EP1068088A1 - Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride - Google Patents

Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride

Info

Publication number
EP1068088A1
EP1068088A1 EP99913366A EP99913366A EP1068088A1 EP 1068088 A1 EP1068088 A1 EP 1068088A1 EP 99913366 A EP99913366 A EP 99913366A EP 99913366 A EP99913366 A EP 99913366A EP 1068088 A1 EP1068088 A1 EP 1068088A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
torque
electric
clutch
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99913366A
Other languages
German (de)
English (en)
Inventor
Eric Chauvelier
Stéphane HEMEDINGER
David Soulier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1068088A1 publication Critical patent/EP1068088A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18063Creeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a control method for a motor vehicle with parallel hybrid motorization.
  • the invention relates more particularly to a control method for a motor vehicle with parallel hybrid motorization which comprises a transmission permanently coupled on the one hand to an electric motor and on the other hand to a thermal motor via the d a clutch, the transmission providing a driving torque to the wheels of the vehicle, and of the type comprising an electronic control module which, depending on the position of an accelerator pedal, controls the thermal engine, the clutch, and the electric motor.
  • Numerous control methods are known concerning the management of the operation of the electric and thermal motors of parallel hybrid vehicles.
  • the electric and thermal motors then intervene simultaneously or independently depending on the operating strategies.
  • Document DE-A1 -4,436,383 describes a device in which the method of controlling the parallel hybrid vehicle can implement either an electric start mode, or according to a thermal start mode.
  • the first starting mode corresponds, depending on the strategy selected by the driver, to a strategy of pure electric operation or to an electric operating strategy of the engine off, while the second starting mode corresponds to an operating strategy pure thermal, to a strategy for recharging a storage battery.
  • the invention provides a control method of the type described above, characterized in that q ue, from an initial operating mode in which the thermal motor is in operation and the clutch is disengaged, the electronic module is capable of implementing a mode of assistance at low speed of the vehicle, in particular at start-up, according to which the thermal and electric motors are controlled to supply respectively thermal and electric couples according to a distribution governed by a predefined control law, and according to which the clutch is simultaneously controlled to be engaged.
  • the electronic module converts the position of the accelerator pedal to a value of total torque requested, and it controls the simultaneous operation of the thermal and electric motors so that the sum of the torques supplied by the thermal and electric motors is equal to the torque total requested;
  • the electronic module comprises means for measuring the speed of the vehicle and constantly compares it to a predefined reference speed above which the electronic module regulates the torques provided by the thermal and electric motors so that the couple supplied by the heat engine increases until it reaches the value of the total torque requested from the vehicle while the torque supplied by the electric motor gradually decreases and vanishes, the value of the total torque supplied to the vehicle remaining equal to the value of the total torque request.
  • FIG. 1 is a block diagram showing the various elements d 'a hybrid vehicle operating according to the invention.
  • - Fig ure 2 is a flowchart illustrating the progress of a low speed assistance mode of the vehicle according to the invention.
  • FIG. 1 shows a block diagram of a hybrid vehicle 1 0 using a control method according to the invention.
  • the architecture 10 of a parallel hybrid vehicle comprises a transmission 12 which receives engine torques coming from one hand from a heat engine 14, by means of a clutch 16, and on the other hand of an electric motor 18.
  • the transmission 12 transmits the engine torques received to the wheels 20 of the vehicle by means of a differential 22.
  • the heat engine 14 is supplied with fuel via a supply device 24 and the electric motor 1 8 is supplied by an accumulator battery 26 which transmits power to the electric motor 1 8 per l '' through power electronics 28.
  • An electronic control module 30 is capable of receiving information from various elements of the architecture 10 and taking account of certain parameters fixed by the driver of the vehicle to control the operation of the thermal engine 14, of the clutch 16, and of the electric motor 18.
  • the driver acts on the electronic control module first of all by means of a strategy selector 32 which enables the vehicle to be operated according to at least three strategies: an electrical strategy, a pure thermal strategy and a hybrid strategy.
  • the driver also acts on the electronic control module 30 by means of an accelerator pedal 34 whose position provides the electronic control module with a torque value C DU requested by the user.
  • the electronic control module is capable of controlling the various elements of the architecture 10 of the hybrid motor vehicle.
  • the electronic control module 30 transmits in the direction of the heat engine 14 two main commands, on the one hand, a state command M ⁇ which determines an operating state l MT or stop 0 MT of the heat engine 14, and on the other hand a torque control C MT which is associated with the operation of the supply device 24 to regulate the operation of the heat engine 14.
  • the electronic control module 30 transmits to the electric motor 18 a state command M E between an operating state l ME and a stop state 0 ME , and a torque command C ME associated with the power electronics 28 to regulate the operation of the electric motor 1 8.
  • the electronic control module 30 is capable of issuing a state command E to control the operation of the clutch 1 6 between a engaged state l E and a disengaged state 0 E.
  • the electronic control module 30 is capable of receiving information relating to the speed of the vehicle via a speed sensor 36 which supplies the electronic control module with a value V proportional to the speed of the vehicle.
  • the organ ig ramme of Figure 2 illustrates the implementation of a low speed assistance control method, and in particular at startup, according to the invention using the architecture 1 0 previously described.
  • the hybrid vehicle operates at a low speed in an initial configuration in which the heat engine 14 is running, the electric motor 18 is stopped and the clutch 16 is disengaged.
  • This configuration is that of a vehicle initially stopped or driving slowly in a traffic jam.
  • the electronic control module therefore associates the value l MT with the state parameter M ⁇ of the heat engine 14, the value 0 MT with the state parameter M E of the electric motor 18 and the value 0 E with the state parameters E of the clutch 16. Based on this configuration, the electronic control module 30 compares the value of the torque C DU , requested by the user, with the zero value.
  • the electronic control module 30 If the value of the torque C DU requested by the user is zero, the electronic control module 30 remains on standby until the value of C DU is no longer zero, as indicated by the return arrow in the configuration initial. If the value C DU of the torque requested by the user is not zero, the electronic control module 30 associates the value l MT with the state parameter M ⁇ of the heat engine 14, the value l ME with the state parameter M E of the electric motor 18 and the value l E with the state parameter E of the clutch 16 , to control the simultaneous operation of the heat engine 14, the electric motor 18 and the clutch 16.
  • the electronic module 30 then regulates the torques to which the vehicle is subjected.
  • the electronic control module 30 acts on the device 24 for supplying the heat engine 14 and on the power electronics 28 of the electric motor 18 so that the sum of the torque C MT supplied by the heat engine 14 and the torque C ME supplied by the electric motor 18 is equal to the torque C DU requested by the user.
  • the couples C MT and C ME are distributed in a predefined manner so that the couple C ⁇ is proportional to the couple C E at the rate of a coefficient ⁇ which is governed by a control law controlled by the electronic module 30.
  • the law of command can associate with the coefficient ⁇ a constant value, or a variable value depending for example on the time elapsed since the value of the torque C DU has become non-zero, or dependent on the speed of the vehicle.
  • the coefficient ⁇ defines a share of torque to be supplied for each engine, this share being associated only with starting. Also, the total torque supplied to the vehicle C MT + C ME is less than the torque C DU requested by the user as long as the clutch 16 slips during the revving of the engine 14, the engine 14 providing a response at the orders of the electronic module 30 comparatively slower than that of the electric motor 18. However, the skating phase is very short and of the order of half a second.
  • the electronic module 30 continuously compares the speed of the vehicle V with a predefined reference speed V ref . This speed V ref is chosen so that whatever the vehicle's configuration, the clutch never slips at this speed.
  • the thermal engine 14 and the electric motor 18 provide a torque C MT + C ME equal to the torque C DU requested by the user, and that V is less at V ref , the electronic module 30 maintains the system in the state previously described.
  • the electronic module 30 abandons the torque control law previously described and modifies the distribution of torque between the torques supplied by the internal combustion engine C MT and the torque supplied by the electric motor C ME , so that the torque C MT tends towards the torque C DU requested by the user and that the torque supplied by the electric motor C E decreases until canceled.
  • the electronic control module maintains the system in the previously described state, the state parameter M E of the electric motor keeping the value l ME , the clutch state parameter E keeping the value l E , the thermal torque C MT increasing and the electric torque C ME decreasing.
  • the torque C ME of the electric motor therefore continuously adjusts to a value C DU - C MT so that the total torque remains equal to C DU .
  • the electronic control module always compares in this second phase the speed V of the vehicle to the reference speed V ref and is capable of commanding a return of the vehicle to a defined operation. in the first phase, as indicated by the return arrow in Figure 2.
  • the electronic module 30 assigns the value 0 ME to the state parameter M E of the electric motor 1 8 while maintaining the state parameters M ⁇ and E respectively associated with the operation of the heat engine 14 and the clutch 16 at the respective values l MT and l E.
  • the torque supplied by the heat engine C MT is then equal to the torque requested by the user C DU .
  • the electronic module 30 is then no longer in a low-speed assistance mode of the hybrid vehicle, but in a thermal operating mode.
  • the vehicle can then be brought to operate conventionally in hybrid mode for a speed greater than V ref , when for example the driver needs a boost of power, as is the case for example during a strong acceleration.
  • control module 30 again commands an operation like that described in the first phase.
  • This control and starting process is particularly advantageous because, due to the assistance of the electric motor 18 by the heat engine 14, it makes it possible to reduce the dimensioning of the electric motor 1 8, and of the clutch 16.
  • the clutch is necessarily dimensioned in a large way so as to be able to transmit significant torques.
  • the electric motor is necessarily oversized so as to be able to supply a large torque to the transmission of the vehicle.
  • the architecture 1 0 described makes it possible to limit the torque C MT transmitted to the clutch 16 by the heat engine 14 on the one hand, and to limit the torque C ME q ue must supply the electric motor 1 8 on the other hand.
  • the torque undergone by the clutch of a vehicle fitted with such a control method is then comparable to the torque undergone by the clutch of a conventional thermal vehicle traveling in a descent.
  • a reduced dimensioning of the mechanical elements is possible and allows a considerable weight saving which goes in the direction of an improvement in the performance of the vehicle.
  • the assistance of the heat engine 14 by the electric motor 1 8 has the advantage of reducing the duration of the slippage phases of the clutch 16 and the vehicle more quickly reaches a state of steady state in which the heat engine 14 and the electric motor 18 participate in the propulsion of the vehicle.
  • This configuration is particularly advantageous in the case of starting the vehicle under heavy load, as is the case for example when the vehicle is heavily loaded or when it starts on a hill.
  • the interaction of the heat engine 14 and the electric motor 18 favorably influences the overall efficiency of the traction chain. Indeed, the two engines 14 and 18 participating in starting, the heat engine 14 consumes less fuel and the vehicle is less polluting.
  • the interaction of the heat engine 14 and the electric motor 18 also makes it possible to modify the reduction ratios of the transmission 12.
  • the electric motor 1 8 being capable of providing a significant torque to the transmission of the vehicle, it becomes superfluous to use a significant reduction ratio which usually favors large torques on a conventional vehicle to the detriment of the speed of rotation. It is therefore possible, in the case of a vehicle using a conventional gearbox, to approximate the multiplication ratios, or even to decrease the number thereof.
  • a first forward gear as it is known and intended to allow for low rotational speeds to transmit a large torque to the transmission can be eliminated, the electric motor therefore supplying sufficient torque at start-up or at low vehicle speeds.
  • the internal combustion engine being able to cover a wide range of speeds on the one hand, and the electric motor being able to cover a wide range of torques on the other hand, the transmission can comprise a limited number of reports and even be reduced to a simple red uctor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un procédé de commande pour un véhicule automobile hybride parallèle comportant une transmission (12) accouplée en permance à un moteur électrique (18) et à un moteur thermique (14) par l'intermédiaire d'un embrayage (16), la transmission (12) fournissant un couple moteur aux roues (20), et du type comportant un module électronique (30) qui, suivant la position d'un accélérateur (34), commande les moteurs thermique (14), électrique (18), et l'embrayage (16), caractérisé en ce que, partant d'un état initial dans lequel le moteur thermique (14) est en marche et l'embrayage (16) débrayé, le module électronique (30) met en oeuvre un mode d'assistance à faible vitesse, notamment au démarrage, selon lequel les moteurs thermique (14) et électrique (18) fournissent au moins pendant une première phase respectivement des couples thermique (CMT) et électrique (CME) suivant une répartition ( alpha ) régie par une loi de commande prédéfinie, et selon lequel l'embrayage (16) est commandé pour être embrayé.

Description

"Procédé d'assistance pou r une faible vitesse du moteur therm ique d'un véhicule hybride"
L'invention concerne un procédé de commande pour un véhicule automobile à motorisation hybride parallèle. L'invention concerne plus particulièrement un procédé de commande pour un véhicule automobile à motorisation hybride parallèle qui comporte une transmission accouplée d'une part de façon permanente à un moteur électrique et d'autre part à un moteur thermiq ue par l'interméd iaire d'un embrayage , la transmission fournissant un couple moteu r aux roues du véh icule, et du type comportant un module électronique de commande qui , en fonction de la position d'une pédale d'accélérateur, commande le moteur thermique, l'embrayage, et le moteur électrique. On con naît de nombreux procédés de commande concernant la gestion du fonctionnement des moteurs électrique et thermique des véhicules hybrides parallèles .
I l s'agit pour la plupart de procédés de commande faisant intervenir les moteurs électrique et thermique selon certaines stratégies de fonctionnement automatiques prédéfinies, commandées par le module électroniq ue du véhicule et laissant au conducteur la possibilité de privilégier certaines stratégies de fonctionnement.
Les moteurs électrique et thermique interviennent alors simultanément ou indépendamment suivant les stratégies de fonctionnement.
En ce q ui concerne les phases de faibles vitesses du véhicule, et notamment la phase de démarrage du véhicule, qui consiste par définition à faire passer le véhicule d'une vitesse nulle à une vitesse non nulle, les systèmes existants font intervenir u niq uement un des deux moteurs . Le document DE-A1 -4.436.383 décrit un dispositif dans lequel le procédé de commande du véhicule hybride parallèle peut mettre en œuvre soit un mode de démarrage électrique, soit selon un mode de démarrage thermique. Le premier mode de démarrage correspond , selon la stratégie sélection née par le conducteur, à une stratégie de fonctionnement électrique pure ou à une stratég ie de fonctionnement électriq ue moteur thermique éteint, tandis q ue le deuxième mode de démarrage correspond à une stratégie de fonctionnement thermiq ue pure, à une stratégie de rechargement d'une batterie d'accumulateurs.
U n problème se pose q uant à l'adéquation entre la source de puissance motrice choisie et les performa nces du véhicule. En effet, le démarrage d u véhicule par le moteur électrique, décrit dans le document cité, s'effectue suivant deux phases principales , une première phase consistant à lancer le véhicule avec le moteur électrique , puis à embrayer le moteur thermique initialement à l'arrêt pour le démarrer. Le moteur thermique assure alors la poursuite de l'accélération du véhicule. Outre que cette solution provoque des à-coups de transmission lors du démarrage du moteur thermique, elle implique un surdimensionnement d u moteur électrique d'une part, puisqu'il doit simultanément assurer la propulsion du véhicule et le démarrage d u moteur thermique , et de l'embrayage d'autre part, car le moteur thermique doit pouvoir transmettre un couple important à la transmission d u véhicule une fois qu'il a démarré. Le surdimensionnement du moteur électrique et de l'embrayage conduit à une augmentation des masses préjudiciable aux performances et au coût du véhicule.
Le démarrage du véhicule par le moteur thermique décrit dans le document cité est aussi préjudiciable aux performances d u véhicule dans la mesure où le moteur thermique doit entraîner le moteu r électrique q ui est constamment solidaire de la transmission . Outre le fait que l'inertie du moteur électrique ralentit la montée en régime du moteu r thermiq ue, elle accroît la durée du patinage de l'embrayage, et par conséq uent le temps de réponse du véhicule à une sollicitation de la pédale d'accélérateu r par le conducteur. Le problème est similaire pour de faibles vitesses du véhicule. Pour remédier à ces inconvénients, l'invention propose un procédé de commande du type décrit ci-dessus, caractérisé en ce q ue, à partir d'un mode de fonctionnement initial dans lequel le moteu r thermiq ue est en marche et l'embrayage est débrayé, le mod ule électroniq ue est susceptible de mettre en œuvre un mode d'assistance à faible vitesse du véhicule, notamment au démarrage, selon lequel les moteurs thermique et électrique sont commandés pour fournir respectivement des couples thermiq ue et électrique suivant une répartition régie par une loi de commande prédéfinie, et selon lequel l'embrayage est simultanément commandé pour être embrayé. Selon d'autres caractéristiques de l'invention :
- le module électronique convertit la position de la pédale d'accélérateur en une valeur de couple total demandé, et il commande le fonctionnement simultané des moteurs thermique et électrique de sorte que la somme des couples fournis par les moteurs thermique et électrique est égale au couple total demandé ;
- le module électronique comporte des moyens de mesure de la vitesse du véhicule et la compare en permanence à une vitesse de référence prédéfinie au dessus de laq uelle le module électronique assure la régulation des couples fournis par les moteurs thermiq ue et électrique de sorte que le couple fourni par le moteur thermique augmente jusqu'à atteindre la valeur du couple total demandé au véhicule tandis que le couple fourni par le moteur électrique décroît et s'annule progressivement, la valeur du couple total fourni au véhicule restant égale à la valeur du couple total demandé.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée q ui suit, pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : - la figure 1 est un schéma de principe montrant les différents éléments d'un véhicule hybride fonctionnant suivant l'invention ; et
- la fig ure 2 est un organigramme illustrant le déroulement d'un mode d'assistance à faible vitesse du véhicule conformément à l'invention .
On voit sur la figure 1 un schéma de principe d'un véhicule hybride 1 0 utilisant un procédé de commande conforme à l'invention .
De manière connue, l'architecture 1 0 de véhicule hybride parallèle comporte une transmission 12 qui reçoit des couples moteurs en provenance d'une part d'un moteur thermique 14, par l'intermédiaire d'un embrayage 16, et d'autre part d'un moteur électrique 18. La transmission 12 transmet les couples moteurs reçus à des roues 20 du véhicule par l'intermédiaire d'un différentiel 22.
De manière connue, le moteur thermique 14 est alimenté en carburant par l'intermédiaire d'un dispositif 24 d'alimentation et le moteur électrique 1 8 est alimenté par une batterie d'accumulateurs 26 qui transmet une puissance au moteur électrique 1 8 par l'intermédiaire d'une électronique de puissance 28. U n module électronique de commande 30 est susceptible de recevoir des informations en provenance de différents éléments de l'architecture 1 0 et de tenir compte de certains paramètres fixés par le conducteur du véhicule pour commander le fonctionnement d u moteur thermique 14, de l'embrayage 16 , et d u moteur électriq ue 18.
En effet, le conducteu r agit su r le module électronique de commande tout d'abord par l'intermédiaire d'un sélecteur de stratégie 32 q ui permet de faire fonctionner le véhicule suivant au moins trois stratégies: une stratég ie électrique pu re, une stratégie thermique pure et une stratég ie hybride.
Par ailleurs, le conducteur agit aussi sur le module électronique de commande 30 par l'intermédiaire d'une pédale d'accélérateu r 34 dont la position fournit au module électronique de commande une valeur de couple CDU demandée par l'utilisateur.
En tenant compte de ces paramètres dépendant de l'utilisateur, le module électronique de commande est susceptible de commander les différents éléments de l'architecture 1 0 du véhicule automobile hybride.
Ainsi, le module électroniq ue de commande 30 émet en direction d u moteur thermique 14 deux commandes principales, d'une part une commande d'état Mτ qui détermine un état de fonctionnement lMT ou d'arrêt 0MT d u moteur thermique 14, et d'autre part une commande de couple CMT qui est associée au fonctionnement du dispositif 24 d'alimentation pour réguler le fonctionnement du moteur thermique 14.
D'une façon analogue, le module électronique de commande 30 émet à l'intention d u moteur électrique 18 une commande d'état ME entre un état de fonctionnement lME et un état d'arrêt 0M E, et une commande de couple CME associée à l'électronique de puissance 28 pour rég uler le fonction nement du moteur électrique 1 8.
Enfin , le module électron iq ue de commande 30 est susceptible d'émettre une commande d'état E pour commander le fonctionnement de l'embrayage 1 6 entre un état embrayé lE et un état débrayé 0E.
Par ailleurs, le module électronique de commande 30 est susceptible de recevoir une information relative à la vitesse d u véhicule par l'intermédiaire d'un capteur de vitesse 36 q ui délivre au module électronique de commande une valeur V proportionnelle à la vitesse d u véhicule.
L'organ ig ramme de la figure 2 illustre la mise en œuvre d'un procédé de commande d'assistance à faible vitesse, et notamment au démarrage, conformément à l'invention en utilisant l'architecture 1 0 précédemment décrite.
Le véhicule hybride fonctionne à une faible vitesse dans une configuration initiale dans laquelle le moteur thermique 14 est en marche, le moteur électrique 18 est à l'arrêt et l'embrayage 16 est débrayé. Cette configuration est celle d'un véhicule initialement arrêté ou roulant lentement dans un embouteillage. Le module électronique de commande associe donc la valeur lMT au paramètre d'état Mτ du moteur thermique 14, la valeur 0MT au paramètre d'état ME d u moteur électrique 18 et la valeur 0E au paramètres d'état E de l'embrayage 16. Partant de cette configuration , le module électronique de commande 30 compare la valeur d u couple CDU, demandé par l'utilisateur, à la valeur nulle. Si la valeur du couple CDU demandé par l'utilisateur est nulle, le module électronique de commande 30 reste en veille jusqu'à ce que la valeur de CDU ne soit plus nulle, comme l'indique la flèche de retour dans la configuration initiale. Si la valeur CDU du couple demandé par l'utilisateur est non nulle, le module électronique de commande 30 associe la valeur lMT au paramètre d'état Mτ du moteur thermique 14, la valeur lME au paramètre d'état ME du moteur- électrique 18 et la valeur lE au paramètre d'état E de l'embrayage 16, pour commander le fonctionnement simultané du moteur thermique 14, du moteur électrique 18 et de l'embrayage 16.
Le module électronique 30 assure alors une régulation des couples auxquels est soumis le véhicule.
En effet, le module électronique de commande 30 agit sur le dispositif 24 d'alimentation du moteur thermique 14 et sur l'électronique de puissance 28 du moteur électrique 18 de sorte que la somme du couple CMT fourni par le moteur thermique 14 et du couple CME fourni par le moteur électrique 18 soit égale au couple CDU demandé par l'utilisateur. Les couples CMT et CME sont répartis de façon prédéfinie de sorte que le couple Cτ soit proportionnel au couple CE à raison d'un coefficient α qui est régi par une loi de commande commandée par le module électronique 30. La loi de commande peut associer au coefficient α une valeur constante, ou une valeur variable dépendant par exemple du temps écoulé depuis que la valeur du couple CDU est devenue non nulle, ou dépendant de la vitesse du véhicule.
Le coefficient α définit une quote-part de couple à fournir pour chaque moteur, cette quote-part étant uniquement associée au démarrage. Aussi, le couple total fourni au véhicule CMT + CME est-il inférieur au couple CDU demandé par l'utilisateur tant que l'embrayage 16 patine pendant la montée en régime du moteur thermique 14, le moteur thermique 14 fournissant une réponse aux ordres du module électronique 30 comparativement plus lente que celle du moteur électrique 18. Toutefois, la phase de patinage est très courte et de l'ordre de la demi seconde. Le mod ule électroniq ue 30 compare en permanence la vitesse du véhicule V à une vitesse de référence Vréf prédéfinie. Cette vitesse Vréf est choisie de façon à ce que quelles que soient les configurations d'évolution d u véhicule, l'embrayage ne patine jamais à cette vitesse. Lorsque la période de pati nage de l'embrayage 16 est terminée , que le moteu r thermiq ue 14 et le moteur électrique 18 fournissent un couple CMT + CME égal au couple CDU demandé par l'utilisateur, et que V est inférieure à Vréf, le module électron ique 30 maintient le système dans l'état précédemment décrit. Dans une deuxième phase du procédé de commande, lo rsque la vitesse du véhicule V est supérieure à la vitesse de référence Vréf, le module électron ique 30 abandonne la loi de commande de couple précédemment décrite et modifie la répartition de couple entre les couples fournis par le moteur thermiq ue CMT et le couple fourni par le moteur électrique CM E, de so rte que le couple CMT tende vers le couple CDU demandé par l'utilisateur et q ue le couple fourni par le moteur électrique C E décroisse jusq u'à s'annuler. Tant que le couple C E fourni par le moteur électrique n'est pas nul, le module électron ique de commande maintient le système dans l'état précédemment décrit, le paramètre d'état ME du moteur électrique gardant la valeur lME, le paramètre d'état E de l'embrayage gardant la valeur lE, le couple thermique CMT allant croissant et le couple électrique CM E allant décroissant. Dans cette deuxième phase transitoire, le couple CM E d u moteur électrique s'ajuste donc en permanence à une valeur CDU - CMT de sorte que le couple total reste égal à CDU .
Par ailleurs , le module électronique de commande compare toujours dans cette deuxième phase la vitesse V du véhicule à la vitesse de référence Vréf et est susceptible de commander un retou r d u véhicule à un fonctionnement défini dans la première phase, comme l'ind ique la flèche de retour de la figure 2.
Lorsque le couple électrique CM E est nul , le mod ule électronique 30 affecte la valeur 0M E au paramètre d'état ME du moteur électrique 1 8 tout en maintenant les paramètres d'état Mτ et E respectivement associés au fonctionnement du moteur thermique 14 et de l'embrayage 16 aux valeurs respectives lMT et lE .
Le couple fourni par le moteur thermique CMT est alors égal au couple demandé par l'utilisateur CDU. Le module électronique 30 n'est alors plus dans un mode d'assistance à faible vitesse d u véhicule hybride, mais dans un mode de fonctionnement thermique.
Le véhicule peut être alors amené à fonctionner conventionnellement en mode hybride pour une vitesse supérieure à Vréf , lorsque par exemple le conducteur a besoin d'un appoint de puissance, comme c'est le cas par exemple lors d'une forte accélération .
Toutefois , si la vitesse V du véhicule redevient inférieure à Vréf, le module de commande 30 commande de nouveau un fonctionnement comme celui décrit dans la première phase.
Ce procédé de commande et de démarrage est particulièrement avantageux car, du fait de l'assistance du moteur électrique 18 par le moteur thermique 14, il permet de réduire le dimensionnement du moteur électrique 1 8 , et de l'embrayage 16. En effet, dans un véhicule hybride parallèle conventionnel où le moteur thermique assure la phase de relance du véhicule à faible vitesse, l'embrayage est nécessairement dimensionné de façon importante de manière à pouvoir transmettre des couples importants. D'une façon analogue, dans un véhicule hybride parallèle conventionnel pour lequel le moteur électrique assure la phase de relance à faible vitesse , le moteu r électrique est nécessairement surdimensionné de façon à pouvoir fourn ir un couple important à la transmission d u véhicule. En utilisant simultanément le moteur thermique 14 et le moteur électriq ue 18 , l'architecture 1 0 décrite permet de limiter le couple CMT transmis à l'embrayage 16 par le moteur thermique 14 d'une part, et de limiter le couple CME q ue doit fournir le moteur électrique 1 8 d'autre part. Le couple subi par l'embrayage d'un véhicule doté d'un tel procédé de commande est alors comparable au couple subi par l'embrayage d'un véhicu le thermiq ue conventionnel roulant dans une descente. De fait, un dimensionnement réd uit des éléments mécaniques est envisageable et permet un gain de poids considérable qui va dans le sens d'une amélioration des performances du véhicule.
Réciproquement, l'assistance d u moteur thermique 14 par le moteur électrique 1 8 présente l'avantage de réduire la durée des phases de patinage de l'embrayage 16 et le véhicule parvient plus rapidement à un état de régime établi dans lequel le moteur thermique 14 et le moteur électrique 18 participent à la propulsion du véhicule. Cette configuration est particulièrement avantageuse dans le cas d'un démarrage du véhicule en forte charge, comme c'est le cas par exemple lorsque le véhicule est lourdement chargé ou lorsqu'il démarre en côte.
En outre, l'interaction du moteur thermique 14 et du moteur électrique 18 influe favorablement sur le rendement global de la chaîne de traction. En effet, les deux moteurs 14 et 18 participant au démarrage, le moteur thermique 14 consomme moins de carburant et le véhicule est moins polluant. L'interaction du moteur thermique 14 et d u moteur électrique 18 permet aussi de modifier les rapports de réduction de la transmission 12. Le moteur électrique 1 8 étant susceptible de fournir un couple important à la transmission du véhicule, il devient superflu d'utiliser un rapport de réd uction important q ui privilégie habituellement sur un véhicule conventionnel les couples importants au détriment de la vitesse de rotation . On peut donc, dans le cas d'un véhicule utilisant une boîte de vitesses conventionnelle rapprocher les rapports de multiplication , voire en d iminuer le nombre. Ainsi, un premier rapport de marche avant tel qu'il est connu et destiné à permettre pour de faibles vitesses de rotation de transmettre un couple important à la transmission peut être supprimé, le moteur électriq ue fournissant dès lors un couple suffisant au démarrage ou aux faibles vitesses du véhicule. Enfin , le moteur thermique pouvant couvrir une large plage de régimes d'une part, et le moteur électrique pouvant couvrir une large plage de couples d'autre part, la transmission peut comporter un nombre de rapports restreint et même être réduite à un simple réd ucteur.

Claims

REVENDI CATI ONS
1 . Procédé de commande pour un véhicule automobile à motorisation hybride parallèle qui comporte une transmission (12) accouplée d'une part de façon permanente à un moteur électrique (1 8) et d'autre part à un moteur thermique ( 14) par l'intermédiaire d'u n embrayage ( 16) , la transmission ( 12) fournissant un couple moteur aux roues (20) du véhicule, et du type comportant un module électronique (30) de commande qui, en fonction de la position d'une pédale d'accélérateur (34) , commande le moteur thermique ( 14) , l'embrayage ( 16) , et le moteur électrique ( 1 8), caractérisé en ce que, à partir d'un état initial dans lequel le moteur thermique (14) est en marche et l'embrayage (16) débrayé, le module électronique (30) est susceptible de mettre en oeuvre un mode d'assistance à faible vitesse du véhicule, notamment au démarrage, selon lequel les moteurs thermique (14) et électrique ( 18) sont commandés au moins pendant une première phase pour fournir respectivement des couples thermique (CMT) et électrique (CME) suivant une répartition (α) régie par une loi de commande prédéfinie, et selon lequel l'embrayage (16) est simultanément commandé pour être embrayé.
2. Procédé selon la revendication 1 , caractérisé en ce que le module électronique (30) convertit la position de la pédale d'accélérateur (34) en une valeur de couple (CDU) total demandé, et en ce que le module électronique (30) commande le fonctionnement simultané des moteurs thermique ( 14) et électrique (16) de sorte que la somme (CMT + CME) des couples fournis par les moteurs thermique 14 et électrique 16 soit égale au couple total demandé (CDU) .
3. Procédé selon la revendication 2, caractérisé en ce que le module électronique (30) comporte des moyens de mesure de la vitesse (V) du véhicule et la compare en permanence à une vitesse de référence (Vréf) prédéfinie au dessus de laquelle le module électronique (30) assure dans une deuxième phase la régulation des couples (CMT, CME) fournis par les moteurs thermique (14) et électrique (18) de sorte que le couple (CMT) fourni par le moteur thermique(14) augmente jusqu'à atteindre la valeur du couple total (CDU). demandé au véhicule tandis que le couple (CME) fourni par le moteur électrique (18) décroît et s'annule progressivement, la valeur du couple total (CMT + CME) fourni au véhicule restant égale à la valeur du couple total (CDU) demandé.
EP99913366A 1998-04-10 1999-04-09 Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride Withdrawn EP1068088A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9804532 1998-04-10
FR9804532A FR2777231B1 (fr) 1998-04-10 1998-04-10 Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride
PCT/FR1999/000820 WO1999052729A1 (fr) 1998-04-10 1999-04-09 Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride

Publications (1)

Publication Number Publication Date
EP1068088A1 true EP1068088A1 (fr) 2001-01-17

Family

ID=9525130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913366A Withdrawn EP1068088A1 (fr) 1998-04-10 1999-04-09 Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride

Country Status (3)

Country Link
EP (1) EP1068088A1 (fr)
FR (1) FR2777231B1 (fr)
WO (1) WO1999052729A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7185722B1 (en) * 2000-02-04 2007-03-06 Hitachi, Ltd. Power transmission apparatus of motor vehicles
EP1493604B1 (fr) * 2003-07-04 2013-09-18 Honda Motor Co., Ltd. Dispositif de commande pour véhicule hybride
US8818578B2 (en) 2011-01-25 2014-08-26 Hino Motors, Ltd. Control device, hybrid vehicle, control method, and computer program
SE540141C2 (sv) * 2016-03-23 2018-04-10 Scania Cv Ab Förfarande för att styra en hybriddrivlina, en hybriddrivlina och ett fordon, innefattande en sådan hybriddrivlina
FR3058974B1 (fr) * 2016-11-23 2021-01-01 Renault Sas Procede d'elaboration de la consigne de couple d'un groupe motopropulseur de vehicule hybride

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2419832A1 (fr) * 1978-03-16 1979-10-12 Bocquet Lucien Moyens pour diminuer la consommation et la pollution des vehicules a moteur et pour augmenter temporairement leur puissance motrice
DE4324010C2 (de) * 1993-07-17 1995-05-11 Daimler Benz Ag Verfahren zur Steuerung der Drehmomentabgabe eines ein Fahrzeug antreibenden Hybridantriebes
DE4436383A1 (de) 1993-10-16 1995-04-20 Audi Ag Hybridantrieb für ein Kraftfahrzeug
DE19505431B4 (de) * 1995-02-17 2010-04-29 Bayerische Motoren Werke Aktiengesellschaft Leistungssteuersystem für Kraftfahrzeuge mit einer Mehrzahl von leistungsumsetzenden Komponenten
JP3456329B2 (ja) * 1995-12-08 2003-10-14 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置
FR2746352B1 (fr) * 1996-03-22 1998-05-29 Paganelli Gino Vehicule automobile electrique avec moteur thermique d'appoint

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9952729A1 *

Also Published As

Publication number Publication date
WO1999052729A1 (fr) 1999-10-21
FR2777231A1 (fr) 1999-10-15
FR2777231B1 (fr) 2000-05-26

Similar Documents

Publication Publication Date Title
EP0729858B1 (fr) Véhicule hybride
EP2081808B1 (fr) Procede et dispositif de compensation d'interruption du couple fourni par le groupe motopropulseur d'un vehicule hybride au cours d'un changement de vitesse
EP1097830B1 (fr) Groupe motopropulseur hybride comportant au moins deux trains épicycloidaux
FR2956637A1 (fr) Procede de gestion d'un systeme d'entrainement pour vehicule automobile
FR2785961A1 (fr) Vehicule automobile comportant une boite de vitesses a changements de rapports automatises
EP1428712A1 (fr) Chaíne de traction et procedé de réglage pour véhicule hybride série
FR2909625A1 (fr) Dispositif de commande de source de propulsion pour vehicule
EP1896280B1 (fr) Procede pour piloter le couplage ou le decouplage des deux moteurs d' un groupe motopropulseur hybride parallele
EP1241043A1 (fr) Véhicule hybride série capable de fonctionner sans batterie
FR2809352A1 (fr) Groupe motopropulseur d'un vehicule hybride et son procede de commande
EP3074257A1 (fr) Procede et systeme de demarrage d'un moteur thermique
WO2001025049A1 (fr) Procede de commande d'un vehicule hybride
EP1068088A1 (fr) Procede d'assistance pour une faible vitesse du moteur thermique d'un vehicule hybride
EP1431623B1 (fr) Récupération d'énergie lors d'un changement de rapport montant sur un véhicule hybride série
EP0782664B1 (fr) Dispositif d'entrainement des accessoires d'un moteur a combustion interne de vehicule automobile
EP3292032B1 (fr) Procede de gestion des pentes de l'agrement preventif en deceleration
EP3775595B1 (fr) Procede de controle d'un embrayage pilote
FR3002984A1 (fr) Dispositif de mise en pression de circuit d'huile de lubrification de moteur thermique de vehicule automobile
EP1369281A1 (fr) Procédé et dispositif de supervision du démarrage et de l'arrêt d'un moteur thermique dans un véhicule hybride série
EP3090910B1 (fr) Procede de pilotage du moteur thermique d'un vehicule hybride pour une phase de deceleration du vehicule
FR3080153A1 (fr) Procede de demarrage d’un moteur thermique
FR2992041A1 (fr) Procede et dispositif de controle de l'utilisation des moteurs electrique et thermique d'un vehicule hybride, en fonction d'une acceleration demandee par un systeme de controle de vitesse
FR2830216A1 (fr) Procede et dispositif pour la mise en oeuvre d'une unite d'entrainement d'un vehicule
WO2018087438A1 (fr) Dispositif et procédé de pilotage d'une boite de vitesses robotisee pour vehicule automobile a propulsion hybride
EP1995449A2 (fr) Procédé de commande de l'arrêt et du redémarrage automatique du moteur d'un véhicule en fonction de la pente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

17Q First examination report despatched

Effective date: 20030120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030403