DE10061420A1 - Neue Verwendung von Polyhydroxyverbindungen - Google Patents

Neue Verwendung von Polyhydroxyverbindungen

Info

Publication number
DE10061420A1
DE10061420A1 DE2000161420 DE10061420A DE10061420A1 DE 10061420 A1 DE10061420 A1 DE 10061420A1 DE 2000161420 DE2000161420 DE 2000161420 DE 10061420 A DE10061420 A DE 10061420A DE 10061420 A1 DE10061420 A1 DE 10061420A1
Authority
DE
Germany
Prior art keywords
acid
hair
preferred
alcohol
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2000161420
Other languages
English (en)
Inventor
Astrid Kleen
Oliver Brabaender
Horst Hoeffkes
Detlef Hollenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE2000161420 priority Critical patent/DE10061420A1/de
Priority to PCT/EP2001/013959 priority patent/WO2002045665A1/de
Priority to AU2002217071A priority patent/AU2002217071A1/en
Publication of DE10061420A1 publication Critical patent/DE10061420A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/04Preparations for permanent waving or straightening the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/736Chitin; Chitosan; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Abstract

Durch die Verwendung von Polyhydroxyverbindungen wird die Restrukturierung von Fasern, insbesondere keratinischen Fasern, deutlich verbessert.

Description

Die Erfindung betrifft die Verwendung von Polyhydroxyverbindungen zur Restruktu­ rierung von keratinischen Fasern sowie als ein Bestandteil einer Wirkstoffkombination und die Verwendung der Wirkstoffkombination in Haut- und Haarbehandlungsmitteln, vor­ zugsweise in Haarpflegemitteln.
Die kosmetische Behandlung von Haut und Haaren ist ein wichtiger Bestandteil der menschlichen Körperpflege. So wird menschliches Haar heute in vielfältiger Weise mit haarkosmetischen Zubereitungen behandelt. Dazu gehören etwa die Reinigung der Haare mit Shampoos, die Pflege und Regeneration mit Spülungen und Kuren sowie das Bleichen, Färben und Verformen der Haare mit Färbemitteln, Tönungsmitteln, Wellmitteln und Sty­ lingpräparaten. Dabei spielen Mittel zur Veränderung oder Nuancierung der Farbe des Kopfhaares eine herausragende Rolle. Sieht man von den Blondiermitteln, die eine oxida­ tive Aufhellung der Haare durch Abbau der natürlichen Haarfarbstoffe bewirken, ab, so sind im Bereich der Haarfärbung im wesentlichen drei Typen von Haarfärbemitteln von Bedeutung:
Für dauerhafte, intensive Färbungen mit entsprechenden Echtheitseigenschaften werden sogenannte Oxidationsfärbemittel verwendet. Solche Färbemittel enthalten üblicherweise Oxidationsfarbstoffvorprodukte, sogenannte Entwicklerkomponenten und Kupplerkom­ ponenten. Die Entwicklerkomponenten bilden unter dem Einfluß von Oxidationsmitteln oder von Luftsauerstoff untereinander oder unter Kupplung mit einer oder mehreren Kupplerkomponenten die eigentlichen Farbstoffe aus. Die Oxidationsfärbemittel zeichnen sich zwar durch hervorragende, lang anhaltende Färbeergebnisse aus. Für natürlich wir­ kende Färbungen muß aber üblicherweise eine Mischung aus einer größeren Zahl von Oxi­ dationsfarbstoffvorprodukten eingesetzt werden; in vielen Fällen werden weiterhin direkt­ ziehende Farbstoffe zur Nuancierung verwendet. Weisen die im Verlauf der Farbausbil­ dung gebildeten bzw. direkt eingesetzten Farbstoffe deutlich unterschiedliche Echtheiten (z. B. UV-Stabilität, Schweißechtheit, Waschechtheit etc.) auf, so kann es mit der Zeit zu einer erkennbaren und daher unerwünschten Farbverschiebung kommen. Dieses Phänomen tritt verstärkt auf, wenn die Frisur Haare oder Haarzonen unterschiedlichen Schädigungs­ grades aufweist. Ein Beispiel dafür sind lange Haare, bei denen die lange Zeit allen mög­ lichen Umwelteinflüssen ausgesetzten Haarspitzen in der Regel deutlich stärker geschädigt sind als die relativ frisch nachgewachsenen Haarzonen.
Für temporäre Färbungen werden üblicherweise Färbe- oder Tönungsmittel verwendet, die als färbende Komponente sogenannte Direktzieher enthalten. Hierbei handelt es sich um Farbstoffmoleküle, die direkt auf das Haar aufziehen und keinen oxidativen Prozeß zur Ausbildung der Farbe benötigen. Zu diesen Farbstoffen gehört beispielsweise das bereits aus dem Altertum zur Färbung von Körper und Haaren bekannte Henna. Diese Färbungen sind gegen Shampoonieren in der Regel deutlich empfindlicher als die oxidativen Färbun­ gen, so daß dann sehr viel schneller eine vielfach unerwünschte Nuancenverschiebung oder gar eine sichtbare "Entfärbung" eintritt.
Schließlich hat in jüngster Zeit ein neuartiges Färbeverfahren große Beachtung gefunden. Bei diesem Verfahren werden Vorstufen des natürlichen Haarfarbstoffes Melanin auf das Haar aufgebracht; diese bilden dann im Rahmen oxidativer Prozesse im Haar naturanaloge Farbstoffe aus. Ein solches Verfahren mit 5,6-Dihydroxyindolin als Farbstoffvorprodukt wurde in der EP-B1-530 229 beschrieben. Bei, insbesondere mehrfacher, Anwendung von Mitteln mit 5,6-Dihydroxyindolin ist es möglich, Menschen mit ergrauten Haaren die na­ türliche Haarfarbe wiederzugeben. Die Ausfärbung kann dabei mit Luftsauerstoff als einzi­ gem Oxidationsmittel erfolgen, so daß auf keine weiteren Oxidationsmittel zurückgegriffen werden muß. Bei Personen mit ursprünglich mittelblondem bis braunem Haar kann das Indolin als alleinige Farbstoffvorstufe eingesetzt werden. Für die Anwendung bei Personen mit ursprünglich roter und insbesondere dunkler bis schwarzer Haarfarbe können dagegen befriedigende Ergebnisse häufig nur durch Mitverwendung weiterer Farbstoffkompo­ nenten, insbesondere spezieller Oxidationsfarbstoffvorprodukte, erzielt werden.
Nicht zuletzt durch die starke Beanspruchung der Haare, beispielsweise durch das Färben oder Dauerwellen als auch durch die Reinigung der Haare mit Shampoos und durch Um­ weltbelastungen, nimmt die Bedeutung von Pflegeprodukten mit möglichst langanhal­ tender Wirkung zu. Derartige Pflegemittel beeinflussen die natürliche Struktur und die Eigenschaften der Haare. So können anschließend an solche Behandlungen beispielsweise die Naß- und Trockenkämmbarkeit des Haares, der Halt und die Fülle des Haares optimiert sein oder die Haare vor einer erhöhten Splißrate geschützt sein.
Es ist daher seit langem üblich, die Haare einer speziellen Nachbehandlung zu unterziehen. Dabei werden, üblicherweise in Form einer Spülung, die Haare mit speziellen Wirkstoffen, beispielsweise quaternären Ammoniumsalzen oder speziellen Polymeren, behandelt. Durch diese Behandlung werden je nach Formulierung die Kämmbarkeit, der Halt und die Fülle der Haare verbessert und die Splißrate verringert.
Weiterhin wurden in jüngster Zeit sogenannte Kombinationspräparate entwickelt, um den Aufwand der üblichen mehrstufigen Verfahren, insbesondere bei der direkten Anwendung durch Verbraucher, zu verringern.
Diese Präparate enthalten neben den üblichen Komponenten, beispielsweise zur Reinigung der Haare, zusätzlich Wirkstoffe, die früher den Haarnachbehandlungsmitteln vorbehalten waren. Der Konsument spart somit einen Anwendungsschritt; gleichzeitig wird der Ver­ packungsaufwand verringert, da ein Produkt weniger gebraucht wird.
Die zur Verfügung stehenden Wirkstoffe sowohl für separate Nachbehandlungsmittel als auch für Kombinationspräparate wirken im allgemeinen bevorzugt an der Haaroberfläche. So sind Haarpflegemittel bekannt, welche dem Haar Glanz, Halt, Fülle, bessere Naß- oder Trockenkämmbarkeiten verleihen oder dem Spliß vorbeugen. Genauso bedeutend wie das äußere Erscheinungsbild der Haare ist jedoch der innere strukturelle Zusammenhalt der Haarfasern, der insbesondere bei oxidativen und reduktiven Prozessen wie Färbung und Dauerwellen stark beeinflußt werden kann.
Es besteht daher weiterhin ein Bedarf nach Wirkstoffen bzw. Wirkstoffkombinationen für kosmetische Mittel mit guten pflegenden Eigenschaften und guter biologischer Abbaubar­ keit. Insbesondere in farbstoff- und/oder elektrolythaltigen Formulierungen besteht Bedarf an zusätzlichen pflegenden Wirkstoffen, die sich problemlos in bekannte Formulierungen einarbeiten lassen.
Überraschenderweise wurde nun gefunden, daß durch den Einsatz von Polyhydroxyverbin­ dungen als Wirkstoffe die innere Struktur von Fasern, insbesondere keratinischer Fasern, signifikant restrukturiert werden kann. Unter Strukturstärkung, also Restrukturierung im Sinne der Erfindung, ist eine Verringerung der durch verschiedenartigste Einflüsse entstan­ denen Schädigungen keratinischer Fasern zu verstehen. Hierbei spielt beispielsweise die Wiederherstellung der natürlichen Festigkeit eine wesentliche Rolle. Restrukturierte Fasern zeichnen sich beispielsweise durch einen verbesserten Glanz, durch einen verbesserten Griff und durch eine leichtere Kämmbarkeit aus. Zusätzlich weisen sie eine optimierte Festigkeit und Elastizität auf. Eine erfolgreiche Restrukturierung läßt sich physikalisch als Schmelzpunktserhöhung im Vergleich zur geschädigten Faser nachweisen. Je höher der Schmelzpunkt des Haares ist, desto fester ist die Struktur der Faser. Eine genaue Beschrei­ bung der Bestimmung des Schmelzbereiches von Haaren findet sich in der DE 196 17 395 A1.
Polyhydroxyverbindungen sind bereits seit langem bekannt und werden in den unter­ schiedlichsten technischen Anwendungen eingesetzt. So ist beispielsweise die Verwendung von Glucose als Strukturant zur Erhöhung der Trockenkämmbarkeit von feinem Haar be­ kannt (Manuskript von H. Hensen und J. Kahre zur Fortbildungsveranstaltung der deutschen Gesellschaft für angewandte und wissenschaftliche Kosmetik 1998 in Aachen). Weitere Polyhydroxyverbindungen wie Cellulosederivate werden zur Reduzierung der Naß- und Trockenkämmarbeiten eingesetzt. Zur Einstellung von Viskositäten in kosmetischen Mitteln werden beispielsweise Xanthane verwendet. Diole und Triole wie Glykol, Glycerin, Propandiole etc. werden als Feuchtigkeitsspender (siehe hierzu A. Domsch, "Die kosmetischen Präparate", 4. Auflage. 1992, Band II, Seite 8 folgende, Verlag für die chemische Industrie, H. Ziolkowsky, Augsburg) oder Penetrationshilfsmittel vielfach verwendet. In der EP 0 287 876 B1 wird eine Wirkstoffkombination aus Panthenol und Mono- oder Disacchariden als Haar regenerierende Zubereitung offenbart. Hinweise auf eine Restrukturierung des Haares im Sinne der vorliegenden Erfindung finden sich jedoch in keiner der aufgeführten Schriften.
Ein erster Gegenstand der vorliegenden Erfindung sind daher kosmetische Mittel enthal­ tend Polyhydroxyverbindungen (A) als Wirkstoffe zur Restrukturierung von Fasern.
Unter keratinischen Fasern werden erfindungsgemäß Pelze, Wolle, Federn und insbeson­ dere menschliche Haare verstanden.
Unter Polyhydroxyverbindungen im Sinne der Erfindung werden alle Substanzen verstan­ den, welche die Definition in Römpp's Lexikon der Chemie, Version 2.0 der CD-ROM- Ausgabe von 1999, Verlag Georg Thieme, erfüllen. Demnach sind unter Polyhydroxyver­ bindungen organische Verbindungen mit mindestens zwei Hydroxygruppen zu verstehen. Insbesondere sind im Sinne der vorliegenden Erfindung hierunter zu verstehen:
  • - Polyole mit mindestens zwei Hydroxygruppen, wie beispielsweise Trimethylolpropan,
  • - Kohlenhydrate, Zuckeralkohole und Zucker sowie deren Salze,
  • - insbesondere Monosaccharide, Disaccharide, Trisaccharide und Oligosaccharide, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie ge­ schützt durch übliche und in der Literatur bekannte -OH- und NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können,
  • - Aminodesoxyzucker, Desoxyzucker, Thiozucker, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen, sowie geschützt durch übliche und in der Literatur bekannte -OH- und NH-Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
    Ganz besonders bevorzugt sind hierunter Monosaccharide mit 3 bis 8 C-Atomen, wie beispielsweise Triosen, Tetrosen, Pentosen, Hexosen, Heptosen und Octosen, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH- und NH-Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
    Weiterhin sind ganz besonders bevorzugt Oligosaccharide mit bis zu 50 Mono­ mereinheiten, wobei diese auch in Form von Aldosen, Ketosen und/oder Lactosen sowie geschützt durch übliche und in der Literatur bekannte -OH- und NH- Schutzgruppen, wie beispielsweise die Triflatgruppe, die Trimethylsilylgruppe oder Acylgruppen sowie weiterhin in Form der Methylether und als Phosphatester, vorliegen können.
Beispielhaft für die erfindungsgemäßen Polyole seien erwähnt Sorbit, Inosit, Mannit, Tetrite, Pentite, Hexite, Threit, Erythrit, Adonit, Arabit, Xylit, Dulcit, Erythrose, Threose, Arabinose, Ribose, Xylose, Lyxose, Glucose, Galactose, Mannose, Allose, Altrose, Gulose, Idose, Talose, Fructose, Sorbose, Psicose, Tegatose, Desoxyribose, Glucosamin, Galaktosamin, Rhamnose, Digitoxose, Thioglucose, Saccharose, Lactose, Trehalose, Maltose, Cellobiose, Melibiose, Gestiobiose, Rutinose, Raffmose sowie Cellotriose. Weiterhin sei auf die einschlägige Fachliteratur wie beispielsweise Beyer-Walter, Lehr­ buch der organischen Chemie, S. Hirzel Verlag Stuttgart, 19. Auflage, Abschnitt III, Seiten 393 und folgende verwiesen.
Selbstverständlich umfaßt die erfindungsgemäße Lehre alle isomeren Formen, wie cis- trans-Isomere, Diastereomere, Epimere, Anomere und chirale Isomere.
Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Wirkstoffen (A) einzu­ setzen.
Die erfindungsgemäßen Wirkstoffe (A) sind in den Mitteln in Konzentrationen von 0,01 Gew.-% bis zu 20 Gew.-%, vorzugsweise von 0,05 Gew.-% bis zu 15 Gew.-% und ganz be­ sonders bevorzugt in Mengen von 0,1 Gew.-% bis zu 10 Gew.-% enthalten.
Gemäß einer ersten Ausführungsform der erfindungsgemäßen Lehre kann es bevorzugt sein, den strukturgebenden Wirkstoff (A) direkt in Färbe- oder Tönungsmittel einzuar­ beiten, das bedeutet, den erfindungsgemäßen Wirkstoff (A) in Kombination mit Farb­ stoffen und/oder Farbstoffvorprodukten einzusetzen.
Als solche können Oxidationsfarbstoffvorprodukte vom. Entwickler- (B1) und Kuppler-Typ (B2), natürliche und synthetische direktziehende Farbstoffe (C) und Vorstufen naturana­ loger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.
Als Oxidationsfarbstoffvorprodukte vom Entwickler-Typ (B1) werden üblicherweise pri­ märe aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocy­ clische Hydrazone, 4-Aminopyrazolderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. Geeignete Entwicklerkomponenten sind beispielsweise p-Phe­ nylendiamin, p-Toluylendiamin, p-Aminophenol, o-Aminophenol, 1-(2'-Hydroxyethyl)- 2,5-diaminobenzol, N,N-Bis-(2-hydroxyethyl)-p-hhenylendiamin, 2-(2,5-Diamino­ phenoxy)-ethanol, 4-Amino-3-methylphenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy- 4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6- diaminopyrimidin, 2-Dimethylamino-4,5,6-triaminopyrimidin, 2-Hydroxymethylamino-4- aminophenol, Bis-(4-aminophenyl)amin, 4-Amino-3-fluorphenol, 2-Aminomethyl-4- aminophenol, 2-Hydroxymethyl-4-aminophenol, 4-Amino-2-((diethylamino)-methyl)-phe­ nol, Bis-(2-hydroxy-5-aminophenyl)-methan, 1,4-Bis-(4-aminophenyl)-diazacycloheptan, 1,3-Bis(N(2-hydroxyethyl)-N(4-aminophenylamino))-2-propanol, 4-Amino-2-(2-hy­ droxyethoxy)-phenol, 1,10-Bis-(2,5-diaminophenyl)-1,4,7,10-tetraoxadecan sowie 4,5- Diaminopyrazol-Derivate nach EP 0 740 741 bzw. WO 94/08970 wie z. B. 4,5-Diamino-1- (2'-hydroxyethyl)-pyrazol. Besonders vorteilhafte Entwicklerkomponenten sind p-Phe­ nylendiamin, p-Toluylendiamin, p-Aminophenol, 1-(2'-Hydroxyethyl)-2,5-diaminobenzol, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2,4,5,6-Tetraaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin.
Als Oxidationsfarbstoffvorprodukte vom Kuppler-Typ (B2) werden in der Regel m- Phenylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m- Aminophenolderivate verwendet. Beispiele für solche Kupplerkomponenten sind
m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, 5-(3- Hydroxypropylamino)-2-methylphenol, 3-Amino-2-chlor-6-methylphenol, 2-Hydroxy-4- aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor-6- methylphenol, 5-Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, 5- (2'-Hydroxyethyl)-amino-2-methylphenol, 3-(Diethylamino)-phenol, N-Cyclopentyl-3- aminophenol, 1,3-Dihydroxy-5-(methylamino)-benzol, 3-(Ethylamino)-4-methylphenol und 2,4-Dichlor-3-aminophenol, o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4-Diaminophenoxyethanol, 1,3-Bis-(2,4- diaminophenoxy)-propan, 1-Methoxy-2-amino-4-(2'-Hydroxyethylamino)benzol, 1,3-Bis- (2,4-diaminophenyl)-propan, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol und 1- Amino-3-bis-(2'-hydroxyethyl)-aminobenzol, o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-1-methylbenzol, Di-bezie­ hungsweise Trihydroxybenzolderivate wie beispielsweise Resorcin, Resorcin-mono­ methylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2-Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1,2,4-Trihydroxybenzol,
Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2- Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6-Dihy­ droxy-3,4-dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3- Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin,
Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-1-naphthol, 2-Hydroxyme­ thyl-1-naphthol, 2-Hydroxyethyl-1-naphthol, 1,5-Dihydroxynaphthalin, 1,6-Dihydroxy­ naphthalin, 1,7-Dihydroxynaphthalin, 1,8-Dihydroxynaphthalin, 2,7-Dihydroxynaphthalin und 2,3-Dihydroxynaphthalin, Morpholinderivate wie beispielsweise 6-Hydroxy­ benzomorpholin und 6-Amino-benzomorpholin, Chinoxalinderivate wie beispielsweise 6- Methyl-1,2,3,4-tetrahydrochinoxalin, Pyrazolderivate wie beispielsweise 1-Phenyl-3- methylpyrazol-5-on, Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol, Methylendioxybenzolderivate wie beispielsweise 1-Hydroxy-3,4- methylendioxybenzol, 1-Amino-3,4-methylendioxybenzol und 1-(2'-Hydroxyethyl)- amino-3,4-methylendioxybenzol.
Besonders geeignete Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1,7-Dihydroxy­ naphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3-hydroxypyridin, Re­ sorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5-Methyl­ resorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.
Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Besonders geeignete direktziehende Farb­ stoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red 3, HC Red BN, Basic Red 76, HC Blue 2, HC Blue 12, Disperse Blue 3, Basic Blue 99, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 1,4-Bis-(β-hydroxyethyl)-amino-2-nitro­ benzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 6-Nitro-1,2,3,4-tetrahydro­ chinoxalin, Hydroxyethyl-2-nitro-toluidin, Pikraminsäure, 2-Amino-6-chloro-4-nitro­ phenol, 4-Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-1-hydroxy-4-nitro­ benzol.
In der Natur vorkommende direktziehende Farbstoffe Elnd beispielsweise Henna rot, Henna neutral, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten.
Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfin­ dungsgemäßen Haarfärbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxi­ kologischen, ausgeschlossen werden müssen.
Bezüglich der in den erfindungsgemäßen Haarfärbe- und tönungsmitteln einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe "Dermato­ logy" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das "Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemit­ tel e.V., Mannheim, Bezug genommen.
Als Vorstufen naturanaloger Farbstoffe werden beispielsweise Indole und Indoline sowie deren physiologisch verträgliche Salze verwendet. Bevorzugt werden solche Indole und Indoline eingesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Sub­ stituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. Besonders vorteilhafte Eigenschaften haben 5,6-Dihydroxyindolin, N- Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxy­ indolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure, 6-Hydroxy­ indolin, 6-Aminoindolin und 4-Aminoindolin sowie 5,6-Dihydroxyindol, N-Methyl-5,6- dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6- dihydroxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4- Aminoindol.
Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroayindolin, N-Butyl-5,6-dihydroxy­ indolin und insbesondere das 5,6-Dihydroxyindolin sowie N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbesondere das 5,6-Dihydroxyindol.
Die Indolin- und Indol-Derivate in den im Rahmen des erfindungsgemäßen Verfahrens eingesetzten Färbemitteln sowohl als freie Basen als auch in Form ihrer physiologisch ver­ träglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochloride, der Sulfate und Hydrobromide, eingesetzt werden.
Bei der Verwendung von Farbstoff-Vorstufen vom Indolin- oder Indol-Typ kann es bevor­ zugt sein, diese zusammen mit mindestens einer Aminosäure und/oder mindestens einem Oligopeptid einzusetzen. Bevorzugte Aminosäuren sind Aminocarbonsäuren, insbesondere α-Aminocarbonsäuren und ω-Aminocarbonsäuren. Unter den α-Aminocarbonsäuren sind wiederum Arginin, Lysin, Ornithin und Histidin besonders bevorzugt. Eine ganz besonders bevorzugte Aminosäure ist Arginin, insbesondere in freier Form, aber auch als Hydrochlo­ rid eingesetzt.
Sowohl die Oxidationsfarbstoffvorprodukte als auch die direktziehenden Farbstoffe und die Vorstufen naturanaloger Farbstoffe sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
Haarfärbemittel, insbesondere wenn die Ausfärbung oxidativ, sei es mit Luftsauerstoff oder anderen Oxidationsmitteln wie Wasserstoffperoxid, erfolgt, werden üblicherweise schwach sauer bis alkalisch, d. h. auf pH-Werte im Bereich von etwa 5 bis 11, eingestellt. Zu diesem Zweck enthalten die Färbemittel Alkalisierungsmittel, üblicherweise Alkali- oder Erdal­ kalihydroxide, Ammoniak oder organische Amine. Bevorzugte Alkalisierungsmittel sind Monoethanolamin, Monoisopropanolamin, 2-Amino-2-methyl-propanol, 2-Amino-2- methyl-1,3-propandiol, 2-Amino-2-ethyl-1,3-propandiol, 2-Amino-2-methylbutanol und Triethanolamin sowie Alkali- und Erdalkalimetallhydroxide. Insbesondere Monoethanol­ amin, Triethanolamin sowie 2-Amino-2-methyl-propanol und 2-Amino-2-methyl-1,3-pro­ pandiol sind im Rahmen dieser Gruppe bevorzugt. Auch die Verwendung von ω- Aminosäuren wie ω-Aminocapronsäure als Alkalisierungsmittel ist möglich.
Erfolgt die Ausbildung der eigentlichen Haarfarben im Rahmen eines oxidativen Pro­ zesses, so können übliche Oxidationsmittel, wie insbesondere Wasserstoffperoxid oder dessen Anlagerungsprodukte an Harnstoff, Melamin oder Natriumborat verwendet werden. Die Oxidation mit Luftsauerstoff als einzigem Oxidationsmittel kann allerdings bevorzugt sein. Weiterhin ist es möglich, die Oxidation mit Hilfe von Enzymen durchzuführen, wobei die Enzyme sowohl zur Erzeugung von oxidierenden Per-Verbindungen eingesetzt werden als auch zur Verstärkung der Wirkung einer geringen Menge vorhandener Oxidations­ mittel, oder auch Enzyme verwendet werden, die Elektronen aus geeigneten Entwickler­ komponenten (Reduktionsmittel) auf Luftsauerstoff übertragen. Bevorzugt sind dabei Oxi­ dasen wie Tyrosinase, Ascorbatoxidase und Laccase aber auch Glucoseoxidase, Uricase oder Pyruvatoxidase. Weiterhin sei das Vorgehen genannt, die Wirkung geringer Mengen (z. B. 1% und weniger, bezogen auf das gesamte Mittel) Wasserstoffperoxid durch Peroxi­ dasen zu verstärken.
Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH-Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Be­ reich zwischen 15 und 40°C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfär­ bemittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit ei­ nem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, ver­ wendet wurde.
Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorpro­ dukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufge­ bracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann - gegebenenfalls nach einer Zwischenspülung - die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und gewünschtenfalls nachsham­ pooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorhe­ rige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH-Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH-Wert von 7 bis 10 aufweist. Bei der anschließenden beschleu­ nigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösun­ gen als Oxidationsmittel bevorzugt sein.
Weiterhin kann die Ausbildung der Färbung dadurch unterstützt und gesteigert werden, daß dem Mittel bestimmte Metallionen zugesetzt werden. Solche Metallionen sind beispiels­ weise Zn2+, Cu2+, Fe2+, Fe3+, Mn2+, Mn4+, Li+, Mg2+, Ca2+ und Al3+. Besonders geeignet sind dabei Zn2+, Cu2+ und Mn2+. Die Metallionen können prinzipiell in der Form eines belie­ bigen, physiologisch verträglichen Salzes eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflußt werden.
In einer weiteren bevorzugten Ausführungsform der Erfindung kann die Wirkung des er­ findungsgemäßen Wirkstoffes (A) durch Fettstoffe (D) weiter gesteigert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.
Als Fettsäuren (D1) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6-30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10-22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearin­ säuren, wie die Handelsprodukte Emersol® 871 und Emersol® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor® IP 95, sowie alle weiteren unter den Handelsbezeich­ nungen Edenor® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearin­ säure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxi­ dation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von un­ gesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäure­ schnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.
Die Einsatzmenge beträgt dabei 0,1-15 Gew.-%, bezogen auf das gesamte Mittel. Bevor­ zugt beträgt die Menge 0,5-10 Gew.-%, wobei ganz besonders vorteilhaft Mengen von 1-5 Gew.-% sein können.
Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach unge­ sättigte, verzweigte oder unverzweigte Fettalkohole mit C6-C30-, bevorzugt C10-C22- und ganz besonders bevorzugt C12-C22-Kohlenstoffatomen. Einsetzbar im Sinne der Erfin­ dung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkolhol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linclenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften, und nicht limitieren­ den Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalko­ holen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol®, z. B. Stenol® 1618 oder Lanette®, z. B. Lanette® O oder Lorol®, z. B. Lorol® C8, Lorol® C14, Lorol® C18, Lorol® C8-18, HD-Ocenol®, Crodacol®, z. B. Crodacol® C5, Novol®, Eutanol® G, Guerbitol® 16, Guerbitol® 18, Guerbitol® 20, Isofol® 12, Isofol® 16, Isofol® 24, Isofol® 36, Isocarb® 12, Isocarb® 16 oder Isocarb® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß auch Wollwachsalkohole, wie sie beispielsweise unter den Be­ zeichnungen Corona®, White Swan®, Coronet® oder Fluilan® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1-30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1-20 Gew.-% eingesetzt.
Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind bei­ spielsweise erhältlich über die Fa. Kahl & Co., Trittau.
Die Einsatzmenge beträgt 0,1-50 Gew.-% bezogen auf das gesamte Mittel, bevorzugt 0,1-20 Gew.-% und besonders bevorzugt 0,1-15 Gew.-% bezogen auf das gesamte Mittel.
Zu den natürlichen und synthetischen kosmetischen Ölkörpern (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffes steigern können, sind beispielsweise zu zählen:
  • - pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.
  • - flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-isopentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhält­ lichen Verbindungen 1,3-Di-(2-ethylhexyl)-cyclohexan (Cetiol® S) und Di-n-octyl­ ether (Cetiol® OE) können bevorzugt sein.
  • - Esteröle. Unter Esterölen sind zu verstehen die Ester von C6-C30-Fettsäuren mit C2-C30-Fett­ alkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecan­ säure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Öl­ säure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylal­ kohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), Isononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintri­ caprylat, Kokosfettalkohol-caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäure­ hexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® mm), Cetearyl Isononanoate (Cetiol® SN), Ölsäuredecylester (Cetiol® V).
  • - Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol­ di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylgly­ koldicaprylat,
  • - symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettal­ koholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
  • - Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
  • - Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),
    in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m + n + q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevor­ zugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m + n + q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristin­ säure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.
Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfin­ dungsgemäß verwendeten Mitteln beträgt üblicherweise 0,1-30 Gew.-%, bezogen auf das gesamte Mittel, bevorzugt 0,1-20 Gew.-%, und insbesondere 0,1-15 Gew.-%.
Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5-75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5-35 Gew.-% sind erfindungsgemäß bevorzugt.
Ebenfalls als vorteilhaft hat sich die Kombination des Wirkstoffes (A) mit Tensiden (E) erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß verwendeten Mittel Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Sub­ stanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumen­ phasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden.
Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtio­ nische Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind. Weitergehende Definitionen und Eigenschaften von Tensiden finden sich in "H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH Ver­ lagsgesellschaft mbH. Weinheim, 1994". Die zuvor wiedergegebene Begriffsbestimmung findet sich ab S. 190 in dieser Druckschrift.
Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphit-Gruppe und eine lipophile Alkyl­ gruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Poly­ glykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Ka­ lium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,
  • - lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),
  • - Ethercarbonsäuren der Formel R-O-(CH2-CH2O)x-CH2-COOH, in der R eine lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 16 ist,
  • - Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,
  • - Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,
  • - Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,
  • - Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,
  • - lineare Alkansulfonate mit 8 bis 24 C-Atomen,
  • - lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,
  • - Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,
  • - Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH2-CH2O)x-OSO3H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = 0 oder 1 bis 12 ist,
  • - Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,
  • - sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
  • - Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbin­ dungen gemäß DE-A-39 26 344,
  • - Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,
  • - Alkyl- und/oder Alkenyletherphosphate der Formel (E1-I),
    in der R1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlen­ stoffatomen, R2 für Wasserstoff, einen Rest (CH2CH2O)nR1 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR3R4R5R6, mit R3 bis R6 unabhängig voneinander stehend für Wasserstoff oder einen C1 bis C4- Kohlenwasserstoffrest, steht,
  • - sulfatierte Fettsäurealkylenglykolester der Formel (E1-II)
    R7CO(AlkO)nSO3M (E1-II)
    in der R7CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH2CH2, CHCH3CH2 und/oder CH2CHCH3, n für Zahlen von 0,5 bis 5 und M für ein Kation steht, wie sie in der DE- OS 197 36 906.5 beschrieben sind,
  • - Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III)
    in der R8CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoff­ atomen, x, y und z in Summe für 0 oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonoglycerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonoglycerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (E1-III) einge­ setzt, in der R8CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, wie sie beispielsweise in der EP-B1 0 561 825, der EP-B1 0 561 999, der DE-A1 42 04 700 oder von A. K. Biswas et al. in J. Am.Oil.Chem.Soc. 37, 171 (1960) und F. U. Ahmed in J. Am.Oil.Chem.Soc. 67, 8 (1990) beschrieben worden sind,
  • - Amidethercarbonsäuren wie sie in der EP 0 690 044 beschrieben sind,
  • - Kondensationsprodukte aus C8-C30-Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten, welche dem Fachmann als Eiweissfettsäurekonden­ sate bekannt sind, wie beispielsweise die Lamepon®-Typen, Gluadin®-Typen, Hostapon® KCG oder die Amisoft®-Typen.
Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ether­ carbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolether­ gruppen im Molekül, Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C- Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen; Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.
Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeich­ net, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(-)- oder -SO3 (-)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoni­ umglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethyl­ glycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.
Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen ver­ standen, die außer einer C8-C24- Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkylimino­ dipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Al­ kylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C12-C18-Acyl­ sarcosin.
Nichtionische Tenside (E4) enthalten als hydrophile Ciruppe z. B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolether­ gruppe. Solche Verbindungen sind beispielsweise
  • - Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen­ oxid an lineare und verzweigte Fettalkohole mit 8 his 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
  • - mit einem Methyl- oder C2-C6-Alkylrest endgruppenverschlossene Anlagerungspro­ dukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol® LS, Dehydol® LT (Cognis) erhält­ lichen Typen,
  • - C12-C30-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,
  • - Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizi­ nusöl,
  • - Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen® HSP (Cognis) oder Sovermol-Typen (Cognis),
  • - alkoxilierte Triglyceride,
  • - alkoxilierte Fettsäurealkylester der Formel (E4-I)
    R1CO-(OCH2CHR2)wOR3 (E4-I)
    in der R1CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff oder Methyl, R3 für li­ neare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,
  • - Aminoxide,
  • - Hydroxymischether, wie sie beipielsweise in der DE-OS 197 38 866 beschrieben sind,
  • - Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäure­ ester wie beispielsweise die Polysorbate,
  • - Zuckerfettsäureester und Anlagerungsprodukte vcn Ethylenoxid an Zuckerfettsäure­ ester,
  • - Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine,
  • - Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II),
    R4O-[G]p (E4-II)
    in der R4 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhal­ ten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Über­ sichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm.Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen.
    Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Al­ kyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligogluco­ side. Die Indexzahl p in der allgemeinen Formel (E4-II) gibt den Oligomerisierungs­ grad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein be­ stimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die mei­ stens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyl­ oligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R4kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von techni­ schen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf tei der destillativen Auftrennung von technischem C8-C18-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R15 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohcl, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben be­ schrieben erhalten werden können. Bevorzugt sincL Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
  • - Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, ein nichtioni­ sches Tensid der Formel (E4-III),
    in der R5CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoff­ atomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N-alkylpolyhydroxy­ alkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkyl­ ester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschriften US 1,985,424, US 2,016,962 und US 2,703,798 sowie die Internationale Patentanmeldung WO 92106984 verwiesen. Eine Übersicht zu diesem Thema von H. Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988). Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von re­ duzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure- N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden:
    Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R8 für Wasserstoff oder eine Alkylgruppe steht und R7CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders be­ vorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die durch reduktive Ami­ nierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.
Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigen­ schaften werden ebenfalls erhalten, wenn sie als nichLionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.
Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Bevor­ zugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stea­ ryl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwendung so­ genannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit einer unge­ raden Anzahl von Kohlenstoffatomen in der Alkylkette.
Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1-20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5-15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5-7,5 Gew.-%.
Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkyl­ kettenlängen erhält.
Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsproduhte darstellen, können sowohl Pro­ dukte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalko­ hol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen wer­ den dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetailsalze von Ether­ carbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren ver­ wendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.
Die Tenside (E) werden in Mengen von 0,1-45 Gew.-%, bevorzugt 0,5-30 Gew.-% und ganz besonders bevorzugt von 0,5-25 Gew.-%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.
Erfindungsgemäß einsetzbar sind ebenfalls kationische Tenside (E5) vom Typ der quarter­ nären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quater­ näre Ammoniumverbindungen sind Ammoniumhalo genide, insbesondere Chloride und Bromide, wie Alkyltrimethylammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimetlrylammoniumchlorid, Stearyltrime­ thylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammonium­ chlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Ester­ funktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthal­ ten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Ester­ salzen von Fettsäuren mit 1,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxy­ ethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthe­ tischer Fettsäuren und Fettsäureschnitte mit Dialkylaininoaminen hergestellt. Eine erfin­ dungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Die kationischen Tenside (E5) sind in den erfindungsgemäß verwendeten Mitteln bevor­ zugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Men­ gen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.
In einer weiteren bevorzugten Ausführungsform kann die Wirkung des erfindungsgemäßen Wirkstoffes durch Emulgatoren (F) gesteigert werden. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, wel­ che die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabi­ lisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydro­ philen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W-Emul­ sionen und hydrophobe Emulgatoren bilden bevorzugt W/O-Emulsionen. Unter einer Emulsion ist eine tröpfchenfdrmige Verteilung (Dispersion) einer Flüssigkeit in einer ande­ ren Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasen­ grenzflächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweili­ gen äußeren Phase sowie der Feinteiligkeit der Emulsion. WeiterfUhrende Definitionen und Eigenschaften von Emulgatoren finden sich in "H.-D. Dörfler, Grenzflächen- und Kolloidchemie, VCH Verlagsgesellschaft mbH. Weinheim, 1994". Erfindungsgemäß ver­ wendbare Emulgatoren sind beispielsweise
  • - Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen­ oxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,
  • - C12-C22-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffatomen, insbesondere an Glycerin,
  • - Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäure­ ester, Fettsäurealkanolamide und Fettsäureglucamide,
  • - C8-C22-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei Oli­ gomerisierungsgrade von 1,1 bis 5, insbesondere 1,2 bis 2,0, und Glucose als Zucker­ komponente bevorzugt sind,
  • - Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Handel erhältliche Produkt Montanov® 68,
  • - Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Ri­ zinusöl,
  • - Partialester von Polyolen mit 3-6 Kohlenstoffatorrien mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,
  • - Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lancsterin. Beispiele geeigneter Phyto­ sterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.
  • - Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z. B. als Lecithine bzw. Phospahtidylcholine aus z. B. Eidotter oder Pflanzensamen (z. B. Soja­ bohnen) gewonnen werden, verstanden.
  • - Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,
  • - Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hy­ droxystearat (Handelsprodukt Dehymuls® PGPH),
  • - Lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn-Salze.
Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1-25 Gew.-%, insbesondere 0,5-15 Gew.-%, bezogen auf das gesamte Mittel.
Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtio­ nogenen Emulgator mit einem HLB-Wert von 8 bis 18, gemäß den im Römpp-Lexikon Chemie (Hrg. J. Falbe, M. Regitz), 10. Auflage, Georg Thieme Verlag Stuttgart, New York, (1997), Seite 1764, aufgeführten Definitionen enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10-15 können erfindungsgemäß besonders bevorzugt sein.
Als weiterhin vorteilhaft hat es sich gezeigt, daß Polymere (G) die Wirkung des erfin­ dungsgemäßen Wirkstoffes (A) unterstützen können. In einer bevorzugten Ausführungs­ form werden den erfindungsgemäß verwendeten Mitteln daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirk­ sam erwiesen haben.
Unter kationischen Polymeren (G1) sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" katio­ nisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammonium­ gruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als beson­ ders geeignet erwiesen.
Homopolymere der allgemeinen Formel (G1-I),
in der R1 = -H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus C1-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1, 2, 3 oder 4, n eine natürliche Zahl und X ein physiologisch verträgliches organisches oder anorganisches Anion ist, so­ wie Copolymere, bestehend im wesentlichen aus den in Formel (G1-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß be­ vorzugt, für die mindestens eine der folgenden Bedingungen gilt:
R1 steht für eine Methylgruppe
R2, R3 und R4 stehen für Methylgruppen
m hat den Wert 2.
Als physiologisch verträgliches Gegenionen X kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlo­ rid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquatemium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylen­ bisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymer­ dispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50% Polymeranteil, wei­ tere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral Oil) und Tridecyl-polyoxypro­ pylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50% Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylengly­ kols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Gly­ col Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI- Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (G1-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylarnid, Acrylsäure-C1-4-alkylester und Methacrylsäure-C1-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das ver­ netzte Acrylamid-Methacryloyloxyethyltrimethylamrrioniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20 : 80 vorlie­ gen, sind im Handel als ca. 50%ige nichtwäßrige Pclymerdispersion unter der Bezeich­ nung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise
  • - quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Po­ lymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR® 400 sind bevorzugte quaternierte Cellulose-Derivate,
  • - kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,
  • - kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50,
  • - kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosme­ dia® Guar und Jaguar® vertriebenen Produkte,
  • - Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamo­ dimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifi­ ziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquatemäre Polydi methylsiloxane, Quaternium-80),
  • - polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Ami­ den von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat® 100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat® 550 (Dimethyldiallylammoni­ umchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
  • - Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylamino­ alkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat® 734 und Gafquat® 755 im Handel erhältlich,
  • - Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Be­ zeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden,
  • - quaternierter Polyvinylalkohol,
  • - sowie die unter den Bezeichnungen Polyquaterniurn 2, Polyquaternium 17, Polyquater­ nium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnun­ gen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP), Gafquat® ASCP 1011, Gafquat® HS 110, Luviquat® 8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäße kationische Polymere sind die sogenannten "temporär kationi­ schen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei be­ stimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevor­ zugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer® JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Deri­ vate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquaternium-37.
Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus bei­ den Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kalionischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25 000 Dalton, be­ vorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydroly­ saten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quarternären Ammonium­ salzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)- ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydroly­ sate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI-Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Haadel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Silk, Cocodimonium Hydioxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Cocodimonium Hydroxypro­ pyl Silk Amino Acids, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypro­ pyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltri­ monium Hydrolyzed Collagen, Hydroxypropyltrimoni um Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxyproypltrimonium Hydrolyzed Silk, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyl­ trimonium Hydrolyzed Wheat Protein, Hydroxypropyttrimonium Hydrolyzed Wheat Pro­ tein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Silk, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxy­ propyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Silk, Steardimonium Hydroxypropyl Hydro­ lyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quatemium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Silk, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Ganz besonders bevorzugt sind die kationischen Pnteinhydrolysate und -derivate auf pflanzlicher Basis.
Bei den anionischen Polymeren (G2), welche die Wirkung des erfindungsgemäßen Wirk­ stoffes (A) unterstützen können, handelt es sich um anionische Polymere, welche Car­ boxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2-Acrylamido-2- methylpropansulfonsäure und Acrylsäure.
Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als allei­ niges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.
Besonders bevorzugt ist das Homopolyrner der 2-Acrylamido-2-methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik® 11-80 im Handel erhältlich ist.
Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Substanzen verwie­ sen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäure­ ester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.
Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbe­ sondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein be­ sonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammo­ nium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernet­ zungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyl­ oxyethan, Allylsucrose, Allylpentaerythrit und Methylenbisacrylamid zum Einsatz kom­ men. Ein solches Polymer ist in dem Handelsprodukt Sepigel® 305 der Firma SEPPIC ent­ halten. Die Verwendung dieses Compounds, das neben der Polymerkomponente eine Kohlenwasserstoffmischung (C13-C14-Isoparaffin) und einen nichtionogenen Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vor­ teilhaft erwiesen.
Auch die unter der Bezeichnung Simulgel® 600 als Compound mit Isohexadecan und Poly­ sorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfin­ dungsgemäß besonders wirksam erwiesen.
Ebenfalls bevorzugte anionische Homopolymere sind tnvernetzte und vernetzte Polyacryl­ säuren. Dabei können Allylether von Pentaerythrit, von Sucrose und von Propylen bevor­ zugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol® im Handel erhältlich.
Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Ver­ netzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1,9-Decadiene vernetztes Mal­ einsäure-Methylvinylether-Copolymer ist unter der Bezeichnungg Stabileze® QM im Han­ del erhältlich.
Weiterhin können als Polymere zur Steigerung der Wirkung des erfindungsgemäßen Wirk­ stoffes (A) amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befä­ higt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3 --Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten.
Ein Beispiel für ein erfindungsgemäß einsetzbares Anphopolymer ist das unter der Be­ zeichnung Amphomer® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylamino­ ethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Mono­ meren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.
Weitere erfindungsgemäß einsetzbare amphotere Polymere sind die in der britischen Offenlegungsschrift 2 104 091, der europäischen Offenlegungsschrift 47 714, der euro­ päischen Offenlegungsschrift 217 274, der europäischen Offenlegungsschrift 283 817 und der deutschen Offenlegungsschrift 28 17 369 genannten Verbindungen.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesent­ lichen zusammensetzen aus
  • a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (G3-I),
    R1-CH=CR2-CO-Z-(CnH2n)-N(+)R3R4R5 A(-) (G3-I)
    in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3, R4 und R5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoff­ atomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und das Anion einer organischen oder anorganischen Säure ist, und
  • b) monomeren Carbonsäuren der allgemeinen Formel (G3-II),
    R6-CH=CR7-COOH (G3-II)
    in denen R6 und R7 unabhängig voneinander WasserstoFf oder Methylgruppen sind.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihvdroxid, erhalten wird, erfindungs­ gemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug ge­ nommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R3, R4 und R5 Methylgruppen sind, Z eine NH- Gruppe und A(-) ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamido­ propyl-trimethylammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.
Geeignete nichtionogene Polymere sind beispielsweise:
  • - Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Waren­ zeichen Luviskol® (BASF) verrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nicht­ ionische Polymere.
  • - Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methyl­ hydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
  • - Schellack
  • - Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden.
  • - Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüch­ tige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normal­ druck oberhalb von 200°C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise Poly­ phenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.
  • - Glycosidisch substituierte Silicone gemäß der EP 0612759 B1.
Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbe­ sondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.
Die Polymere (G) sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.
Weiterhin können in den erfindungsgemäß verwendeten Zubereitungen Proteinhydrolysate und/oder Aminosäuren und deren Derivate (H) enthalten sein. Proteinhydrolysate sind Pro­ duktgemische, die durch sauer, basisch oder enztmatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden er­ findungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfin­ dungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl-L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L- Methionin-S-Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch β- Aminosäuren und deren Derivate wie β-Alanin, Anthranilsäure oder Hippursäure einge­ setzt werden. Das Molgewicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200 000, bevorzugt beträgt das Molgewicht 75 bis 50 000 und ganz besonders bevorzugt 75 bis 20 000 Dalton.
Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex) und Kerasol® (Croda) vertrieben.
Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Solche Produkte sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Dia­ malt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda) oder Crotein® (Croda) vertrieben.
Die Proteinhydrolysate oder deren Derivate sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, ent­ halten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.
Weiterhin kann in einer bevorzugten Ausführungsform der Erfindung die Wirkung der Wirkstoffe (A) durch UV-Filter (I) gesteigert werden. Die erfindungsgemäß zu verwen­ denden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigen­ schaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbe­ reich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA (315-400 nm)-, im UVB (280-315 nm)- oder im UVC (< 280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäwreestern, Zimtsäureestern, Salicylsäureestern, Benzimidazolen md o-Aminobenzoesäureestern.
Beispiele für erfindungsgemäß verwendbare UV-Filter sind 4-Aminobenzoesäure, N,N,N- Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyl­ salicylat (Homosalate), 2-Hydroxy-4-methoxy-benzopkxenon (Benzophenone-3; Uvinul® M 40, Uvasorb® MET, Neo Heliopan® BB, Eusolex® 4360), 2-Phenylbenzimidazol-5-sulfon­ säure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol® HS; Neo Heliopan® Hydro), 3,3'-(1,4-Phenylendimethylen)-bis(7,7- dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulforsäure) und deren Salze, 1-(4-tert.- Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion (Butyl methoxydibenzoylinethane; Parsol® 1789, Eusolex® 9020), α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul® P 25), 4-Di­ methylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb® DMO, Escalol® 507, Eusolex® 6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol® 587, Neo Heliopan® OS, Uvinul® O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p- Methoxycinnamate; Neo Heliopan® E 1000), 4-hiethoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol® MCX, Escalol® 557., Neo Heliopan® AV), 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul® MS 40; Uvasorb® S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzylidene camphor; Parsol® 5000, Eusolex® 6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4-Isopro­ pylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-Imi­ dazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3- ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxytienzophenon (Benzophenone-1; Uvasorb® 20 H, Uvinul® 400), 1,1'-Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex® OCR, Neo Heliopan® Type 303, Uvinul® N 539 SG), o-Aminoben­ zoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan'MA), 2,2',4,4'-Tetrahy­ droxybenzophenon (Benzophenone-2; Uvinul® D-50), 2,2'-Dihydroxy-4,4'-dimethoxy­ benzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natrium­ sulfonat und 2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4-Amino­ benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5- Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimida­ zol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(1,4-Phe­ nylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dion, α-(2- Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoe­ säure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethyl­ hexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2- Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methyl­ benzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-Isopropylbenzylsalicylat, 2,4,6-Tri­ anilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-(midazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-H ydroxy-4-methoxybenzophenon, 2- Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan- 1,3-dion, 4-Methoxyzimtsäure-2- ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.
Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptions­ maximum oberhalb von 15 000, insbesondere oberhalb von 20 000, liegt.
Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wir­ kung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20°C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1, insbesondere zu mindestens 1 Gew.-% löslich sein. Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.
Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
Diese UV-Filter weisen die allgemeine Struktur U-Q auf.
Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben ge­ nannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Amino­ funktion, ersetzt wird.
Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise
  • - substituierte Benzophenone,
  • - p-Aminobenzoesäureester,
  • - Diphenylacrylsäureester,
  • - Zimtsäureester,
  • - Salicylsäureester,
  • - Benzimidazole und
  • - o-Aminobenzoesäureester.
Strukturteile U, die sich vom Zimtsäureamid oder vam N,N-Dimethylamino-benzoesäu­ reamid ableiten, sind erfindungsgemäß bevorzugt.
Die Strukturteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB (280-315 nm)- oder im UVC (< 280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB- Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevor­ zugt.
Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20 000, liegt.
Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammonium­ gruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv gela­ denen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert.
Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH2)x-N+R1R2R3 X-, in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für C1-4- Alkylgruppen, R3 steht für eine C1-22-Alkylgruppe oder eine Benzylgruppe und X für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevor­ zugt für die die Zahl 3, R1 und R2 jeweils für eine Methylgruppe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlen­ wasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halo­ genide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhält­ lichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (Incroquat® UV- 283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kom­ bination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombina­ tion mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Men­ gen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.-% sind bevorzugt.
Die Wirkung des erfindungsgemäßen Wirkstoffes (A) kann weiterhin durch eine 2- Pyrrolidinon-5-carbonsäure und deren Derivate (J) gesteigert werden. Ein weiterer Gegen­ stand der Erfindung ist daher die Verwendung des Wirkstoffes in Kombination mit Deri­ vaten der 2-Pyrrolidinon-5-carbonsäure. Bevorzugt sini die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen 0,05 bis 10 Gew.-%, be­ zogen auf das gesamte Mi 44688 00070 552 001000280000000200012000285914457700040 0002010061420 00004 44569ttel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.-%.
Ebenfalls als vorteilhaft hat sich die Kombination des Wirkstoffes (A) mit Vitaminen, Pro­ vitaminen und Vitaminvorstufen sowie deren Derivaten (K) erwiesen.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevor­ zugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden.
Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das β-Garotin ist das Provitamin des Re­ tinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A- Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäß verwendeten Zuberei­ tungen enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.
Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
  • - Vitamin B1 (Thiamin)
  • - Vitamin B2 (Riboflavin)
  • - Vitamin B3 Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfiniungsgemäß bevorzugt ist das Nico­ tinsäureamid, das in den erfindungsgemäß verwendetenen Mitteln bevorzugt in Men­ gen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.
  • - Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß ein­ setzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbin­ dungen des Vitamin B5-Typs sind in den erfindungsgemäß verwendeten Mitteln bevor­ zugt in Mengen von 0,05-10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1-5 Gew.-% sind besonders bevorzugt.
  • - Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).
Vitamin C (Ascorbinsäure). Vitamin C wird in den erl:indungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann be­ vorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.
Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6aR)-2-Oxohexa­ hydrothienol[3,4-d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,0001 bis 1,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-% enthalten.
Bevorzugt enthalten die erfindungsgemäß verwendeten Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, E und H.
Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Schließlich läßt sich die Wirkung des Wirkstoffes (A) auch durch den kombinierten Ein­ satz mit Pflanzenextrakten (L) steigern.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhalts­ stoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Linden­ blüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmann, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.
Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmann, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Al­ kohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei nie­ dere Alkohole wie Ethanol und Isopropanol, insbesoncLere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleinges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1 : 10 bis 10 : 1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2-80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Ge­ winnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Zusätzlich kann es sich als vorteilhaft erweisen, wenn neben dem erfindungsgemäßen Wirkstoff (A) Penetrationshilfsstoffe und/oder Quellmittel (M) enthalten sind. Hierzu sind beispielsweise zu zählen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und Dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Glycerin, Glykol und Glykolether, Propylenglykol und Propylenglykolether, beispielsweise Propylenglykolmonoethylether, Carbonate, Hydro­ gencarbonate, Diole und Triole, und insbesondere 1,2-Diole und 1,3-Diole wie beispiels­ weise 1,2-Propandiol, 1,2-Pentandiol, 1,2-Hexandiol, 1,2-Dodecandiol, 1,3-Propandiol, 1,6-Hexandiol, 1,5-Pentandiol, 1,4-Butandiol.
Vorteilhaft im Sinne der Erfindung können zusätzlich kurzkettige Carbonsäuren (N) die Restrukturierung des Wirkstoffes (A) unterstützen. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C- Atomen in der Kette.
Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ring­ gerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen C1-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-, C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8- Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind C1-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α- Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Amino­ gruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbon­ säurederivate die Phosphon- und Phosphatester.
Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essig­ säure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalin­ säure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Croton­ säure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoyl­ säure, Hydratropasäure, Atropasäure, Zimtsäure:, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'-Dicyano-6,6'-binicotinsäure, 8-Carbamoyloctansäure, 1,2,4- Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1,2,4,6,7-Napthalinpentaessigsäure, Malon­ aldehydsäure, 4-Hydroxy-phthalamidsäure, 1-Pyrazolcarbonsäure, Gallussäure oder Pro­ pantricarbonsäure, eine Dicarbohsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-I),
in der Z steht für eine lineare oder verzweigte Alkyt- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicar­ bonsäuren gemäß Formel (N-I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt.
Ein Herstellungsverfahren ist beispielsweise der US-Patentschrift 3,753,968 zu entnehmen. Die deutsche Patentschrift 22 50 055 offenbart die Verwendung dieser Dicarbonsäuren in flüssigen Seifenmassen. Aus der deutschen Offenlegungsschrift 28 33 291 sind deodo­ rierende Mittel bekannt, die Zink- oder Magnesiumsalze dieser Dicarbonsäuren enthalten. Schließlich sind aus der deutschen Offenlegungsschrift 35 03 618 Mittel zum Waschen und Spülen der Haare bekannt, bei denen durch Zusatz dieser Dicarbonsäuren eine merklich verbesserte haarkosmetische Wirkung der im Mittel enthaltenen wasserlöslichen ionischen Polymeren erhalten wird. Schließlich sind aus der deutschen Offenlegungsschrift 197 54 053 Mittel zur Haarbehandlung bekannt, welche pflegende Effekte aufweisen.
Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehr­ fach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z. B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungs­ gemäß ebenso wie die reinen Verbindungen eingesetzt werden.
Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppel­ bildung des Cyclohexenrings gebildet werden.
Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-1-octansäure. Solche Verbin­ dungen sind kommerziell unter den Bezeichnungen Westvaco Diacid® 1550 und Westvaco Diacid® 1595 (Hersteller: Westvaco) erhältlich.
Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoni­ umsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Tri­ methyl-, -ethyl- und -hydroxyethyl-Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Amino­ säuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren ein­ gesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbon­ säure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, aus­ zuwählen.
Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren gemeinsam mit dem Wirkstoff (A) einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbon­ säuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grund­ sätzlich geeigneten Hydroxycarbonsäureester sind Ester der β-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuron­ säure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8-22 C-Atomen, also z. B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z. B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
Der erfindungsgemäße Wirkstoff (A) kann prinzipiell direkt dem Färbemittel, dem Well­ mittel oder der Fixierung zugegeben werden. Das Auftringen des restrukturierenden Wirk­ stoffes auf die keratinische Faser kann aber auch in einem getrennten Schritt, entweder vor oder im Anschluß an den eigentlichen Färbe- oder Wellvorgang erfolgen. Auch getrennte Behandlungen, gegebenenfalls auch Tage oder Wocher vor oder nach der Haarbehandlung, beispielsweise durch Färben oder Wellen, werden von der erfindungsgemäßen Lehre um­ faßt. Bevorzugt kann jedoch die Anwendung des erfindungsgemäßen Wirkstoffes nach der entsprechenden Haarbehandlung wie Färben oder Wellen insbesondere in den entsprechen­ den Haarbehandlungsmitteln erfolgen.
Der Begriff Färbevorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei de­ nen auf das, gegebenenfalls angefeuchtete, Haar ein Fzrbemittel aufgebracht wird und die­ ses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird oder ganz auf dem Haar belassen wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. K.H. Schrader, Grundlagen und Rezepturen der Kos­ metika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das ent­ sprechende Wissen des Fachmannes wiedergeben.
Der Begriff Wellvorgang umfaßt dabei alle dem Fachmann bekannten Verfahren, bei denen auf das, gegebenenfalls angefeuchtete, und auf Wickler gedrehte Haar ein Welimittel auf­ gebracht wird und dieses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird, anschließend auf das Haar eine Dauerwellfixierung aufgebracht wird und diese für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. K. H. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben.
Hinsichtlich der Art, gemäß welcher der erfindungsgemäße Wirkstoff auf die keratinische Faser, insbesondere das menschliche Haar, aufgebracht wird, bestehen keine prinzipiellen Einschränkungen. Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, O/W-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emul­ sionen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Der pH-Wert dieser Zu­ bereitungen kann prinzipiell bei Werten von 2-11 liegen. Er liegt bevorzugt zwischen 5 und 11, wobei Werte von 6 bis 10 besonders bevorzugt sind. Zur Einstellung dieses pH- Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base ver­ wendet werden. Im Rahmen der Erfindung ist die Verwendung des erfindungsgemäßen Wirkstoffes (A) auch zur Einstellung des pH-Wertes besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'-Tetrakis-(2-hydroxypropyl)-ethylendiamin.
Auf dem Haar verbleibende Zubereitungen haben sich als wirksam erwiesen und können daher bevorzugte Ausführungsformen der erfindungsgemäßen Lehre darstellen. Unter auf dem Haar verbleibend werden erfindungsgemäß solche Zubereitungen verstanden, die nicht im Rahmen der Behandlung nach einem Zeitraum von wenigen Sekunden bis zu einer Stunde mit Hilfe von Wasser oder einer wäßrigerL Lösung wieder aus dem Haar aus­ gespült werden. Vielmehr verbleiben die Zubereitungen bis zur nächsten Haarwäsche, d. h. in der Regel mehr als 12 Stunden, auf dem Haar.
Gemäß einer zweiten bevorzugten Ausführungsform werden diese Zubereitungen als Haar­ kur oder Haar-Conditioner formuliert. Die erfindungsgemäßen Zubereitungen gemäß dieser Ausführungsform können nach Ablauf dieser Einwirkzeit mit Wasser oder einem zumin­ dest überwiegend wasserhaltigen Mittel ausgespült werden; sie können jedoch, wie oben ausgeführt, auf dem Haar belassen werden. Dabei kann es bevorzugt sein, die erfindungs­ gemäße Zubereitung vor der Anwendung eines reinigenden Mittels, eines Wellmittels oder anderen Haarbehandlungsmitteln auf das Haar aufzubringen. In diesem Falle dient die er­ findungsgemäße Zubereitung als Strukturschutz für die nachfolgenden Anwendungen.
Gemäß weiteren bevorzugten Ausführungsformen kann es sich bei den erfindungsgemäßen Mitteln aber beispielsweise auch um reinigende Mittel wie Shampoos, pflegende Mittel wie Spülungen, festigende Mittel wie Haarfestiger, Schaumfestiger, Styling Gels und Fön­ wellen, dauerhafte Verformungsmittel wie Dauerwell- und Fixiermittel sowie insbesondere im Rahmen eines Dauerwellverfahrens oder Färbeverfahrens eingesetzte Vorbehandlungs­ mittel oder Nachspülungen handeln.
Neben dem erfindungsgemäß zwingend erforderlichen restrukturierenden Wirkstoff und den weiteren, oben genannten bevorzugten Komponenten können diese Zubereitungen prinzipiell alle weiteren, dem Fachmann für solche kosmetischen Mittel bekannten Kom­ ponenten enthalten.
Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise
  • - nichtionische Polymere wie beispielsweise Vinylpyrrolidonlvinylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,
  • - Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi ara­ bicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellu­ lose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellu­ lose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,
  • - haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline, sowie Silikonöle,
  • - Parfümöle, Dimethylisosorbid und Cyclodextrine,
  • - Lösungsmittel und -vermittler wie Ethanol, Isoprcpanol, Ethylenglykol, Propylengly­ kol, Glycerin und Diethylenglykol,
  • - symmetrische und unsymmetrische, lineare und verzweigte Dialkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether und Di-n­ dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n- Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tertbutylether, Di-iso­ pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether,
  • - Fettalkohole, insbesondere lineare und/oder gesättigte Fettalkohole mit 8 bis 30 C- Atomen,
  • - Monoester von C8- bis C30-Fettsäuren mit Alkoholen mit 6 bis 24 C-Atomen,
  • - faserstrukturverbessernde Wirkstoffe, insbesondere Mono-, Di- und Oligosaccharide, wie beispielsweise Glucose, Galactose, Fructose, Fruchtzucker und Lactose,
  • - konditionierende Wirkstoffe wie Paraffinöle, pflanzliche Öle, z. B. Sonnenblumenöl, Orangenöl, Mandelöl, Weizenkeimöl und Pfirsichkernöl sowie
  • - Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline,
  • - quatemierte Amine wie Methyl-1-alkylamidoethyl-2-alkylimidazolinium-methosulfat,
  • - Entschäumer wie Silikone,
  • - Farbstoffe zum Anfärben des Mittels,
  • - Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol,
  • - Wirkstoffe wie Allantoin und Bisabolol,
  • - Cholesterin,
  • - Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,
  • - Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine,
  • - Fettsäurealkanolamide,
  • - Komplexbildner wie EDTA, NTA, β-Alanindiessigsäure und Phosphonsäuren,
  • - Quell- und Penetrationsstoffe wie primäre, sekundäre und tertiäre Phosphate,
  • - Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere
  • - Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat,
  • - Pigmente,
  • - Reduktionsmittel wie z. B. Thioglykolsäure und deren Derivate, Thiomilchsäure, Cy­ steamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,
  • - Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft,
  • - Antioxidantien.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Kom­ ponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. die oben genannte Monographie von K.H. Schrader verwiesen.
Ein zweiter Gegenstand der Erfindung sind Mittel zur Restrukturierung von Fasern, insbe­ sondere keratinischer Fasern, die eine Kombination aus
  • a) dem Wirkstoff (A) und
  • b) einem Polymer (G) enthalten.
Bezüglich weiterer Komponenten dieser Mittel wird auf das oben gesagte verwiesen.
Ein dritter Gegenstand der Erfindung ist ein Verfahren zur Restrukturierung von Fasern, insbesondere keratinischer Fasern, bei dem ein Mittel mit dem erfindungsgemäßen Wirk­ stoff, wie in einem der Ansprüche 1 bis 9 verwendet auf die Fasern aufgetragen wird, wo­ bei das Mittel gewünschtenfalls nach einer Einwirkzeit von 1 bis 45 Minuten wieder aus­ gespült wird.
Beispiele
Alle Mengenangaben sind, soweit nicht anders vermerkt, Gewichtsteile.
1. Wirkungsnachweis a) Vorbehandlung
Strähnen der Fa. Alkinco (0,5 g, Code 6634) wurden einer herkömmlichen Dauerwellbe­ handlungen mit dem Handelsprodukt Poly Lock-Nonnile Dauerwelle unterzogen. Im Rahmen dieser Dauerwellbehandlung wurden die Fasern in einem ersten Schritt für 40 Minuten bei Raumtemperatur der Reduktionslösung (enthaltend 7,9 Gew.-% Thioglykol­ säure) ausgesetzt, mit reinem Wasser gespült und anschießend bei Raumtemperatur für 10 Minuten fixiert (Oxidationslösung, enthaltend 2,6 Gew.-% Wasserstoffperoxid). Nach der oxidativen Behandlung wurden die Fasern gespült und getrocknet.
b) Nachbehandlung
Die Strähnen wurden jeweils bei einer Temperatur von 23°C 10 Minuten in eine 1%ige wäßrige Lösung der jeweiligen Wirkstoffe bei einem pH-Wert von 3, welcher mit Natronlauge oder Salzsäure eingestellt wurde, getaucht. Anschließend wurde jede Haar­ strähne 1 Minute mit klarem Wasser gespült, getrocknet und 16 h ruhen gelassen.
c) Nachweis der haarstrukturierenden Wirkung mittels HP-DSC
Mittels einer DSC-Analyse (Perkin Elmer DSC-7) wurden die folgenden in Tabelle 1 dar­ gestellten Schmelzpunkte ermittelt. Eine genaue Beschreibung der Methode findet sich beispielsweise in der DE 196 17 395 A1.
Anwendungsbeispiele 1. Haarspülung
Eumulgin® B21 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Lamesoft® PO 654 0,5
Dehyquart® A-CA2 2,0
Salcare® SC 965 1,0
Citronensäure 0,4
Gluadin® WQ6 2,0
Pyridoxin 1,0
D-Glucose 0,8
D-Glucose-6-phosphat 0,2
Weinsäure 0,7
Phenonip®3 0,8
Wasser ad 100,0
1. Cetylstearylalkohol + 20 EO (INCI-Bezeichnung: Ceteareth 20) (COGNIS)@ 2. Trimethylhexadecylammoniumchlorid ca. 25% Aktivsubstanz (INCI-Bezeichnung: Cetrimonium Chloride) (COGNIS)@ 3. Hydroxybenzoesäuremethylester-Hydroxybenzoesäureethylester-Hydroxybenzoesäurepropylester-Hydroxybenzoesäurebutylester-Phenoxvethanol-Gemisch (ca. 28% Aktivsubstanz; INCI-Bezeichnung: Phenoxyethanol, Methylparaben, Ethylparaben, Propylparaben, Butylparaben) (NIPA)@ 4. Gemisch aus Alkylpolyglycosid und Fettsäuremonoglycerid (INCI-Bezeichnung: Coco-Glucoside (and) Glyceryl Oleate)@ 5. N,N,N-Trimethyl-2[(methyl-1-oxo-2-propenyl)oxy]-Ethanaminiumchlorid-Homopolymer (50% Aktivsubstanz; INCI-Bezeichnung: Polyquaternium-37 (and) Propylenglycol Dicaprilate Dicaprate (and) PPG-1 Trideceth-6) (ALLIED COLLOIDS)@ 6. Kationisiertes Weizenproteinhydrolysat ca. 31% Aktivsubstanz (INCI-Bezeichnung: Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein) (COGNIS)
2. Haarspülung
Eumulgin® B2 0,3
Cetyl/Stearylalkohol 3,3
Isopropylmyristat 0,5
Paraffinöl perliquidum 15 cSt. DAB 9 0,3
Dehyquart® L 807 0,4
Lamesoft® PO 65 1,5
Cosmedia Guar® C 2618 1,5
Promois® Milk-CAQ9 3,0
Citronensäure 0,4
D-Erythrose 0,5
Phenonip® 0,8
Wasser ad 100,0
7. Bis(cocoylethyl)-hydroxyethyl-methyl-ammonium-methosulfat (ca. 76% Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Dicocoylethyl Hydroxyethylmonium Methosulfat, Propylene Glycol) (COGNIS)@ 8. Guarhydroxypropyltrimethylammonium Chlorid; INCI-Bezeichnung: Guar Hydroxypropyl Trimonium Chloride (COGNIS)@ 9. INCI-Bezeichnung: Cocodimonium Hydroxypropyl. Hydrolyzed Casein (SEIWA KASEI)
3. Haarkur
Dehyquart® F7510 4,0
Cetyl/Stearylalkohol 4,0
Paraffinöl perliquidum 15 cSt DAB 9 1,5
Dehyquart® A-CA 4,0
Lamesoft® PO 65 1,0
Salcare® SC 96 1,5
Glucosaminhydrochlorid 2,5
Glyoxylsäure 0,5
Amisafe-LMA-60®11 1,0
Gluadin® W 2012 3,0
Germall® 11513 1,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100,0
10. Fettalkohole-Methyltriethanolammoniummethylsulfatdialkylester-Gemisch (INCI-Bezeichnung: Distearoylethyl Hydroxyethylmonium Methosulfate, Cetearyl Alcohol) (COGNIS)@ 11. INCI-Bezeichnung Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl (Ajinomoto)@ 12. Weizenproteinhydrolysat (20% Aktivsubstanz in Wasser; INCI-Bezeichnung: Aqua (and) Hydrolized Wheat Protein (and) Sodium Benzoate (and) Phenoxyethanol (and) Methylparaben (and) Propylparaben) (COGNIS)@ 13. INCI-Bezeichnung: Imidazolidinyl Urea (Sutton Laboratories)
4. Haarkur
Dehyquart® L80 2,0
Cetyl/Stearylalkohol 6,0
Paraffinöl perliquidum 15 cSt DAB 9 2,0
Rewoquat® W 7514 2,0
Cosmedia Guar® C261 0,5
Lamesoft® PO 65 0,5
Sepigel® 30515 3,5
Honeyquat® 5016 1,0
Gluadin® WQ 2,5
Gluadin® W 20 3,0
Rhamnose 1,0
Citronensäure 0,15
Phenonip® 0,8
Wasser ad 100,0
14. 1-Methyl-2-nortalgalkyl-3-talgfettsäureamidoethylimidazolinium-methosulfat (ca. 75% Aktivsubstanz in Propylenglykol; INCI-Bezeichnung: Quatemium-27, Propylene Glycol) (WITCO)@ 15. Copolymer aus Acrylamid und 2-Acrylamido-2-meihylpropansulfonsäure (INCI-Bezeichnung: Polyacrylamide (and) C13-C14-Isoparaffin (and) Laureth-7) (SEPPIC)@ 16. INCI-Bezeichnung: Hydroxypropyltrimonium Honey (BROOKS)
5. Haarkur
Dehyquart® F75 0,3
Salcare® SC 96 5,0
Gluadin® WQ 1,5
Lamesoft® PO 65 0,5
Dow Corning® 200 Fluid, 5 cSt.17 1,5
Gafquat® 755N18 1,5
Sorbit 1,5
Biodocarb®19 0,02
Parfümöl 0,25
Wasser ad 100,0
17. Polydimethylsiloxan (INCI-Bezeichnung: Dimethicone) (DOW CORNING)@ 18. Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymer, mit Diethylsulfat quaterniert (19% Aktivsubstanz in Wasser; INCI-Bezeichnung: Polyquaternium-11) (GAF)@ 19. 3-Iod-2-propinyl-n-butylcarbamat (I1NCI-Bezeichnung: Iodopropynyl Butylcarbamate) (MILKER & GRÜNING)
6. Haarkur
Sepigel® 305 5,0
Dow Corning® Q2-522020 1,5
Promois® Milk Q21 3,0
Lamesoft® PO 65 0,5
Polymer P1 entsprechend DE 39 29 1730,6 0,6
Genamin® DSAC22 0,3
L-Arabitol 1,8
Phenonip® 0,8
Parfümöl 0,25
Wasser ad 100,0
20. Silicon-Glykol-Copolymer (INCI-Bezeichnung: Dimethicone Copolyol) (DOW CORNING)@ 21. INCI-Bezeichnung Hydroxypropyltrimonium Hydrolyzed Casein ca. 30% Aktivsubstanz (SEIWA KASEI)@ 22. Dimethyldistearylammoniumchlorid (INCI-Bezeichnung: Distearyldimonium Chloride) (CLARIANT)
7. Shampoo
Texapon® NSO23 40,0
Dehyton® G24 6,0
Polymer JR 400®25 0,5
Cetiol® HE26 0,5
Ajidew® NL 5027 1,0
Lamesoft® PO 65 3,0
Gluadin® WQT28 2,5
Gluadin® W 20 0,5
Panthenol (50%) 0,3
Pentaerythrit 2,0
Vitamin E 0,1
Vitamin H 0,1
Glutaminsäure 0,2
Citronensäure 0,5
Natriumbenzoat 0,5
Parfüm 0,4
NaCl 0,5
Wasser ad 100,0
23. Natriumlaurylethersulfat ca. 28% Aktivsubstanz (INCI-Bezeichnung: Sodium Laureth Sulfate) (COGNIS)@ 24. SCI-Bezeichnung: Sodium Cocoamphoacetate, ca. 30% Aktivsubstanz in Wasser (COGNIS)@ 25. quaternierte Hydroxyethylcellulose (INCI-Bezeichnung: Polyquaternium-10) (UNION CARBIDE)@ 26. Polyol-Fettsäure-Ester (INCI-Bezeichnung: PEG-7 Glyceryl Cocoate) (COGNIS)@ 27. Natrium-Salz der 2-Pyrrolidinon-5-carbonsäure (50% Aktivsubstanz: INCI-Bezeichnung: Sodium PCA) (AJINOMOTO)@ 28. INCI-Bezeichnung: Hydroxypropyltrimonium Hydrolyzed Wheat Protein (COGNIS)
8. Shampoo
Texapon® NSO 43,0
Dehyton® K29 10,0
Plantacare® 1200 UP30 4,0
Lamesoft® PO 65 2,5
Euperlan® PK 300031 1,6
Arquad® 31632 0,8
Polymer JR® 400 0,3
Gluadin® WQ 4,0
Milchsäure 0,5
Tannin 0,5
Catechin 0,5
Glucamate® DOE 12033 0,5
Natriumchlorid 0,2
Wasser ad 100,0
29. INCI-Bezeichnung: Cocamidopropyl Betaine ca. 20% Aktivsubstanz (COGNIS)@ 30. C12-C16-Fettalkoholglycosid ca. 50% Aktivsubslanz (INCI-Bezeichnung: Lauryl Glucoside) (COGNIS)@ 31. Flüssige Dispersion von perlglanzgebenden Substanzen und Amphotensid (ca. 62% Aktivsubstanz; CTFA-Bezeichnung: Glycol Distearate (and) Glycerin (and) Laureth-4 (and) Cocoamidopropyl Betaine) (COGNIS)@ 32. Tri-C16-alkylmethylammoniumchlorid (AKZO)@ 33. ethoxyliertes Methylglucosid-dioleat (CTFA-Bezeichnung: PEG-120 Methyl Glucose Dioleate) (AMERCHOL)
9. Shampoo
Texapon®N 7034 21,0
Plantacare® 1200 UP 8,0
Lamesoft® PO 65 3,0
Gluadin® WQ 1,5
Cutina® EGMS35 0,6
Honeyquat® 50 2,0
Ajidew® NL 50 2,8
Antil® 14136 1,3
Adonit 2,0
Natriumchlorid 0,2
Magnesiumhydroxid ad pH: 4,5
Wasser ad 100,0
34. Natriumlaurylethersulfat mit 2 Mol EO ca. 70% Aktivsubstanz (INCI-Bezeichnung: Sodium Laureth Sulfate) (COGNIS)@ 35. Ethylenglykolmonostearat (ca. 25-35% Monoester, 60-70% Diester; INCI-Bezeichnung: Glycol Stearate) (COGNIS)@ 36. Polyoxyethylen-propylenglykoldioleat (40% Aktivsubstanz; INCI-Bezeichnung: Propylene Glycol (and) PEG-55 Propylene Glycol Oleate) (GOLDSCHMIDT)
10. Shampoo
Texapon® K 14 S37 50,0
Dehyton® K 10,0
Plantacare® 818 UP38 4,5
Lamesoft® PO 65 2,0
Polymer P1, entsprechend DE 39 29 973 0,6
Cutina® AGS39 2,0
D-Panthenol 0,5
Fructose 1,0
Salicylsäure 0,4
Natriumchlorid 0,5
Gluadin® WQ 2,0
Wasser ad 100,0
37. Natriumlaurylmyristylethersulfat ca. 28% Aktivsubstanz (INCI-Bezeichnung: Sodium Myreth Sulfate) (COGNIS)@ 38. C8-C16-Fettalkoholglycosid ca. 50% Aktivsubstanz (INCI-Bezeichnung: Coco Glucoside) (COGNIS)@ 39. Ethylenglykolstearat (ca. 5-15% Monoester, 85-95% Diester; INCI-Bezeichnung: Glycol Distearate) (COGNIS)
11. Haarkur
Celquat® L 20040 0,6
Luviskol® K3041 0,2
D-Panthenol 0,5
Polymer P1, entsprechend DE 39 29 973 0,6
Dehyquart® A-CA 1,0
Lamesoft® PO 65 0,5
Isomalt 1,0
Asparaginsäure 0,3
Gluadin® W 4042 1,0
Natrosol® 250 HR43 1,1
Gluadin® WQ 2,0
Wasser ad 100,0
40. quaterniertes Cellulose-Derivat (95% Aktivsubstanz; CTFA-Bezeichnung: Polyquaternium-4) (DELFT NATIONAL)@ 41. Polyvinylpyrrolidon (95% Aktivsubstanz; CTFA-Bezeichnung: PVP) (BASF)@ 42. Partialhydrolysat aus Weizen ca. 40% Aktivsubstanz (INCI-Bezeichnung: Hydrolyzed Wheat Gluten Hydrolyzed Wheat Protein) (CUGNIS)@ 43. Hydroxyethylcellulose (AQUALON)
12. Färbecreme
C12-18-Fettalkohol 1,2
Lanette® O44 4,0
Eumulgin® B 2 0,8
Cutina® KD 1645 2,0
Lamesoft® PO 65 4,0
Natriumsulfit 0,5
L(+)-Ascorbinsäure 0,5
Ammoniumsulfat 0,5
1,2-Propylenglykol 1,2
Polymer JR® 400 0,3
p-Aminophenol 0,35
p-Toluylendiamin 0,85
2-Methylresorcin 0,14
6-Methyl-m-aminophenol 0,42
Cetiol® OE46 0,5
Honeyquat® 50 1,0
Ajidew® NL 50 1,2
Gluadin® WQ 1,0
Arabit 0,5
Ammoniak 1,5
Wasser ad 100,0
44. Cetylstearylalkohol (INCI-Bezeichnung: Cetearyl Alcohol) (COGNIS)@ 45. Selbstemulgierendes Gemisch aus Mono-/Diglyceriden höherer gesättigter Fettsäuren mit Kaliumstearat (INCI-Bezeichnung: Glyceryl Stearate SE) (COGNIS)@ 46. Di-n-octylether (INCI-Bezeichnung: Dicaprylyl Ether) (COGNIS)
13. Entwicklerdispersion für Färbecreme 12
Texapon® NSO 2,1
Wasserstoffperoxid (50%ig) 12,0
Turpinal® SL47 1,7
Latekoll® D48 12,0
Lamesoft® PO 65 2,0
Gluadin® WQ 0,3
Salcare® SC 96 1,0
Asparaginsäure 0,1
Mannit 0,8
Wasser ad 100,0
47. 1-Hydroxyethan-1,1-diphosphonsäure (60% Aktivsubstanz; INCI-Bezeichnung: Etidronic Acid) (COGNIS)@ 48. Acrylester-Methacrylsäure-Copolymer (25% Aktivsubstanz) (BASF)
14. Tönungsshampoo
Texapon® N 70 14,0
Dehyton® K 10,0
Akypo® RLM 45 NV49 14,7
Plantacare® 1200 UP 4,0
Lamesoft® PO 65 3,0
Polymer P1, entsprechend DE 39 29 973 0,3
Cremophor® RH 4050 0,8
Cellobiose 0,3
Saccharose 0,3
Elaidinsäure 0,3
Farbstoff C.I. 12 719 0,02
Farbstoff C.I. 12 251 0,02
Farbstoff C.I. 12 250 0,04
Farbstoff C.I. 56 059 0,03
Konservierung 0,25
Parfümöl q.s.
Eutanol® G51 0,3
Gluadin® WQ 1,0
Honeyquat® 50 1,0
Salcare® SC 96 0,5
Wasser ad 100,0
49. Laurylalkohol+4,5 Ethylenoxid-essigsäure-Natriumsalz (20,4% Aktivsubstanz) (CHEM-Y)@ 50. Rizinus-Öl, hydriert + 45 Ethylenoxid (INCI-Bezeichnung: PEG-40 Hydrogenated Castor Oil) (BASF)@ 51. 2-Octyldodecanol (Guerbet-Alkohol) (INCI-Bezeichnung: Octyldodecanol) (COGNIS)
15. Cremedauerwelle Wellcreme
Plantacare® 810 UP52 5,0
Thioglykolsäure 8,0
Turpinal® SL 0,5
Ammoniak (25%ig) 7,3
Ammoniumcarbonat 3,0
Cetyl/Stearyl-Alkohol 5,0
Lamesoft® PO 65 0,5
Guerbet-Alkohol 4,0
Salcare® SC 96 3,0
Gluadin® WQ 2,0
Lactose 0,2
Parfümöl q.s.
Wasser ad 100,0
52. C8-C10-Alkylglucosid mit Oligomerisationsgrad 1,6 (ca. 60% Aktivsubstanz) (COGNIS)
Fixierlösung
Plantacare® 810 UP 5,0
gehärtetes Rizinusöl 2,0
Lamesoft® PO 65 1,0
Kaliumbromat 3,5
Nitrilotriessigsäure 0,3
Zitronensäure 0,2
Merquat® 55053 0,5
Hydagen® HCMF54 0,5
Weinsäure 0,5
Gluadin® WQ 0,5
Maltose 0,3
Parfümöl q.s.
Wasser ad 100,0
53. Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer (8% Aktivsubstanz; INCI-Bezeichnung: Polyquarternium 7) (MOBIL OIL)@ 54. Chitosan Pulver (INCI-Bezeichnung: Chitosan) (COGNIS)

Claims (10)

1. Verwendung von Polyhydroxyverbindungen (A) in kosmetischen Mitteln als Wirkstoff zur Restrukturierung keratinischer Fasern.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum Wirkstoff (A) Polymere (G) enthalten sind.
3. Verwendung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum der Wirkstoff (A) Tenside (E) enthalten sind.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum der Wirkstoff (A) Fettstoffe (D) enthalten sind.
5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum der Wirkstoff (A) Proteinhydrolysate und/oder deren Derivate (H) enthalten sind.
6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum der Wirkstoff (A) UV-Filter (J) enthalten sind.
7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum der Wirkstoff (A) Oxidationsfarbstoff-Vorpro­ dukten (B) enthalten sind.
8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in den kosmetischen Mitteln zusätzlich zum Wirkstoff (A) direktziehende Farbstoffe (C) ent­ halten sind.
9. Verfahren zur Restrukturierung von Fasern, insbesondere keratinischen Fasern, da­ durch gekennzeichnet, daß ein Mittel mit gemäß einem der Ansprüche 1 bis 8 verwen­ deten Wirkstoffen auf die Fasern aufgetragen wird und nach einer Einwirkzeit von 1 bis 45 Minuten wieder ausgespült wird.
10. Mittel zur Restrukturierung von Fasern, insbesondere keratinischer Fasern, die eine Kombination aus
  • a) dem Wirkstoff (A) und
  • b) einem Polymer (G) enthalten.
DE2000161420 2000-12-09 2000-12-09 Neue Verwendung von Polyhydroxyverbindungen Withdrawn DE10061420A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2000161420 DE10061420A1 (de) 2000-12-09 2000-12-09 Neue Verwendung von Polyhydroxyverbindungen
PCT/EP2001/013959 WO2002045665A1 (de) 2000-12-09 2001-11-29 Neue verwendung von polyhydroxyverbindungen
AU2002217071A AU2002217071A1 (en) 2000-12-09 2001-11-29 Novel use of polyhydroxy compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000161420 DE10061420A1 (de) 2000-12-09 2000-12-09 Neue Verwendung von Polyhydroxyverbindungen

Publications (1)

Publication Number Publication Date
DE10061420A1 true DE10061420A1 (de) 2002-06-13

Family

ID=7666515

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000161420 Withdrawn DE10061420A1 (de) 2000-12-09 2000-12-09 Neue Verwendung von Polyhydroxyverbindungen

Country Status (3)

Country Link
AU (1) AU2002217071A1 (de)
DE (1) DE10061420A1 (de)
WO (1) WO2002045665A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251122A1 (de) * 2002-11-02 2004-05-19 Beiersdorf Ag Haarbehandlungsmittel mit verbesserten Film- und Geruchseigenschaften
EP1524029A1 (de) * 2003-10-15 2005-04-20 Cognis Deutschland GmbH & Co. KG Selbstemulgierende Zubereitungen
US9345650B2 (en) * 2004-09-07 2016-05-24 Henkel Ag & Co. Kgaa Composition and method for the smoothing of fibres containing keratin
EP2190405B2 (de) 2007-09-28 2016-11-23 Unilever PLC Haarbehandlungszusammensetzungen
WO2020047017A1 (en) * 2018-08-30 2020-03-05 L'oreal Hair-treatment compositions and methods of use

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100479802C (zh) * 2004-04-07 2009-04-22 荷兰联合利华有限公司 头发处理组合物
BRPI0508807A (pt) * 2004-04-07 2007-09-25 Unilever Nv composição de tratamento capilar, uso de uma composição e método de tratamento de cabelo
US7981167B2 (en) 2008-07-31 2011-07-19 The Procter & Gamble Company Method and composition for maintaining hair dye color
EP2570190A1 (de) 2011-09-15 2013-03-20 Braun GmbH Sprühdüse zum Abgeben einer Flüssigkeit und Sprüheinrichtung, die eine solche Sprühdüse umfasst
US9358197B2 (en) 2012-06-15 2016-06-07 The Procter & Gamble Company Method employing polyols when chemically modifying the internal region of a hair shaft
JP6158940B2 (ja) 2013-06-28 2017-07-05 ザ プロクター アンド ギャンブル カンパニー スプレー装置を備えるエアロゾルヘアスプレー製品
EP2990796A1 (de) 2014-08-29 2016-03-02 The Procter and Gamble Company Vorrichtung zur Prüfung der Eigenschaften von Haarfasern
MX368467B (es) 2015-06-01 2019-10-03 Procter & Gamble Producto de laca en aerosol para el cabello que comprende un dispositivo de rociado.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1253081A (en) * 1984-02-06 1989-04-25 Roger A. Mathews Hair waving process and process for permanently restructuring kinky or curly hair
DE3711841A1 (de) * 1987-04-08 1988-10-27 Henkel Kgaa Haarregenerierende zubereitungen
DE19810120C1 (de) * 1998-03-09 1999-05-27 Goldwell Gmbh Verwendung eines Mittels zur Haarbehandlung
DE19913427A1 (de) * 1999-03-25 2000-09-28 Wella Ag Verwendung von reduzierenden Verbindungen zur Verstärkung und Strukturverbesserung von Keratin enthaltenden Materialien

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251122A1 (de) * 2002-11-02 2004-05-19 Beiersdorf Ag Haarbehandlungsmittel mit verbesserten Film- und Geruchseigenschaften
EP1524029A1 (de) * 2003-10-15 2005-04-20 Cognis Deutschland GmbH & Co. KG Selbstemulgierende Zubereitungen
US8080586B2 (en) 2003-10-15 2011-12-20 Cognis Ip Management Gmbh Self-emulsifying preparations
US9345650B2 (en) * 2004-09-07 2016-05-24 Henkel Ag & Co. Kgaa Composition and method for the smoothing of fibres containing keratin
EP2190405B2 (de) 2007-09-28 2016-11-23 Unilever PLC Haarbehandlungszusammensetzungen
WO2020047017A1 (en) * 2018-08-30 2020-03-05 L'oreal Hair-treatment compositions and methods of use
US11800917B2 (en) 2018-08-30 2023-10-31 L'oreal Hair-treatment compositions and methods of use

Also Published As

Publication number Publication date
AU2002217071A1 (en) 2002-06-18
WO2002045665A1 (de) 2002-06-13

Similar Documents

Publication Publication Date Title
EP1326577B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1326579B1 (de) Neue verwendung von kurzkettigen carbonsäuren
EP1771144B1 (de) Haarkonditionierende mittel mit aminofunktionellen siliconen
EP1761232B2 (de) Haarreinigungsmittel mit aminofunktionellen siliconen
DE10240757A1 (de) Synergistische Kombination von Seidenproteinen
EP1339379B1 (de) Neue verwendung von proteinhydrolysaten
EP1729853B1 (de) Verwendung kationischer stärkederivate zum farberhalt
WO2006066674A1 (de) Wirkstoffgemische zur restrukturierung keratinischer fasern
DE10107216A1 (de) Wirkstoffkombination aus Kohlenwasserstoffen und Ölen in kosmetischen Mitteln
DE10048922A1 (de) Neue Verwendung von kurzkettigen Aldehyden und Formaldehyd abspaltenden Verbindungen
DE10061420A1 (de) Neue Verwendung von Polyhydroxyverbindungen
DE10163860A1 (de) Verwendung von ausgewählten kurzkettigen Carbonsäuren
WO2006029757A1 (de) Wirkstoffgemisch zur behandlung keratinischer fasern
WO2006034750A1 (de) Perlenextrakt in kosmetischen mitteln
WO2003035018A1 (de) Neue verwendung von zuckertensiden und fettsäurepartialglyceriden in farbverändernden mitteln
DE10060814A1 (de) Neue Verwendung von Phospholipiden
EP1776077B1 (de) Volumen-haarreinigungsmittel
WO2006021349A1 (de) Extrakte als strukturanten

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee