminofunktionellen siliconen
DE10022077A1 (de) Kosmetisches Mittel enthaltend 2-Furanonderivate
DE10240757A1 (de) Synergistische Kombination von Seidenproteinen
DE10048922A1 (de) Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen
EP1339379B1 (de) Neue verwendung von proteinhydrolysaten
EP1729853B1 (de) Verwendung kationischer stärkederivate zum farberhalt
DE10107216A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
DE10163803A1 (de) Farberhaltung
DE10061420A1 (de) Neue Verwendung von Polyhydroxyverbindungen
DE10163860A1 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
DE102004030885A1 (de) Haarreinigungsmittel mit aminofunktionellen Siliconen
WO2003035018A1 (de) Neue verwendung von zuckertensiden und fettsäurepartialglyceriden in farbverändernden mitteln
DE10060814A1 (de) Neue Verwendung von Phospholipiden
WO2006021349A1 (de) Extrakte als strukturanten
WO2006015649A1 (de) Volumen-haarreinigungsmittel
DE102004024511A1 (de) Verwendung von Polysulfiden zur Farbstabilisierung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee