EP1065461A1 - Prodédé de combustion, applicable à la fabrication de ciment. - Google Patents

Prodédé de combustion, applicable à la fabrication de ciment. Download PDF

Info

Publication number
EP1065461A1
EP1065461A1 EP00401748A EP00401748A EP1065461A1 EP 1065461 A1 EP1065461 A1 EP 1065461A1 EP 00401748 A EP00401748 A EP 00401748A EP 00401748 A EP00401748 A EP 00401748A EP 1065461 A1 EP1065461 A1 EP 1065461A1
Authority
EP
European Patent Office
Prior art keywords
fuel
primary
flame
oxidizer
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00401748A
Other languages
German (de)
English (en)
Other versions
EP1065461B1 (fr
Inventor
Jacques Dugue
Ovidiu Marin
Thierry Borissoff
Dora Sophia Alves
Michel Viardot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9547648&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1065461(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1065461A1 publication Critical patent/EP1065461A1/fr
Application granted granted Critical
Publication of EP1065461B1 publication Critical patent/EP1065461B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices

Definitions

  • the present invention relates to a combustion method, applicable more particularly to the calcination of a material based on ore in particular the manufacture of cement in which a material is heated in contact with a source of heat essentially created by a flame generated by at least one fuel and at least one oxidizer. This calcination process is integrated into a cement preparation process.
  • the invention also relates to the use of the combustion process for heating a charge whether it is for melting a metal, maintain it in temperature, destruction of waste, etc ...
  • Clinker is a product that is obtained by baking a material based on ore and in particular clay and limestone.
  • the material in the form of powder can be supplied to a rotary kiln, either in dry form (dry process) or in the form of a paste ("slurry") based on water (wet process).
  • the composition of clinker is generally carefully controlled in order to obtain the proportions different mineral materials and especially calcium carbonate, silica, alumina, iron oxide and magnesium carbonate.
  • the precursor material for the manufacture of clinker first undergoes drying and heating.
  • this material undergoes a calcination in which the carbonates of the different minerals are converted into the oxide of these minerals by removal of carbon dioxide. With temperatures still high, minerals thus obtained chemically react with each other to produce mainly calcium silicates and calcium aluminates.
  • This last process is called “clinkerization” process and it is performed in the hot zone of a rotary oven. The resulting clinker is then cooled and sprayed then mixed with additional ingredients to form a cement such as Portland type cement.
  • Cement manufacturing processes involve many similarities and essential differences between these different processes reside essentially in the method used to dry, preheat or calcine the precursor of clinker.
  • the process of clinker manufacturing is almost always the same ie a process in which uses a rotary kiln in which the clinker precursors descend by gravity while hot gases are flowing against the current from of an area in which combustion has taken place.
  • Common fuels that burn easily in rotary clinker furnaces are coal, heavy fuel oil, and natural gas. These fuels have a lower calorific value (PCI) having a value between 30 and 45 x 10 6 joules / kg. Heavy fuels can be preheated and atomized into droplets of sizes less than 200 microns with a fraction of their mass transformed into droplets of diameter less than 50 microns. The smallest droplets evaporate quickly, allowing the flame to ignite near the end of the burner.
  • PCI calorific value
  • the carbon particles are pulverized with a size distribution between 10 and 200 microns.
  • the rapid and stable ignition of the combustion is improved by the control of the size but also by the combustible volatile matter released by the particles when they are heated.
  • cement manufacturers make continuous efforts to lower the cost of fuels used in the production of clinker and today try to burn in particular liquid or solid waste with low combustible qualities and often lower calorific value (PCI) at 15 x 10 6 joule / kg.
  • PCI calorific value
  • These bad fuels however, often have a water content greater than 20% by mass, or a large particle size (for example 75% of the mass consisting of particles or droplets of size greater than 200 microns).
  • the problem underlying the invention results from the observation by the inventors that the fuel injected into the furnace and in particular the fuels to low lower calorific value could only participate in combustion before to have traveled a fairly long distance inside the rotary kiln. If the distance the oven is too short, the combustion is of poor quality.
  • the combustion process according to the invention is characterized in that the flame has a primary combustion zone created by the combustion of a first fuel and a first oxidizer, this primary zone being located at proximity of the injection points of the first oxidizer and the first fuel, as well as a secondary combustion zone located downstream of the primary zone, to the combustion of a second fuel and a second oxidizer, the second fuel being preheated by passage into or near the primary zone of flame.
  • the distance of passage of the second fuel in contact of the flame of the primary zone will be sufficient for at least part of the second fuel has been preheated to a temperature of at least about 400 ° C, preferably about 600 ° C and more preferably 800 ° C.
  • the secondary fuel will be a fuel whose lower calorific value (PCI) will be less than 15 x 10 6 joule / kg.
  • the secondary fuel may be a fuel whose water content by mass will be greater than or equal to approximately 20% and less than or equal to approximately 95%, preferably less than or equal to 70%.
  • the secondary fuel will contain ash in mass proportion greater than 20%.
  • the ignition distance defined as being the distance between the injection end of the oxidants and fuels and the start of the combustion zone will be less than 2 m, preferably less than about 1 m.
  • the primary flame area will be considered substantially ends when more than about 90% of the primary oxidant has reacted with the primary fuel.
  • the energy of the primary flame will be the lowest possible and will represent at most 30% and preferably at most 15% of the energy total brought by the flame.
  • the energy of the primary flame will represent approximately between 1% and 10% of the total energy provided by the flame, this primary flame preferably comprising a temperature zone also as high as possible, so as to raise the temperature as quickly as possible secondary fuel on contact.
  • the primary fuel will be a fuel preferably having a PCI greater than 30 x 10 6 joule / kg, that is to say a fuel which ignites easily.
  • this fuel having good qualities a fuel having a low lower calorific value or a fuel having poor ignition qualities as defined above in proportions such that a primary flame having the required temperature qualities and in particular having a temperature preferably greater than 800 ° C. and more preferably greater than 1000 ° C.
  • the primary oxidizer will be an oxidizer which will contain more than 21% of oxygen and preferably more than 35% of oxygen, more preferably more than 50% of oxygen and even more preferably will be industrially pure oxygen, that is to say of oxygen comprising more than approximately 88% by volume of oxygen such as the oxygen produced by oxygen production systems by adsorption such as VSA (Vaccum Swing Adsorption System) and may also consist of oxygen of cryogenic quality, that is to say having a purity often greater than 98%, possibly pure or mixed with air.
  • VSA Vacum Swing Adsorption System
  • the secondary fuel has already been described above, while the secondary oxidizer will preferably be air and in particular air which is usually used in the burner installed in cement kilns (still called primary air and / or secondary air).
  • the raw material from zone 1 is sent to the pre-calcination zone 3 (or according to some variant a Lepol type exchanger) in which the temperature of the raw material gradually heats up against current of hot gases flowing from left to right in the figure.
  • the pre-calcination zone 3 or according to some variant a Lepol type exchanger in which the temperature of the raw material gradually heats up against current of hot gases flowing from left to right in the figure.
  • FIG 2 is shown a detail view of the flame (12) shown in Figure 1.
  • the flame spreads over a large length of the rotary kiln (4) and the start of combustion actually begins at a certain distance from the end of the burner (8), the visible non-combustion zone between the end of the burner and the start of the flame being represented by the zone (13).
  • the primary air and main fuel are injected into the burner while secondary air is injected on the sides (according to the prior art).
  • Primary air is injected at a temperature of around 100 ° C, the secondary air has a temperature often between 500 and 900 ° C, while the flame temperature in its hottest part is around 1900 ° C at least.
  • the length of the flame in such a rotary kiln is typically 4 to 7 times the diameter of the rotary kiln (4).
  • FIGS. 3 A and 3 B the same figures show reference that in the previous figures the flames of the prior art, in the case where the ignition distance (D) represented by area (13) is correct for ensure good combustion, this distance (D) generally being less than 1 meter ( Figure 3a) while in Figure 3b is typically shown a flame degraded, that is to say that the zone (13) extends over a length D, which is unacceptable, which is in the range of 2 to 3 meters or more. Not only this ignition distance is too large but the ignition position, i.e. the tip of the non-inflamed area can fluctuate greatly and there are risk of flame catching. Typically the injection of poor quality in an existing flame of the prior art as described above, leads to a degraded flame as shown in this figure 3b this which is unacceptable both from the point of view of combustion and from the point of view of installation security.
  • FIG. 4 shows a first solution according to the invention in which the hot oxy-fuel flame is located around the jet of poor quality secondary fuel, i.e. surrounds it.
  • the secondary fuel is injected in (24), while around it through the concentric orifice (23) is injected with the mixture of oxygen and first fuel so as to create a flame hot enough to preheat as it has
  • the fuel injected through the orifice (24) of poor quality has been described above.
  • the flame develops with in the center in the upstream flame area an area (25) in which the second fuel is preheated in contact with the generally oxy-combustible, hot flame, which develops in zone (26) around poor quality fuel, while that a second downstream combustion zone develops substantially beyond the vertical line (40) shown in the figure, generally when about more than 90 % of the oxidizer, i.e. the oxygen used in the hot flame (26), has already reacted with the first fuel (usually of good quality) to create the hot flame which preheats the second fuel.
  • Downstream from line (40) we finds the second flame combustion zone resulting essentially from the combustion of the second fuel (of poor quality) with the surrounding air, i.e.
  • the whole of the flame (29) thus thus comprises a rear part upstream of the line (40), essentially formed by a short oxy-fuel flame which preheats the second fuel and a downstream part (27) in which occurs the main combustion according to the invention, fuel from poor quality with air, combustion which can be carried out under conditions correct thanks to the preheating according to the invention of poor fuel quality in the upstream part of the flame.
  • FIG. 5 shows another variant of the invention, in which the flame which heats the poor quality fuel (25) is injected centrally in the injection system while the bad fuel quality to be heated surrounds this oxy-fuel flame injected through the orifice (23).
  • the other elements remain similar to those described in Figure 4, with the same operating principle, namely in the upstream zone preheating of the poor quality fuel which thus reaches the downstream part with a temperature generally preferably greater than or equal to 1000 ° C. which burns completely correctly with primary and / or secondary air from the annular cavities (22) and / or (21).
  • the second fuel of poor quality which should be preheated by the flame preferably oxygen and first fuel, will be injected into it or outside of it at a speed which will preferably not exceed 50 meters / s and more preferably which will not exceed 20 meters / s.
  • the speeds injection of this second fuel to be preheated of the order of 10 meters / s were suitable, particularly when it comes to fuels with low PCI or aqueous fuels such as sludge from sewage treatment plants, etc.
  • this solid waste such as carpet waste or plastic waste being generally made up of relatively coarse pieces and injected into speeds which are on the contrary high, for example of the order of 200 meters / s, of so as to be projected as far upstream as possible from the "clinkerization" zone of the clinker and can then be pyrolyzed and thus be associated with the formation of the clinker.
  • FIG. 6 represents an alternative embodiment of the invention corresponding to a modification of an existing burner on an oven (32).
  • All of the system (31) comprises in its lower part the existing burner (32) and in its upper part the assembly added according to the method of the invention.
  • the fuel which possibly includes waste, in particular solid waste is injected through the orifice (34), pneumatically using air primary while secondary air is injected into the annular duct (33) so as to produce the combustion system according to the prior art.
  • the second fuel to be preheated (35) is located in the center of an injected flame by the annular cover (36) preferably constituted as described above, of oxygen and a first fuel so as to preheat this second combustible.
  • This second fuel is preferably formed as indicated above of a pulverulent or liquid fuel which needs to be preheated before to be able to react in the secondary combustion zone of the flame with air secondary especially not having reacted with the flame (33 - 34).
  • the elements of this flame (35 - 36) meets the elements of the aerocombustible flame by gravity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

Procédé de combustion applicable notamment à la cimenterie, dans lequel on veut utiliser des combustibles qui s'enflamment difficilement. Pour cela, on crée une flamme comportant une zone primaire et une zone secondaire. La zone primaire, chaude, est créée à l'aide d'une flamme oxy-combustible, qui permet de préchauffer le combustible qui s'enflamme difficilement de manière à l'amener à la température adéquate dans la zone secondaire où il brûle, avec de l'air, pour créer la flamme principale. Applications : ciment, métallurgie, verre,...

Description

La présente invention concerne un procédé de combustion, applicable plus particulièrement à la calcination d'un matériau à base de minerai notamment la fabrication de ciment dans lequel un matériau est chauffé au contact d'une source de chaleur essentiellement créée par une flamme engendrée par au moins un combustible et au moins un comburant. Ce procédé de calcination s'intègre dans un procédé de préparation de ciment. L'invention concerne également l'utilisation du procédé de combustion pour chauffer une charge que ce soit pour fondre un métal, le maintenir en température, la destruction des déchets, etc...
La fabrication de ciment passe par la fabrication d'un produit intermédiaire appelé « clinker ». Le clinker est un produit qui est obtenu par cuisson d'un matériau à base de minerai et notamment l'argile et le calcaire. Le matériau sous forme de poudre peut être fourni à un four rotatif, soit sous forme sèche (procédé sec) soit sous forme d'une pâte ("slurry") à base d'eau (procédé humide). La composition du clinker est en général soigneusement contrôlée afin d'obtenir les proportions désirées des différents matériaux minéraux et notamment le carbonate de calcium, la silice, l'alumine, l'oxyde de fer et le carbonate de magnésium. Après enfournement dans un four, le matériau précurseur pour la fabrication de clinker subit tout d'abord un séchage et un chauffage. Ensuite, ce matériau subit une calcination dans laquelle les carbonates des différents minéraux sont convertis en oxyde de ces minéraux par élimination de dioxyde de carbone. Les températures étant encore élevées, les minéraux ainsi obtenus réagissent chimiquement entre eux pour produire essentiellement des silicates de calcium et des aluminates de calcium. Ce dernier procédé est appelé procédé de « clinkerisation » (« clinkering » en anglais) et il est réalisé dans la zone chaude d'un four rotatif. Le clinker qui en résulte est alors refroidi et pulvérisé puis mélangé avec des ingrédients additionnels pour former un ciment tel que le ciment de type portland.
Les procédés de fabrication de ciments comportent de nombreuses similitudes et les différences essentielles entre ces différents procédés résident essentiellement dans la méthode utilisée pour sécher, préchauffer ou calciner le précurseur du clinker. En règle générale dans tous ces systèmes le procédé de fabrication de clinker est sensiblement toujours le même c'est à dire un procédé dans lequel on utilise un four rotatif dans lequel les précurseurs de clinker descendent par gravité tandis que les gaz chauds sont circulés à contre courant en provenance d'une zone dans laquelle on a réalisé une combustion.
Il est connu, par exemple du brevet US 5,572,938, que l'utilisation d'oxygène dans les fours rotatifs de fabrication de clinker permet d'augmenter la production de clinker en améliorant essentiellement la combustion habituellement pratiquée à l'aide d'une combustion à l'air. Toutefois, jusqu'à ce jour, ces techniques ne sont pas très bien maítrisées et représentent souvent une augmentation sensible des coûts de production pour le fabricant.
Différentes techniques de fabrication de ciment sont décrites notamment dans les brevets US 3,302,938, US 3,404,199, US 3,925,091 dont les descriptions sont incorporées dans la présente demande par référence.
D'autres procédés dans lesquels on utilise également de l'oxygène dans la fabrication de ciment sont décrits dans les brevets US 5,007,823 et 5.580.237.
D'une manière générale, les fabricants de clinker essaient d'incorporer comme combustibles dans leur four, afin de diminuer les coûts de production, des combustibles qui ont la propriété de brûler relativement mal, ainsi que des produits peu combustibles ayant un faible pouvoir calorifique inférieur (PCI). D'une manière générale ils cherchent à utiliser des déchets de toutes sortes relativement peu combustibles pour lesquels ils peuvent recevoir notamment des primes à la destruction desdits déchets. En effet, le procédé de fabrication de clinker consomme beaucoup d'énergie, en particulier parce que la réaction de décarbonation du carbonate de calcium dans l'opération de fabrication de clinker est une réaction très endothermique et donc grande consommatrice d'énergie.
Les combustibles habituels qui brûlent facilement dans les fours rotatifs de fabrication de clinker sont le charbon, les fiouls lourds et le gaz naturel. Ces combustibles ont un pouvoir calorifique inférieur (PCI) ayant une valeur comprise entre 30 et 45 x 106 joules/kg. Les fuels lourds peuvent être préchauffés et atomisés en gouttelettes de tailles inférieures à 200 microns avec une fraction de leur masse transformée en gouttelettes de diamètre inférieure à 50 microns. Les gouttelettes les plus petites s'évaporent rapidement et permettent ainsi un allumage de la flamme près de l'extrémité du brûleur.
De la même manière, les particules de charbon sont pulvérisées avec une distribution de taille comprise entre 10 et 200 micron. L'allumage rapide et stable de la combustion est amélioré par le contrôle de la taille mais aussi par la matière volatile combustible dégagée par les particules lorsqu'elles sont chauffées. Cependant, les fabricants de ciment font des efforts continuels pour diminuer le coût des combustibles utilisés dans la production de clinker et essayent aujourd'hui de brûler notamment des déchets liquides ou solides ayant de faibles qualités combustibles et un pouvoir calorifique inférieur (PCI) souvent inférieur à 15 x 106 joule/kg. Ces mauvais combustibles ont cependant un contenu en eau souvent supérieur à 20 % en masse, ou une dimension de particules importante (par exemple 75 % de la masse consistant en des particules ou des gouttelettes de taille supérieure à 200 micron).
L'utilisation de ces combustibles ayant des difficultés à brûler entraíne un certain nombre de problèmes dans la zone de combustion et en particulier dans la zone de calcination des fours rotatifs utilisés pour fabriquer le clinker et notamment un allumage de la flamme instable, des taux de combustion trop faibles, ce qui génère des concentrations en monoxyde de carbone qui sont incontrôlées, des émissions d'hydrocarbures dans les gaz issus de ces fours, des niveaux d'imbrûlés dans les cendres qui sont inacceptables en particulier les imbrûlés dans les gaz issus du four avec pour conséquence des diminutions de productivité, sauf à rajouter des quantités supplémentaires de combustibles afin de compenser les effets néfastes de ces mauvais combustibles.
Le problème à la base de l'invention résulte de la constatation par les inventeurs que le combustible injecté dans le four et notamment les combustibles à faible pouvoir calorifique inférieur ne pouvaient participer à la combustion avant d'avoir parcouru une assez longue distance à l'intérieur du four rotatif. Si la distance parcourue dans le four est trop courte, la combustion est de mauvaise qualité.
Le procédé de combustion selon l'invention est caractérisé en ce que la flamme comporte une zone primaire de combustion créée par la combustion d'un premier combustible et d'un premier comburant, cette zone primaire étant située à proximité des points d'injection du premier comburant et du premier combustible, ainsi qu'une zone secondaire de combustion située en aval de la zone primaire, pour la combustion d'un second combustible et d'un second comburant, le second combustible étant préchauffé par passage dans ou à proximité de la zone primaire de la flamme.
De préférence, la distance de passage du second combustible au contact de la flamme de la zone primaire sera suffisante pour qu'une partie au moins du second combustible ait été préchauffée à une température d'au moins environ 400°C, de préférence environ 600°C et plus préférentiellement 800°C.
Selon un mode préférentiel de réalisation de l'invention, on a constaté que lorsque la distance de passage du second combustible au contact de la flamme s'effectuait dans des conditions telles que la température de ce second combustible était sensiblement de l'ordre de 1000°C au moins lorsque celui arrivait dans la seconde zone de combustion, la combustion du second combustible dans cette seconde zone s'effectuait dans de bonnes conditions, conduisant à une diminution du taux de NOx et de la quantité d'imbrûlés dans les fumées.
De préférence, le combustible secondaire sera un combustible dont le pouvoir calorifique inférieur (PCI) sera inférieur à 15 x 106 joule/kg. Selon une variante de l'invention, le combustible secondaire pourra être un combustible dont la teneur massique en eau sera supérieure ou égale à environ 20 % et inférieure ou égale à environ 95 % de préférence inférieure ou égale à 70 %. Selon une autre variante de réalisation, le combustible secondaire contiendra des cendres en proportion massique supérieur à 20 %.
Bien entendu, selon l'invention, on peut utiliser un combustible secondaire ou un mélange de combustibles secondaires (choisis notamment parmi ceux énumérés ci-dessus) ainsi qu'un mélange d'un ou plusieurs de ces combustibles secondaires avec un autre combustible tel que les combustibles primaires cités dans le cadre de la présente description et notamment ceux ayant un pouvoir calorifique inférieur (PCI) supérieur à 30 x 106 joule/kg. Selon un mode de réalisation de l'invention, la distance d'inflammation définie comme étant la distance entre l'extrémité d'injection des comburants et combustibles et le début de la zone de combustion sera inférieure à 2 m de préférence inférieure à environ 1 m.
En règle générale, on considérera la zone de la flamme primaire se termine sensiblement lorsque plus de 90 % environ de l'oxydant primaire aura réagi avec le combustible primaire.
D'une manière générale, l'énergie de la flamme primaire sera la plus faible possible et représentera au plus 30 % et de préférence au plus 15 % de l'énergie totale apportée par la flamme. De façon préférentielle l'énergie de la flamme primaire représentera environ entre 1 % et 10 % de l'énergie totale apportée par la flamme, cette flamme primaire comportant de préférence une zone de température aussi élevée que possible, de manière à élever le plus rapidement possible la température du combustible secondaire à son contact.
Selon une autre variante de l'invention, le combustible primaire sera un combustible ayant de préférence avec un PCI supérieur à 30 x 106 joule/kg, c'est à dire un combustible qui s'enflamme facilement. Cependant, il sera possible de mélanger à ce combustible ayant de bonnes qualités, un combustible ayant un faible pouvoir calorifique inférieur ou un combustible ayant de mauvaises qualités d'allumage telles que définies ci-avant dans des proportions telles que l'on obtienne cependant une flamme primaire ayant les qualités de température requises et notamment ayant une température de préférence supérieure à 800°C et plus préférentiellement supérieure à 1000°C. Le comburant primaire sera un comburant qui comportera plus de 21 % en oxygène et de préférence plus de 35 % en oxygène, plus préférentiellement plus de 50 % en oxygène et encore plus préférentiellement sera de l'oxygène industriellement pur, c'est à dire de l'oxygène comportant plus d'environ 88 % en volume d'oxygène tel que l'oxygène produit par les systèmes de production d'oxygène par adsorption tels que les VSA (Vaccum Swing Adsorption System) et pourra être également constitué par de l'oxygène de qualité cryogénique c'est à dire ayant une pureté souvent supérieure à 98 %, éventuellement pur ou en mélange avec de l'air.
Le combustible secondaire a été déjà décrit ci avant, tandis que le comburant secondaire sera de préférence l'air et en particulier l'air qui est habituellement utilisé dans le brûleur installé dans les fours de cimenterie (encore appelé air primaire et/ou air secondaire).
L'invention sera mieux comprise à l'aide des exemples de réalisation suivants donnés à titre non limitatif, conjointement avec les figures qui représentent :
  • la figure 1 représente une vue schématique en coupe latérale d'une installation de fabrication de clinker selon l'art antérieur ;
  • la figure 2 représente une vue de détails de la flamme utilisée dans le four rotatif pour la réalisation de clinker, selon l'art antérieur ;
  • la figure 3 représente schématiquement une flamme pour laquelle la distance d'inflammation est considérée comme correcte et une flamme dégradée c'est à dire non acceptable ;
  • la figure 4 représente une première variante de réalisation du procédé de combustion selon l'invention dans laquelle le second combustible est injecté à l'intérieur d'une flamme oxycombustible ;
  • la figure 5 représente une deuxième variante de la réalisation de l'invention dans laquelle la flamme primaire d'oxygène et de combustible est envoyée au centre du jet du second combustible ;
  • la figure 6 représente une troisième variante de la réalisation de l'invention dans laquelle la flamme primaire d'oxygène et de combustible entoure le second combustible afin de le préchauffer l'ensemble étant disposé au-dessus de la flamme air combustible existant sur le four.
Sur la figure 1, la matière crue issue de la zone 1 est envoyée dans la zone de pré-calcination 3 (ou selon certaine variante un échangeur de type Lepol) dans lequel la température de la matière crue s'échauffe progressivement à contre courant des gaz chauds circulant de la gauche vers la droite sur la figure.
Sur la figure 2 est représentée une vue de détails de la flamme (12) représentée sur la figure 1. Sur cette figure, les mêmes éléments que ceux des autres figures portent les mêmes références. La flamme s'étend sur une grande longueur du four rotatif (4) et le début de la combustion commence effectivement à une certaine distance de l'extrémité du brûleur (8), la zone de non-combustion visible entre l'extrémité du brûleur et le début de la flamme étant représentée par la zone (13). Dans le brûleur est injecté l'air primaire et le combustible principal tandis que l'air secondaire est injecté sur les côtés (selon l'art antérieur). L'air primaire est injecté à une température d'environ 100°C, l'air secondaire a une température souvent comprise entre 500 et 900°C, tandis que la température de la flamme dans sa partie la plus chaude est de l'ordre de 1900°C au moins. La longueur de la flamme dans un tel four rotatif est typiquement de 4 ` 7 fois le diamètre du four rotatif (4).
Sur les figures 3 A et 3 B on a représenté, avec les mêmes chiffres de référence que sur les figures précédentes les flammes de l'art antérieur, dans le cas où la distance d'inflammation (D) représentée par la zone (13) est correcte pour assurer une bonne combustion, cette distance (D) étant généralement inférieure à 1 mètre (figure 3a) tandis que sur la figure 3b est représentée typiquement une flamme dégradée c'est à dire que la zone (13) s'étend sur une longueur D, qui est inacceptable, qui est de l'ordre de 2 à 3 mètres ou plus. Non seulement cette distance d'inflammation est trop grande mais la position d'inflammation c'est à dire l'extrémité de la zone non-enflammée peut fluctuer grandement et il existe des risques de décrochement de flammes. Typiquement l'injection de combustibles de mauvaise qualité dans une flamme existante de l'art antérieur telle que décrite ci-avant, conduit à une flamme dégradée telle que représentée sur cette figure 3b ce qui est inacceptable tant du point de vue de la combustion que du point de vue de la sécurité de l'installation.
Les figures suivantes (4, 5 et 6) représentent différentes variantes de réalisation de l'invention. Sur la figure 4 est représentée une première solution selon l'invention dans laquelle la flamme chaude oxy-combustible est situé autour du jet de combustible secondaire de mauvaise qualité, c'est à dire entoure celui-ci. Le combustible secondaire est injecté en (24), tandis qu'autour de celui-ci à travers l'orifice concentrique (23) est injecté le mélange d'oxygène et de premier combustible de manière à créer une flamme suffisamment chaude pour préchauffer comme il l'a été décrit ci-avant le combustible injecté à travers l'orifice (24) de mauvaise qualité. Ainsi que représentée sur la figure, la flamme se développe avec au centre dans la zone amont de la flamme une zone (25) dans laquelle le second combustible est préchauffé au contact de la flamme généralement oxy-combustible, chaude, qui se développe dans la zone (26) autour du combustible de mauvaise qualité, tandis qu'une deuxième zone de combustion aval se développe sensiblement au-delà de la ligne verticale (40) représentée sur la figure, généralement quand environ plus de 90 % du comburant, c'est à dire l'oxygène utilisé dans la flamme chaude (26), a déjà réagi avec le premier combustible (de bonne qualité généralement) pour créer la flamme chaude qui préchauffe le second combustible. En aval de la ligne (40) on retrouve la deuxième zone de combustion de la flamme résultant essentiellement de la combustion du second combustible (de mauvaise qualité) avec l'air environnant, c'est à dire l'air primaire injecté à travers la cavité annulaire (22) et/ou l'air dit secondaire injecté à travers la cavité annulaire (21), air qui comme dans le cadre de l'art antérieur a été généralement préchauffé à une température comprise entre 500 et 1000°C, ce préchauffage ayant lieu au contact du clinker formé dans le four rotatif de manière à refroidir celui-ci à partir d'air pompé de l'extérieur à température environnante. L'ensemble de la flamme (29) comporte donc ainsi une partie arrière en amont de la ligne (40), essentiellement formée par une flamme courte oxy-combustible qui préchauffe le second combustible et une partie avale (27) dans laquelle se produit la combustion principale selon l'invention, du combustible de mauvaise qualité avec l'air, combustion qui peut être réalisée dans des conditions correctes grâce au préchauffage selon l'invention du combustible de mauvaise qualité dans la partie amont de la flamme.
Sur la figure 5 est représentée une autre variante de l'invention, dans laquelle la flamme qui chauffe le combustible de mauvaise qualité (25) est injectée centralement dans le système d'injection tandis que le combustible de mauvaise qualité à chauffer entoure cette flamme oxy-combustible injectée à travers l'orifice (23). Les autres éléments restent similaires à ceux décrient sur la figure 4, avec le même principe de fonctionnement à savoir dans la zone amont un préchauffage du combustible de mauvaise qualité qui atteint ainsi la partie avale avec une température généralement de préférence supérieure ou égale à 1000°C ce qui permet de brûler de façon tout à fait correcte avec l'air primaire et/ou secondaire issue des cavités annulaires (22) et/ou (21).
Selon une caractéristique de l'invention, le second combustible de mauvaise qualité, qui doit être préchauffé par la flamme de préférence oxygène et premier combustible, sera injecté dans celle-ci ou à l'extérieur de celle-ci à une vitesse qui n'excédera pas de préférence 50 mètres/s et plus préférentiellement qui n'excédera pas 20 mètres/s. D'une manière générale, on a constaté que les vitesses d'injection de ce second combustible à préchauffer, de l'ordre de 10 mètres/s étaient adaptées, particulièrement lorsqu'il s'agit de combustibles à faible PCI ou de combustibles aqueux tels que des boues de stations d'épuration, etc...
Dans le cadre de la présente invention, il n'est en effet pas exclu de pouvoir injecter également des déchets solides en addition du second combustible, ces déchets solides tels que des déchets de moquette ou des déchets de plastique étant généralement constitués de morceaux relativement grossiers et injectés à des vitesses qui sont au contraire élevées, par exemple de l'ordre de 200 mètres/s, de manière à être projetés le plus en amont possible de la zone de "clinkerisation" du clinker et à pouvoir ensuite être pyrolysés et ainsi s'associer à la formation du clinker.
La figure 6 représente une variante de réalisation de l'invention correspondant à une modification d'un brûleur existant sur un four (32). L'ensemble du système (31) comporte dans sa partie inférieure le brûleur existant (32) et dans sa partie supérieure l'ensemble rajouté selon le procédé de l'invention. Dans sa partie inférieure, le combustible qui comporte éventuellement des déchets notamment des déchets solides est injecté à travers l'orifice (34), pneumatiquement à l'aide de l'air primaire tandis que de l'air secondaire est injecté dans la canalisation annulaire (33) de manière à réaliser le système de combustion selon l'art antérieur. Placé au-dessus de ce système de combustion et plus préférentiellement sur le même axe vertical, se trouve un système de combustion selon l'invention dans lequel le deuxième combustible à préchauffer (35) est situé au centre d'une flamme injectée par la couverture annulaire (36) constituée de préférence comme décrit ci-avant, d'oxygène et d'un premier combustible de manière à préchauffer ce deuxième combustible. Ce deuxième combustible est de préférence constitué comme indiqué ci-avant d'un combustible pulvérulent ou liquide qui nécessite d'être préchauffé avant de pouvoir réagir dans la zone de combustion secondaire de la flamme avec l'air secondaire notamment n'ayant pas réagi avec la flamme (33 - 34). Les éléments de cette flamme (35 - 36) rencontrent les éléments de la flamme aérocombustible par gravité. Bien entendu on peut là encore, selon une variante de l'invention, placer la flamme chaude (36) au centre et l'injection de seconds combustibles (35) autour cette flamme chaude (36).

Claims (21)

  1. Procédé de calcination d'un matériau à base de minerais, dans lequel ledit matériau est chauffé au contact d'une source de chaleur essentiellement créée par une flamme engendrée par au moins un combustible et au moins un comburant, caractérisé en ce que la flamme comporte une zone primaire de combustion créée par la combustion d'un premier combustible et d'un premier comburant, cette zone primaire étant située à proximité des points d'injection du premier comburant et du premier combustible, ainsi qu'une zone secondaire de combustion située en aval de la zone primaire, créée par la combustion d'un second combustible et d'un second comburant, le second combustible étant préchauffé par passage dans la zone primaire de la flamme.
  2. Procédé selon la revendication 1, caractérisé en ce que la distance de passage du second combustible au contact de la flamme de la zone primaire est suffisante pour qu'une partie au moins du second combustible ait été préchauffé à une température d'au moins 400 °C.
  3. Procédé selon la revendication 2, caractérisé en ce que la distance de passage du second combustible au contact de la flamme de la zone primaire est suffisante pour qu'une partie au moins du second combustible ait été préchauffé à une température d'au moins 600°C et de préférence 800°C.
  4. Procédé selon la revendication 2, caractérisé en ce que la distance de passage du second combustible au contact de la flamme de la zone primaire est suffisante pour qu'une partie au moins du second combustible ait été préchauffé à une température d'au moins environ 1000°C
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le combustible secondaire est un combustible dont le pouvoir calorifique inférieur (PCI) est inférieur ou égale à 15 x 106 J/kg.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le combustible secondaire est un combustible dont la teneur en eau est supérieure ou égale à 20 % en poids et inférieure ou égale à 95 % en poids, de préférence 70 % en poids.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le combustible secondaire est un combustible contenant des cendres en proportions supérieures à 20 % en poids.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la distance d'inflammation entre le point d'injection du comburant ou du combustible et le début de la flamme secondaire est inférieur à 2 mètres, de préférence inférieur à 1 mètre.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le combustible secondaire comporte plusieurs combustibles secondaires et contient 0 % à 50 % en volume de combustible identique au combustible primaire.
  10. Procédé selon l'une des revendication 1 à 8, caractérisé en ce que le combustible primaire comporte de 0 % à 100 % en volume de combustible utilisé comme combustible secondaire.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que la zone de combustion secondaire commence à une distance d'injection des comburants et combustibles tels que plus de 90 % volume du comburant primaire a réagit avec le combustible primaire.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que l'énergie de la flamme primaire représente plus de 30 %, de préférence plus de 15 % de l'énergie totale apportée par la flamme.
  13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que l'énergie de la flamme primaire représente entre 1 et 10 % de l'énergie totale apportée par la flamme.
  14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce que le combustible primaire est choisi parmi le gaz naturel et/ou le propane.
  15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que le comburant primaire est constitué par de l'air enrichi en oxygène, comportant plus de 21 % volume d'oxygène.
  16. Procédé selon la revendication 15, caractérisé en ce que le comburant primaire comporte plus de 50 % volume d'oxygène, de préférence plus de 88 % volume d'oxygène.
  17. Procédé selon la revendication 16, caractérisé en ce que le comburant primaire comporte plus de 98 % volume d'oxygène.
  18. Procédé selon l'une des revendications 1 à 17, caractérisé en ce que le comburant secondaire et essentiellement constitué par de l'air.
  19. Procédé selon l'une des revendications 1 à 18, caractérisé en ce que le comburant primaire a une concentration en oxygène supérieure à la concentration en oxygène du comburant secondaire.
  20. Procédé selon l'une des revendications précédentes, caractérisé en ce que le second combustible est injecté à une vitesse qui n'est pas supérieure à 50 mètres/s, de préférence qui n'est pas supérieure à une vitesse de 20 mètres/s.
  21. Procédé selon la revendication 20, caractérisé en ce que le second combustible est injecté à une vitesse de l'ordre de 10 mètres/s.
EP00401748A 1999-07-02 2000-06-20 Prodédé de combustion, applicable à la fabrication de ciment. Expired - Lifetime EP1065461B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9908562A FR2795808B1 (fr) 1999-07-02 1999-07-02 Procede de combustion, applicable a la fabrication de ciment
FR9908562 1999-07-02

Publications (2)

Publication Number Publication Date
EP1065461A1 true EP1065461A1 (fr) 2001-01-03
EP1065461B1 EP1065461B1 (fr) 2004-03-17

Family

ID=9547648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00401748A Expired - Lifetime EP1065461B1 (fr) 1999-07-02 2000-06-20 Prodédé de combustion, applicable à la fabrication de ciment.

Country Status (9)

Country Link
US (1) US6375456B1 (fr)
EP (1) EP1065461B1 (fr)
JP (1) JP4642972B2 (fr)
CN (1) CN1208575C (fr)
AT (1) ATE262150T1 (fr)
CA (1) CA2312576C (fr)
DE (1) DE60008970T2 (fr)
ES (1) ES2216834T3 (fr)
FR (1) FR2795808B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626628A1 (fr) * 2012-02-09 2013-08-14 Linde Aktiengesellschaft Installation de chauffe d'un four rotatif
CN103443572A (zh) * 2011-03-28 2013-12-11 乔治洛德方法研究和开发液化空气有限公司 用于操作炉子的方法和装置
US10087104B2 (en) 2012-10-08 2018-10-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for improving the combustion of secondary fuel in a rotary kiln and process for retrofitting a rotary kiln with a burner assembly

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947249B2 (ja) * 2004-02-16 2012-06-06 三菱マテリアル株式会社 ロータリーキルンを用いた可燃性廃棄物の処理方法
JP4964185B2 (ja) * 2004-02-26 2012-06-27 太平洋セメント株式会社 セメントクリンカの製造方法
FR2889579B1 (fr) * 2005-08-03 2007-09-14 Air Liquide Procede de calcination d'un materiau a faible emission de nox
JP4777044B2 (ja) * 2005-11-04 2011-09-21 太平洋セメント株式会社 セメント製造装置及びセメント製造方法
US7452203B2 (en) * 2006-10-16 2008-11-18 Praxair Technology, Inc. Stratified staging in kilns
JP4926781B2 (ja) * 2007-03-27 2012-05-09 住友大阪セメント株式会社 高含水率廃棄物の処理方法及び処理装置
US20110027758A1 (en) 2009-07-30 2011-02-03 Ochs Harold D Methods for providing beneficial effects to the oral cavity
US20120315590A1 (en) * 2011-06-10 2012-12-13 Hansen Eric R Method and apparatus for reducing nox emissions in rotary kilns by sncr
WO2014053190A1 (fr) * 2012-10-05 2014-04-10 Air Liquide Brasil Ltda Coulée à cire perdue et four de calcination associé
EP2717007A1 (fr) 2012-10-08 2014-04-09 Air Liquide Deutschland GmbH Procédé et dispositif destinés à améliorer la combustion de combustible secondaire dans un four rotatif
US10131576B2 (en) * 2013-09-30 2018-11-20 Mitsubishi Materials Corporation Method for operating cement plant
JP6417221B2 (ja) * 2015-01-09 2018-10-31 太平洋セメント株式会社 セメント焼成装置及び可燃性廃棄物の処理方法
CN107191950B (zh) * 2017-05-31 2019-01-11 长沙紫宸科技开发有限公司 一种废塑料悬浮催化裂解和催化氧化无焰燃烧方法
WO2024052590A1 (fr) * 2022-09-08 2024-03-14 Metso Metals Oy Calcination à lit fluidisé avec mélange gazeux comprenant de l'hydrogène

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE570045C (de) * 1928-05-02 1933-02-10 Pierre Jules Justinien Andrieu Verfahren und Brenner zur Verbrennung gasfoermiger, fluessiger oder staubfoermiger Brennstoffe, insbesondere zur Beheizung von Zementdrehrohroefen
US2654592A (en) * 1950-10-25 1953-10-06 Foamrock Corp Furnace
DE1145082B (de) * 1960-05-07 1963-03-07 Rheinische Kalksteinwerke Verfahren zum Betrieb eines Drehrohrofens zum Brennen von Kalkstein, Dolomit oder Magnesit
DE2052646A1 (en) * 1970-10-27 1972-05-04 Fetok Gmbh Rotary shaft cement burning kiln - with two different flame jet length fuel oil burners
US4496306A (en) * 1978-06-09 1985-01-29 Hitachi Shipbuilding & Engineering Co., Ltd. Multi-stage combustion method for inhibiting formation of nitrogen oxides
EP0430376A2 (fr) * 1989-12-01 1991-06-05 International Flame Research Foundation Procédé de combustion pour combustible avec alimentation étagée du combustible et brûleur à cet effet
WO1994007086A1 (fr) * 1992-09-18 1994-03-31 Luminis Pty Ltd. Configuration de bruleur a flamme variable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3302938A (en) 1965-01-25 1967-02-07 Bendy Engineering Company Cement production in a rotary kiln
US3404199A (en) 1965-10-01 1968-10-01 Rheinische Kalkstein Werke G M Heating process in a rotary kiln
JPS5722908B2 (fr) 1973-04-11 1982-05-15
US3890084A (en) * 1973-09-26 1975-06-17 Coen Co Method for reducing burner exhaust emissions
JPS5418686B2 (fr) * 1975-01-14 1979-07-10
JPS5727954A (en) * 1980-07-24 1982-02-15 Babcock Hitachi Kk Cement burning process
US5007823A (en) 1989-12-01 1991-04-16 Air Products And Chemicals, Inc. Dust recycling to rotary kilns
US5421880C1 (en) * 1994-01-14 2001-06-05 Texas Industries Inc Method and apparatus for using steel slag in cement clinker production
US5572938A (en) 1995-02-13 1996-11-12 Praxair Technology, Inc. Oxygen lancing for production of cement clinker
US5580237A (en) 1995-03-09 1996-12-03 Praxair Technology, Inc. Oxidant lancing nozzle
JP3285463B2 (ja) * 1995-04-14 2002-05-27 吉澤石灰工業株式会社 ロータリーキルンにおける廃プラスチックの燃焼方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE570045C (de) * 1928-05-02 1933-02-10 Pierre Jules Justinien Andrieu Verfahren und Brenner zur Verbrennung gasfoermiger, fluessiger oder staubfoermiger Brennstoffe, insbesondere zur Beheizung von Zementdrehrohroefen
US2654592A (en) * 1950-10-25 1953-10-06 Foamrock Corp Furnace
DE1145082B (de) * 1960-05-07 1963-03-07 Rheinische Kalksteinwerke Verfahren zum Betrieb eines Drehrohrofens zum Brennen von Kalkstein, Dolomit oder Magnesit
DE2052646A1 (en) * 1970-10-27 1972-05-04 Fetok Gmbh Rotary shaft cement burning kiln - with two different flame jet length fuel oil burners
US4496306A (en) * 1978-06-09 1985-01-29 Hitachi Shipbuilding & Engineering Co., Ltd. Multi-stage combustion method for inhibiting formation of nitrogen oxides
EP0430376A2 (fr) * 1989-12-01 1991-06-05 International Flame Research Foundation Procédé de combustion pour combustible avec alimentation étagée du combustible et brûleur à cet effet
WO1994007086A1 (fr) * 1992-09-18 1994-03-31 Luminis Pty Ltd. Configuration de bruleur a flamme variable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443572A (zh) * 2011-03-28 2013-12-11 乔治洛德方法研究和开发液化空气有限公司 用于操作炉子的方法和装置
US8974226B2 (en) 2011-03-28 2015-03-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for operating a furnace
CN103443572B (zh) * 2011-03-28 2016-10-26 乔治洛德方法研究和开发液化空气有限公司 用于操作炉子的方法和装置
EP2626628A1 (fr) * 2012-02-09 2013-08-14 Linde Aktiengesellschaft Installation de chauffe d'un four rotatif
US10087104B2 (en) 2012-10-08 2018-10-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for improving the combustion of secondary fuel in a rotary kiln and process for retrofitting a rotary kiln with a burner assembly

Also Published As

Publication number Publication date
FR2795808A1 (fr) 2001-01-05
CN1290668A (zh) 2001-04-11
FR2795808B1 (fr) 2001-09-14
CN1208575C (zh) 2005-06-29
ATE262150T1 (de) 2004-04-15
US6375456B1 (en) 2002-04-23
DE60008970T2 (de) 2005-02-10
EP1065461B1 (fr) 2004-03-17
CA2312576A1 (fr) 2001-01-02
JP2001064049A (ja) 2001-03-13
ES2216834T3 (es) 2004-11-01
DE60008970D1 (de) 2004-04-22
CA2312576C (fr) 2009-08-18
JP4642972B2 (ja) 2011-03-02

Similar Documents

Publication Publication Date Title
EP1065461B1 (fr) Prodédé de combustion, applicable à la fabrication de ciment.
EP0033285B1 (fr) Dispositif de mélange avec turbulence de fluides gazeux et de particules solides
EP2304363B2 (fr) Procédé de fabrication de clinker de ciment dans une installation, et installation de fabrication de clinker de ciment en tant que telle
WO2006042923A2 (fr) Installation et procede de calcination d'une charge minerale contenant un carbonate pour produire un liant hydraulique
EP3724144B1 (fr) Installation de production de clinker et procédé de production de clinker dans une telle installation
BE1003543A4 (fr) Procede de fabrication de ciment.
EP1913321B1 (fr) Procede de calcination d'un materiau a faible emission de nox
WO2009122065A2 (fr) Procede de fabrication d'un clinker sulfo-alumineux ou sulfo-alumineux-belitique et installation correspondante
EP1065460A1 (fr) Procédé de calcination d'un matériau à base de minerai
FR2691790A1 (fr) Installation et procédé de précalcination de matières minérales quelconques.
BE1023896B1 (fr) Procede de combustion de combustible dans une chambre de combustion tubulaire
EP0182697B1 (fr) Procédé et installation de traitement thermique, pouvant être appliqué à la fabrication d'un liant hydraulique, comprenant une étape de post-combustion
EP1388526B1 (fr) Perfectionnement aux procédés de fabrication d'un ciment en vue notamment de réduire l'émission des NOx
EP2242975A2 (fr) Procede de chauffage d'un cru mineral dans un four de cuisson de type four tunnel
FR2803022A1 (fr) Procede d'installation d'alimentation en air d'un bruleur a combustible solide et pulverise
EP3813992B1 (fr) Enrichissement en oxygène et combustion d'un combustible en forme de particules solides entraînées par un gaz porteur
FR2969267A1 (fr) Procede de fusion a chargement discontinu
WO2022180326A1 (fr) Ensemble de calcination pour la decarbonatation des matieres crues et procédé de production de clinker
BE435860A (fr)
BE499029A (fr)
BE420338A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010703

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17Q First examination report despatched

Effective date: 20021211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60008970

Country of ref document: DE

Date of ref document: 20040422

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040705

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2216834

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAS Information related to reply of patent proprietor to notice(s) of opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDOBS3

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: POLYSIUS AG

Effective date: 20041215

NLR1 Nl: opposition has been filed with the epo

Opponent name: POLYSIUS AG

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE

Effective date: 20070425

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE

Effective date: 20070627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040817

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20100913

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180625

Year of fee payment: 19

Ref country code: CH

Payment date: 20180621

Year of fee payment: 19

Ref country code: NL

Payment date: 20180620

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180620

Year of fee payment: 19

Ref country code: BE

Payment date: 20180620

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180622

Year of fee payment: 19

Ref country code: GB

Payment date: 20180620

Year of fee payment: 19

Ref country code: ES

Payment date: 20180720

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60008970

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190620

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190621