EP1062647A1 - Fire alarm box - Google Patents

Fire alarm box

Info

Publication number
EP1062647A1
EP1062647A1 EP98952572A EP98952572A EP1062647A1 EP 1062647 A1 EP1062647 A1 EP 1062647A1 EP 98952572 A EP98952572 A EP 98952572A EP 98952572 A EP98952572 A EP 98952572A EP 1062647 A1 EP1062647 A1 EP 1062647A1
Authority
EP
European Patent Office
Prior art keywords
optical
optical transmitter
fire detector
receiver
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98952572A
Other languages
German (de)
French (fr)
Other versions
EP1062647B1 (en
Inventor
Anton Pfefferseder
Andreas Hensel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1062647A1 publication Critical patent/EP1062647A1/en
Application granted granted Critical
Publication of EP1062647B1 publication Critical patent/EP1062647B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a fire detector with the features mentioned in the preamble of claim 1.
  • Smoke detectors are generally used for early fire detection. Optical smoke detectors are among the most frequently used detectors in the field of fire detection. They can be designed as transmitted light or as scattered light detectors. Smoke detectors based on the scattered radiation principle detect smoke particles by measuring radiation scattered on these smoke particles. The response or sensitivity of all optical smoke detectors depends heavily on the type of fire. The quantity, the nature and the composition of the smoke generated by the fire play a major role in the sensitivity of the smoke detectors. Fires with low smoke development are more difficult to detect than fires that produce a lot of smoke. Scattered-light smoke detectors are also dependent on the reflection of the light the smoke particles arises. To achieve a more even response from fire detectors, optical smoke detectors can be combined with detectors based on other principles. For example, ionization smoke detectors or temperature detectors are known. These different types of fire detectors can be installed at different locations in a room or integrated in a single detector.
  • the object of the invention is to provide a fire detector which can reliably detect various types of fire, with and without smoke development.
  • the fire detector according to the invention with the features mentioned in claim 1 has the advantage that a more reliable fire detection is possible by combining two different sensor methods than is the case with conventional smoke or fire detectors.
  • a scattered light receiver known per se for detecting smoke can be combined with at least one further optical receiver. niert, which responds by upstream of a gas-sensitive layer to specific 'components in the air, which typically arise during combustion.
  • the fire detector can be very compact and space-saving.
  • the signal processing of a downstream evaluation unit is also simplified. Furthermore, it is usually sufficient to provide only one such fire detector per room, if it does not exceed a certain size, instead of several working on different measuring principles, which considerably simplifies installation and wiring.
  • the optical receivers located in the direct radiation range of the optical transmitter can also function as transmitted light smoke detectors and are therefore able to register changes in brightness due to aerosols present in the air. This is advantageously made possible by an evaluation unit which is connected downstream of the optical receiver and which evaluates fluctuations in the electrical signal due to fluctuations in the brightness of the received light signal.
  • Known methods such as modulated measurement or lock-in technology are used.
  • Figure 1 shows an arrangement of a gas sensitive
  • FIG. 2 shows an absorption spectrum of a layer sensitive to NO or NO2
  • FIG. 3 shows a measuring arrangement with a gas-sensitive layer on the optical receiver
  • Figure 4 shows a structure of a combined fire alarm.
  • FIG. 1 shows an exemplary measuring arrangement consisting of an optical transmitter 2, for example an infrared light-emitting diode, and an optical receiver 4, for example a photodiode, which is sensitive to infrared light.
  • an optical transmitter 2 for example an infrared light-emitting diode
  • an optical receiver 4 for example a photodiode, which is sensitive to infrared light.
  • small, compact and inexpensive fire detectors are possible, which also use very little energy.
  • optical transmitters 2 and receivers 4 which work with light in the visible wavelength range can also be used just as well.
  • the coordination is decisive for the function of the measuring arrangement between the wavelength of the light emitted by the optical transmitter 2 and the absorbed wavelength of a gas-sensitive layer 6 described below.
  • an optical receiver 4 which is arranged at a certain distance and is transparent to the radiation of the optical transmitter 2
  • Layer 6 for example consisting of a carrier made of polymer material, which is provided with a specific gas-sensitive layer.
  • This layer 6, which is transparent to the light emitted by the optical transmitter 2 can be located exactly in the middle between the optical transmitter 2 and the optical receiver 4, but it is also possible to place it at any position between the optical transmitter 2 and the optical receiver 4 to be arranged, provided that it is in beam path 8.
  • the gas-sensitive layer 6 known per se can partially absorb a certain wavelength of light emitted by the optical transmitter 2 when interacting with certain gases.
  • the gas-sensitive layer 6 contains an indicator substance sensitive to a specific gas and is calibrated by means of previous calibration measurements before installation. As soon as the gas to be detected enters the area between the optical transmitter 2 and the optical receiver 4, the indicator substance contained in the layer 6 changes its absorption for certain wavelength ranges of the electromagnetic radiation impinging on it. Since this wavelength corresponds to a local absorption maximum of the indictor substance, the optical receiver 4 arranged behind the layer 6 registers a different changed transmission. The height of the absorption maximum and thus the size of the transmission are proportional to the concentration of the gas. This can be detected by means of an evaluation unit (not shown here) and connected to a signal transmitter when used as a smoke detector.
  • FIG. 2 shows an example of a relationship between the wavelength and the absorption of light of a gas-sensitive layer at different concentrations of a gas mixture coming into contact with the gas-sensitive layer.
  • the wavelength ⁇ of the light emitted by the optical transmitter in nanometers (nm) is plotted on the horizontal axis 16 of the diagram.
  • a relative absorption value is plotted on the vertical axis 14, which would assume a value of 1.0 if the absorption were complete.
  • the gas-sensitive layer is a layer sensitive to NO and / or NO 2 . It can be seen that at a certain light wavelength, in the example shown at approximately 670 nm, the absorption of light has a clear maximum with increasing NO concentration.
  • a number of curves 11 are plotted, the maximum of which increases with increasing NO concentration. This increase is indicated by an upward arrow 12.
  • the sensor effect that is to say the changes in absorption or transmission, can generally be detected in the gas-sensitive layers used in relatively narrow wavelength ranges. Suitable carriers for such gas-sensitive layers are certain polymers that are largely chemically inert, so that it is ensured that only the indicator substance interacts with the gas. This indicator substance is applied to the polymer and shows an interaction with certain gases. Furthermore, with this measuring method it is possible to provide several optical receivers with different gas-sensitive layers and to represent combined smoke detectors that respond to a large number of different gases.
  • FIG. 3 shows an alternative measuring arrangement in which a gas-sensitive layer 10 is applied directly to the optical receiver 4, in the exemplary embodiment shown a light-sensitive photodiode.
  • a gas-sensitive layer 10 is applied directly to the optical receiver 4, in the exemplary embodiment shown a light-sensitive photodiode.
  • the same parts as in the previous figures are provided with the same reference numerals and are not explained again.
  • Such a measuring arrangement has the advantage that very compact smoke or combustion gas detectors can be represented.
  • several optical receivers 4 can each have layers 10 sensitive to different gases. These can all be arranged in the beam path 8 of the optical sensor 2 at a certain distance therefrom and are thereby able to deliver different characteristic absorption signals for different combustion gases to an evaluation unit, not shown here.
  • Figure 4 finally shows a structure of a combined fire detector 1, which is next to an optical Transmitter 2 has an optical receiver 28 acting as a scattered light sensor and at least one optical receiver 4 acting as a gas sensor.
  • the same parts as in the previous figures are provided with the same reference numerals and are not explained again.
  • a common light source for example an infrared light-emitting diode, can be used for both detection methods.
  • the fire detector 1 essentially consists of a chamber 32 which is designed in such a way that little or no light can penetrate from the outside and at the same time smoke and gaseous combustion products have unhindered access.
  • a plurality of receptacles 34, 36, 38, which are closed to the outside, for the optical transmitter 2 and the optical receiver 4, 28 are embedded in the wall.
  • the chamber 32 is open towards at least one end face, so that the sensors are in communication with the atmosphere in the chamber and combustion gases or smoke contained therein.
  • the outer wall of the chamber 32 is preferably made of an opaque material so that no false influences due to incident stray light occur during the measurements.
  • the receptacles 34, 36, 38 for the optical transmitter 2 and the optical receivers 4, 28 are preferably designed so deep that the optical transmitter 2 can only emit with a narrow light exit cone and that none on the optical receivers 4, 28 incident in the end faces of the chamber 32 Stray light can hit.
  • the optical axis 8 of the light exit cone of the optical transmitter 2 is preferably at an oblique angle of, for example, 45 ° to the longitudinal axis of the chamber 32.
  • the optical receiver 28 for the scattered light sensor here for example a photodiode, is preferably arranged so that it is not in the direct radiation range 8 of the optical transmitter 2 and thus can only receive scattered light.
  • an optical axis 30 of the optical receiver 28 can also lie at an oblique angle of, for example, 45 ° to the longitudinal axis of the tube 32, so that the optical axes 8 and 30 are at a certain point on the longitudinal axis of the tube 32 at an angle of - cut 90 ° for example.
  • the optical receiver 28 thus works in conjunction with the optical transmitter 2 like a conventional scattered light smoke detector.
  • At least one further optical receiver 4 is arranged in a further receptacle 36, the longitudinal extension of which is oriented in the same direction as the receptacle 34 for the optical transmitter 2.
  • the optical receiver 4 is thus in the direct radiation range of the optical transmitter 2 and is therefore preferably suitable for the detection of combustion gases which are not detectable by the scattered light sensor.
  • a support with a gas-sensitive layer 18 for absorbing certain light components as a function of gas concentrations in the air is placed in front of the optical receiver 4.
  • collecting lenses 22, 24 are preferably connected upstream thereof, which convert the light into the 10
  • a plurality of optical receivers 4, each with different front-facing goosensitive layers, can be provided in a fire detector 1. Different gaseous combustion products can be detected in this way. In certain fire situations where there are no gases to which the gas-sensitive layers could respond, the scattered light sensor can still trigger an alarm.
  • the light attenuation by aerosols contained in the combustion air can be measured and used as an alarm criterion.
  • the electrical signal emitted by the optical receiver 4 is also constant. If the brightness is weakened by aerosols contained in the air, to which the gas-sensitive layer 18 does not respond by partial absorption, the signal emitted by the optical receiver 4 nevertheless becomes weaker, which can be evaluated as a further criterion for a possible fire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The invention relates to a fire alarm call box for detecting gaseous and powdery combustion products, comprising at least one optical transmitter and at least two optical receivers, each for sending an electrical signal to an evaluation unit connected downstream. At least one of said optical receivers (28) is located beyond a direct range of radiation (8) of the optical transmitter (2) and acts as a scattered light receiver. At least one other optical receiver (4) is located within the direct range of radiation (8) of the optical transmitter (2). A gas sensitive layer (18) is connected upstream of this optical receiver (4). Upon contact with a specific gas, said layer preferably absorbs light components of a certain narrow wavelength range.

Description

BrandmelderFire alarm
Die Erfindung betrifft einen Brandmelder mit den im Oberbegriff des Patentanspruchs 1 genannten Merkmalen.The invention relates to a fire detector with the features mentioned in the preamble of claim 1.
Stand der TechnikState of the art
Zur Brandfrüherkennung werden im allgemeinen Rauchmelder eingesetzt. Zu den am häufigsten eingesetzten Meldern im Bereich der Branddetektion zählen optische Rauchmelder. Sie können als Durchlicht- oder als Streulichtmelder ausgeführt sein. Auf dem Streustrahlungsprinzip beruhende Rauchmelder detektieren Rauchpartikel durch eine Messung von an diesen Rauchpartikeln gestreuter Strahlung. Das Ansprechverhalten beziehungsweise die Empfindlichkeit aller optischen Rauchmelder ist stark abhängig von der Art des Brandes. Die Menge, die Beschaffenheit und die Zusammensetzung des durch den Brand erzeugten Rauches spielt eine große Rolle für die Empfindlichkeit der Rauchmelder. Brände mit geringer Rauchentwicklung können schlechter detektiert werden als Brände, bei denen viel Rauch entsteht. Streulichtrauchmelder sind zudem darauf angewiesen, daß eine Reflexion des Lichtes an den Rauchpartikeln entsteht. Zur Erzielung eines gleichmäßigeren Ansprechverhaltens von Brandmeldern können optische Rauchmelder mit Meldern kombiniert werden, die auf anderen Prinzipien basieren. Bekannt sind beispielsweise Ionisationsrauchmelder oder Temperaturmelder. Diese verschiedenen Brandmeldertypen können an verschiedenen Orten in einem Raum angebracht oder auch in einem einzigen Melder integriert werden.Smoke detectors are generally used for early fire detection. Optical smoke detectors are among the most frequently used detectors in the field of fire detection. They can be designed as transmitted light or as scattered light detectors. Smoke detectors based on the scattered radiation principle detect smoke particles by measuring radiation scattered on these smoke particles. The response or sensitivity of all optical smoke detectors depends heavily on the type of fire. The quantity, the nature and the composition of the smoke generated by the fire play a major role in the sensitivity of the smoke detectors. Fires with low smoke development are more difficult to detect than fires that produce a lot of smoke. Scattered-light smoke detectors are also dependent on the reflection of the light the smoke particles arises. To achieve a more even response from fire detectors, optical smoke detectors can be combined with detectors based on other principles. For example, ionization smoke detectors or temperature detectors are known. These different types of fire detectors can be installed at different locations in a room or integrated in a single detector.
Solche Kombinationen von optischen Rauchmeldern mit Temperaturmeldern oder Ionisationsrauchmeldern sind bekannt . Neben einer Temperaturerhöhung und der Entstehung von Rauch ist ein weiteres signifikantes Merkmal zur Branderkennung das Auftreten gasförmiger Verbrennungsprodukte . Diese können durch verschiedene Arten von Gassensoren detektiert werden.Such combinations of optical smoke detectors with temperature detectors or ionization smoke detectors are known. In addition to an increase in temperature and the generation of smoke, another significant feature for fire detection is the occurrence of gaseous combustion products. These can be detected by different types of gas sensors.
Aufgabe der Erfindung ist es, einen Brandmelder zu schaffen, der verschiedenartige Brände, mit und ohne Rauchentwicklung, sicher detektieren kann.The object of the invention is to provide a fire detector which can reliably detect various types of fire, with and without smoke development.
Vorteile der ErfindungAdvantages of the invention
Der erfindungsgemäße Brandmelder mit den im Patentanspruch 1 genannten Merkmalen bietet den Vorteil, daß durch die Kombination zweier verschiedener Sensormethoden eine zuverlässigere Branderkennung möglich ist als dies bei herkömmlichen Rauch- oder Brandmeldern der Fall ist. So ist ein an sich bekannter Streulichtempfänger zur Detektion von Rauch mit wenigstens einem weiteren optischen Empfänger kombi- niert, der durch Vorschaltung einer gassensitiven Schicht auf spezifische' Bestandteile in der Luft reagiert, die bei der Verbrennung typischerweise entstehen. Durch Verwendung einer gemeinsamen Lichtquelle als optischen Sender kann der Brandmelder sehr kompakt und platzsparend aufgebaut sein. Auch die Signalverarbeitung einer nachgeschalteten Auswerteeinheit vereinfacht sich. Weiterhin genügt es in der Regel, nur einen solchen Brandmelder je Raum, wenn die- ser eine bestimme Größe nicht überschreitet, vorzusehen, anstatt mehreren auf verschiedenen Meßprinzipien arbeitenden, was die Installation und Verkabelung erheblich vereinfacht. Die im direkten Strahlungsbereich des optischen Senders befindlichen optischen Empfänger können zusätzlich als Durchlichtrauchmelder fungieren und sind somit in der Lage, Helligkeitsänderungen aufgrund in der Luft vorhandener Aerosole zu registrieren. Dies wird vorteilhafterweise durch eine Auswerteeinheit ermöglicht, die dem optischen Empfän- ger nachgeschaltet ist und Schwankungen des elektrischen Signals aufgrund Schwankungen der Helligkeit des empfangenen Lichtsignals auswertet. Dabei kommen bekannte Verfahren, wie zum Beispiel modulierte Messung oder Lock-In-Technik zum Einsatz.The fire detector according to the invention with the features mentioned in claim 1 has the advantage that a more reliable fire detection is possible by combining two different sensor methods than is the case with conventional smoke or fire detectors. Thus, a scattered light receiver known per se for detecting smoke can be combined with at least one further optical receiver. niert, which responds by upstream of a gas-sensitive layer to specific 'components in the air, which typically arise during combustion. By using a common light source as an optical transmitter, the fire detector can be very compact and space-saving. The signal processing of a downstream evaluation unit is also simplified. Furthermore, it is usually sufficient to provide only one such fire detector per room, if it does not exceed a certain size, instead of several working on different measuring principles, which considerably simplifies installation and wiring. The optical receivers located in the direct radiation range of the optical transmitter can also function as transmitted light smoke detectors and are therefore able to register changes in brightness due to aerosols present in the air. This is advantageously made possible by an evaluation unit which is connected downstream of the optical receiver and which evaluates fluctuations in the electrical signal due to fluctuations in the brightness of the received light signal. Known methods such as modulated measurement or lock-in technology are used.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten, Merkmalen. ZeichnungenFurther advantageous embodiments of the invention result from the other features mentioned in the subclaims. drawings
Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher er- läutert. Es zeigen:The invention is explained in more detail below in an exemplary embodiment with reference to the associated drawings. Show it:
Figur 1 eine Anordnung einer gassensitivenFigure 1 shows an arrangement of a gas sensitive
Schicht zwischen optischem Sender und optischem Empfänger;Layer between optical transmitter and optical receiver;
Figur 2 ein Absorptionsspektrum einer auf N0- beziehungsweise NO2 sensitiven Schicht;FIG. 2 shows an absorption spectrum of a layer sensitive to NO or NO2;
Figur 3 eine Meßanordnung mit gassensitiver Schicht auf dem optischen Empfänger und3 shows a measuring arrangement with a gas-sensitive layer on the optical receiver and
Figur 4 einen Aufbau eines kombinierten Brandmelders .Figure 4 shows a structure of a combined fire alarm.
Beschreibung der AusführungsbeispieleDescription of the embodiments
Figur 1 zeigt eine beispielhafte Meßanordnung, bestehend aus einem optischen Sender 2, beispielsweise einer Infrarot-Leuchtdiode, und einem optischen Empfän- ger 4, beispielsweise einer Fotodiode, der auf In- frarotlicht empfindlich ist. Mit solchen Bauteilen sind kleine kompakte und kostengünstige Brandmelder möglich, die zudem mit sehr wenig Energie auskommen. Ebensogut können jedoch auch optische Sender 2 und Empfänger 4 verwendet werden, die mit Licht im sichtbaren Wellenlängenbereich arbeiten. Entscheidend für die Funktion der Meßanordnung ist die Abstimmung zwischen der Wellenlänge des vom optischen Sender 2 ausgesandten Lichts und der absorbierten Wellenlänge einer im folgenden beschriebenen gassensitiven Schicht 6. Zwischen optischem Sender 2 und in dessen direktem Strahlengang 8 in gewissem Abstand angebrachtem optischem Empfänger 4 befindet sich eine für die Strahlung des optischen Senders 2 durchlässige Schicht 6, beispielsweise bestehend aus einem Träger aus Polymermaterial, der mit einer bestimmten gas- sensitiven Schicht versehen ist. Diese für das vom optischen Sender 2 abgestrahlte Licht durchlässige Schicht 6 kann sich genau in der Mitte zwischen dem optischen Sender 2 und dem optischen Empfänger 4 befinden, es ist jedoch ebenso möglich, sie an jeder Position zwischen dem optischen Sender 2 und dem optischen Empfänger 4 anzuordnen, sofern sie sich im Strahlengang 8 befindet. Die an sich bekannte gassensitive Schicht 6 kann ein von dem optischen Sender 2 ausgesandtes Licht bestimmter Wellenlänge bei Wechselwirkung mit bestimmten Gasen teilweise absorbieren. Die gassensitive Schicht 6 enthält eine auf ein bestimmtes Gas sensitive Indikatorsubstanz und wird vor dem Einbau mittels vorheriger Eichmessungen kalibriert. Sobald das zu detektierende Gas in den Bereich zwischen optischem Sender 2 und optischem Empfänger 4 eintritt, ändert die in der Schicht 6 enthaltene Indikatorsubstanz ihre Absorption für bestimmte Wellenlängenbereiche der auf sie auftreffenden elektromagnetischen Strahlung. Da diese Wellen- länge einem lokalen Absorptionsmaximum der Indiktor- substanz entspricht, registriert der hinter der Schicht 6 angeordnete optische Empfänger 4 eine ver- änderte Transmission. Die Höhe des Absorptionsmaximums und damit die Größe der Transmission sind proportional zur Konzentration des Gases. Diese kann mittels einer hier nicht dargestellten Auswerteein- heit erfaßt und bei einem Einsatz als Rauchmelder mit einem Signalgeber verbunden werden.FIG. 1 shows an exemplary measuring arrangement consisting of an optical transmitter 2, for example an infrared light-emitting diode, and an optical receiver 4, for example a photodiode, which is sensitive to infrared light. With such components, small, compact and inexpensive fire detectors are possible, which also use very little energy. However, optical transmitters 2 and receivers 4 which work with light in the visible wavelength range can also be used just as well. The coordination is decisive for the function of the measuring arrangement between the wavelength of the light emitted by the optical transmitter 2 and the absorbed wavelength of a gas-sensitive layer 6 described below. Between the optical transmitter 2 and in its direct beam path 8 there is an optical receiver 4 which is arranged at a certain distance and is transparent to the radiation of the optical transmitter 2 Layer 6, for example consisting of a carrier made of polymer material, which is provided with a specific gas-sensitive layer. This layer 6, which is transparent to the light emitted by the optical transmitter 2, can be located exactly in the middle between the optical transmitter 2 and the optical receiver 4, but it is also possible to place it at any position between the optical transmitter 2 and the optical receiver 4 to be arranged, provided that it is in beam path 8. The gas-sensitive layer 6 known per se can partially absorb a certain wavelength of light emitted by the optical transmitter 2 when interacting with certain gases. The gas-sensitive layer 6 contains an indicator substance sensitive to a specific gas and is calibrated by means of previous calibration measurements before installation. As soon as the gas to be detected enters the area between the optical transmitter 2 and the optical receiver 4, the indicator substance contained in the layer 6 changes its absorption for certain wavelength ranges of the electromagnetic radiation impinging on it. Since this wavelength corresponds to a local absorption maximum of the indictor substance, the optical receiver 4 arranged behind the layer 6 registers a different changed transmission. The height of the absorption maximum and thus the size of the transmission are proportional to the concentration of the gas. This can be detected by means of an evaluation unit (not shown here) and connected to a signal transmitter when used as a smoke detector.
Figur 2 zeigt in einem Diagramm beispielhaft einen Zusammenhang zwischen der Wellenlänge und der Absorp- tion von Licht einer gassensitiven Schicht bei verschiedenen Konzentrationen eines mit der gassensitiven Schicht in Berührung kommenden Gasgemisches. Auf der horizontalen Achse 16 des Diagramms ist die Wellenlänge λ des vom optischen Sender abgestrahlten Lichts in Nanometern (nm) aufgetragen. Auf der vertikalen Achse 14 ist ein relativer Absorptionswert aufgetragen, der bei vollständiger Absorption einen Wert von 1,0 annehmen würde. In der Figur 2 beispielsweise ist die gassensitive Schicht eine auf NO und/oder N02 sensitive Schicht. Erkennbar ist, daß bei einer bestimmten Lichtwellenlänge, im gezeigten Beispiel bei circa 670 nm, die Absorption von Licht bei steigender NO-Konzentration ein deutliches Maximum aufweist. Es sind mehrere Kurven 11 aufgetragen, deren Maiximum bei steigender NO-Konzentration jeweils zunimm . Diese Zunahme ist durch einen aufwärts gerichteten Pfeil 12 angedeutet. Der Sensoreffekt , das heißt die Absorptions- beziehungsweise die Transmissionsänderungen, können bei den verwendeten gas- sensitiven Schichten in der Regel in relativ engen Wellenlängenbereichen nachgewiesen werden. Als Träger für solche gassensitiven Schichten eignen sich bestimmte Polymere, die chemisch weitgehend inert sind, so daß sichergestellt ist, daß nur die Indikatorsubstanz mit dem Gas wechselwirkt. Diese Indikatorsubstanz ist auf das Polymer aufgebracht und zeigt eine Wechselwirkung mit bestimmten Gasen. Weiterhin ist mit dieser Meßmethode möglich, mehrere optische Empfänger mit jeweils unterschiedlichen gassensitiven Schichten zu versehen und auf diese Weise kombinierte Rauchmelder darzustellen, die auf eine Vielzahl von verschiedenen Gasen ansprechen.FIG. 2 shows an example of a relationship between the wavelength and the absorption of light of a gas-sensitive layer at different concentrations of a gas mixture coming into contact with the gas-sensitive layer. The wavelength λ of the light emitted by the optical transmitter in nanometers (nm) is plotted on the horizontal axis 16 of the diagram. A relative absorption value is plotted on the vertical axis 14, which would assume a value of 1.0 if the absorption were complete. In FIG. 2, for example, the gas-sensitive layer is a layer sensitive to NO and / or NO 2 . It can be seen that at a certain light wavelength, in the example shown at approximately 670 nm, the absorption of light has a clear maximum with increasing NO concentration. A number of curves 11 are plotted, the maximum of which increases with increasing NO concentration. This increase is indicated by an upward arrow 12. The sensor effect, that is to say the changes in absorption or transmission, can generally be detected in the gas-sensitive layers used in relatively narrow wavelength ranges. Suitable carriers for such gas-sensitive layers are certain polymers that are largely chemically inert, so that it is ensured that only the indicator substance interacts with the gas. This indicator substance is applied to the polymer and shows an interaction with certain gases. Furthermore, with this measuring method it is possible to provide several optical receivers with different gas-sensitive layers and to represent combined smoke detectors that respond to a large number of different gases.
Figur 3 zeigt eine alternative Meßanordnung, bei der eine gassensitive Schicht 10 direkt auf den optischen Empfänger 4, im gezeigten Ausführungsbeispiel eine lichtempfindliche Fotodiode, aufgebracht ist. Gleiche Teile wie in den vorangegangenen Figuren sind mit gleichen Bezugszeichen versehen und nicht noch einmal erläutert . Eine solche Meßanordnung weist den Vorteil auf, daß damit sehr kompakte Rauch- beziehungsweise Verbrennungsgasmelder darstellbar sind. Zur Detektion verschiedener gasförmiger Verbrennungsprodukte können mehrere optische Empfänger 4 jeweils auf unterschiedliche Gase sensitive Schichten 10 aufweisen. Diese können alle im Strahlengang 8 des optischen Sensors 2 in einem bestimmten Abstand von diesem angeordnet sein und sind dadurch in der Lage, verschiedene charakteristische Absorptionssignale für verschiedene Verbrennungsgase an eine hier nicht dargestellte Auswerteeinheit zu liefern.FIG. 3 shows an alternative measuring arrangement in which a gas-sensitive layer 10 is applied directly to the optical receiver 4, in the exemplary embodiment shown a light-sensitive photodiode. The same parts as in the previous figures are provided with the same reference numerals and are not explained again. Such a measuring arrangement has the advantage that very compact smoke or combustion gas detectors can be represented. For the detection of different gaseous combustion products, several optical receivers 4 can each have layers 10 sensitive to different gases. These can all be arranged in the beam path 8 of the optical sensor 2 at a certain distance therefrom and are thereby able to deliver different characteristic absorption signals for different combustion gases to an evaluation unit, not shown here.
Figur 4 zeigt schließlich einen Aufbau eines kombinierten Brandmelders 1, der neben einem optischen Sender 2 einen als Streulichtsensor wirkenden optischen Empfänger 28 und wenigstens einen als Gassensor wirkenden optischen Empfänger 4 aufweist. Gleiche Teile wie in den vorangegangenen Figuren sind mit gleichen Bezugszeichen versehen und nicht noch einmal erläutert. Aufgrund des verwendeten Wellenlängenbereiches des von dem optischen Sender 2 abgestrahlten Lichts kann für beide Detektionsmethoden eine gemeinsame Lichtquelle, hier beispielsweise eine Infrarot- Leuchtdiode, eingesetzt werden. Der Brandmelder 1 besteht im wesentlichen aus einer Kammer 32, die so gestaltet ist, daß kein oder nur wenig Licht von außen eindringen kann und gleichzeitig Rauch und gasförmige Verbrennungsprodukte möglichst ungehindert Zugang ha- ben. Dies kann, wie bei Streulichtmeldern üblich, in Form eines hier nicht dargestellten optischen Labyrinths realisiert sein. In der Wandung sind mehrere nach außen verschlossene Aufnahmen 34, 36, 38 für den optischen Sender 2 und den optischen Empfänger 4, 28 eingelassen. Die Kammer 32 ist nach wenigstens einer Stirnseite hin offen, so daß die Sensoren mit der Atmosphäre in der Kammer und darin enthaltenen Verbrennungsgasen oder Rauch in Verbindung stehen. Die Außenwand der Kammer 32 besteht vorzugsweise aus licht- undurchlässigem Material, damit bei den Messungen keine Fehleinflüsse durch einfallendes Streulicht auftreten. Die Aufnahmen 34, 36, 38 für den optischen Sender 2 und die optischen Empfänger 4, 28 sind vorzugsweise so tief gestaltet, daß der optische Sen- der 2 nur mit einem schmalen Lichtaustrittskegel abstrahlen kann, und daß auf die optischen Empfänger 4, 28 kein in die Stirnseiten der Kammer 32 einfallendes Streulicht auftreffen kann. Die optische Achse 8 des Lichtaustrittskegels des optischen Senders 2 liegt vorzugsweise in einem schrägen Winkel von beispielsweise 45° zur Längsachse der Kammer 32. Der optische Empfänger 28 für den Streulichtsensor, hier beispielsweise eine Photodiode, ist vorzugsweise so angeordnet, daß er nicht im direkten Strahlungsbereich 8 des optischen Senders 2 liegt und damit nur Streulicht empfangen kann. So kann eine optische Achse 30 des optischen Empfängers 28 ebenfalls in einem schrägen Winkel von beispielsweise 45° zur Längsachse der Röhre 32 liegen, so daß sich die optischen Achsen 8 und 30 in einem bestimmten Punkt auf der Längsachse der Röhre 32 unter einem Winkel von bei- spielsweise 90° schneiden. Der optische Empfänger 28 arbeitet in Verbindung mit dem optischen Sender 2 somit wie ein herkömmlicher Streulichtrauchmelder. Wenigstens ein weiterer optischer Empfänger 4 ist in einer weiteren Aufnahme 36 angeordnet, deren Längser- Streckung in gleicher Richtung wie die Aufnahme 34 für den optischen Sender 2 ausgerichtet ist. Der optische Empfänger 4 liegt somit im direkten Strahlungsbereich des optischen Senders 2 und ist daher vorzugsweise zur Detektion von für den Streulicht- sensor nicht detektierbaren Verbrennungsgasen geeignet. Zu diesem Zweck ist dem optischen Empfänger 4 ein Träger mit einer gassensitiven Schicht 18 zur Absorption bestimmter Lichtanteile in Abhängigkeit von in der Luft befindlichen Gaskonzentrationen vorge- setzt. Zur Bündelung des von den optischen Empfängern 4, 28 empfangenen Lichts sind diesen vorzugsweise Sammellinsen 22, 24 vorgeschaltet, die das in die 10Figure 4 finally shows a structure of a combined fire detector 1, which is next to an optical Transmitter 2 has an optical receiver 28 acting as a scattered light sensor and at least one optical receiver 4 acting as a gas sensor. The same parts as in the previous figures are provided with the same reference numerals and are not explained again. Because of the wavelength range used for the light emitted by the optical transmitter 2, a common light source, for example an infrared light-emitting diode, can be used for both detection methods. The fire detector 1 essentially consists of a chamber 32 which is designed in such a way that little or no light can penetrate from the outside and at the same time smoke and gaseous combustion products have unhindered access. As is usual with scattered light detectors, this can be implemented in the form of an optical labyrinth, not shown here. A plurality of receptacles 34, 36, 38, which are closed to the outside, for the optical transmitter 2 and the optical receiver 4, 28 are embedded in the wall. The chamber 32 is open towards at least one end face, so that the sensors are in communication with the atmosphere in the chamber and combustion gases or smoke contained therein. The outer wall of the chamber 32 is preferably made of an opaque material so that no false influences due to incident stray light occur during the measurements. The receptacles 34, 36, 38 for the optical transmitter 2 and the optical receivers 4, 28 are preferably designed so deep that the optical transmitter 2 can only emit with a narrow light exit cone and that none on the optical receivers 4, 28 incident in the end faces of the chamber 32 Stray light can hit. The optical axis 8 of the light exit cone of the optical transmitter 2 is preferably at an oblique angle of, for example, 45 ° to the longitudinal axis of the chamber 32. The optical receiver 28 for the scattered light sensor, here for example a photodiode, is preferably arranged so that it is not in the direct radiation range 8 of the optical transmitter 2 and thus can only receive scattered light. For example, an optical axis 30 of the optical receiver 28 can also lie at an oblique angle of, for example, 45 ° to the longitudinal axis of the tube 32, so that the optical axes 8 and 30 are at a certain point on the longitudinal axis of the tube 32 at an angle of - cut 90 ° for example. The optical receiver 28 thus works in conjunction with the optical transmitter 2 like a conventional scattered light smoke detector. At least one further optical receiver 4 is arranged in a further receptacle 36, the longitudinal extension of which is oriented in the same direction as the receptacle 34 for the optical transmitter 2. The optical receiver 4 is thus in the direct radiation range of the optical transmitter 2 and is therefore preferably suitable for the detection of combustion gases which are not detectable by the scattered light sensor. For this purpose, a support with a gas-sensitive layer 18 for absorbing certain light components as a function of gas concentrations in the air is placed in front of the optical receiver 4. In order to bundle the light received by the optical receivers 4, 28, collecting lenses 22, 24 are preferably connected upstream thereof, which convert the light into the 10
Aufnahmen 36, 38 einfallende Licht exakt auf die lichtempfindliche Stelle der optischen Empfänger 4, 28 fokussieren. In einem Brandmelder 1 können mehrere optische Empfänger 4 mit jeweils unterschiedlichen vorgesetzten ganssensitiven Schichten vorgesehen sein. Dadurch können verschiedene gasförmige Verbrennungsprodukte erfaßt werden. Bei bestimmten Brandsituationen, wo keine Gase entstehen, auf welche die gassensitiven Schichten ansprechen könnten, kann der Streulichtsensor dennoch Alarm auslösen.Focus recordings 36, 38 of incident light exactly on the light-sensitive point of the optical receivers 4, 28. A plurality of optical receivers 4, each with different front-facing goosensitive layers, can be provided in a fire detector 1. Different gaseous combustion products can be detected in this way. In certain fire situations where there are no gases to which the gas-sensitive layers could respond, the scattered light sensor can still trigger an alarm.
Als eine weitere Funktionsmöglichkeit des Brandmelders kann die Lichtdämpfung durch in der Verbrennungsluft enthaltene Aerosole gemessen und als Alarm- kriterium herangezogen werden. Bei konstanter Helligkeit des vom optischen Sender 2 ausgestrahlten Lichts ist das vom optischen Empfänger 4 abgegebene elektrische Signal ebenfalls konstant. Bei einer Hellig- keitsabschwächung durch in der Luft enthaltene Aero- sole, auf welche die gassensitive Schicht 18 nicht durch eine teilweise Absorption anspricht, wird das vom optischen Empfänger 4 abgegebene Signal dennoch schwächer, was als weiteres Kriterium für einen möglichen Brand ausgewertet werden kann. As another function of the fire detector, the light attenuation by aerosols contained in the combustion air can be measured and used as an alarm criterion. With constant brightness of the light emitted by the optical transmitter 2, the electrical signal emitted by the optical receiver 4 is also constant. If the brightness is weakened by aerosols contained in the air, to which the gas-sensitive layer 18 does not respond by partial absorption, the signal emitted by the optical receiver 4 nevertheless becomes weaker, which can be evaluated as a further criterion for a possible fire.

Claims

11Patentansprüche 11 Patent claims
1. Brandmelder, insbesondere zur Detektion von gasförmigen und/oder staubförmigen Verbrennungsprodukten, mit wenigstens einer optischen Erkennungsein- richtung, wobei in Abhängigkeit von physikalischen und/oder chemischen Parametern der Verbrennungsprodukte ein Signal generiert und an eine nachgeschaltete Auswerteeinheit gegeben wird, dadurch gekennzeichnet, daß die Erkennungseinrichtung wenigstens einen optischen Sender (2) und wenigstens zwei optische Empfänger (4, 28) umfaßt, wobei einer der optischen Empfänger (28) außerhalb eines direkten Strahlungsbereiches (8) des optischen Senders (2) angeordnet ist und als Streulichtempfänger fungiert und daß wenigstens einem weiteren, in einem direkten Strahlungsbereich (8) des optischen Senders (2) angeordneten, optischen Empfänger (4) eine gassensitive Schicht (18) vorgeschaltet ist, die bei einem Kontakt mit einem spezifischen Gas bevorzugt Lichtanteile ei- nes bestimmten schmalen Wellenlängenbereiches absorbiert .1. Fire detector, in particular for the detection of gaseous and / or dusty combustion products, with at least one optical detection device, a signal being generated as a function of physical and / or chemical parameters of the combustion products and being sent to a downstream evaluation unit, characterized in that the detection device comprises at least one optical transmitter (2) and at least two optical receivers (4, 28), one of the optical receivers (28) being arranged outside a direct radiation area (8) of the optical transmitter (2) and functioning as a scattered light receiver and in that At least one further optical receiver (4), which is arranged in a direct radiation area (8) of the optical transmitter (2), is preceded by a gas-sensitive layer (18) which, upon contact with a specific gas, preferably absorbs light components of a certain narrow wavelength range .
2. Brandmelder nach Anspruch 1, dadurch gekennzeichnet, daß mehrere optische Empfänger (4) im direkten Strahlungsbereich (8) des optischen Senders (2) angeordnet sind, denen jeweils auf unterschiedliche Gase sensitive Schichten (18) vorgeschaltet sind. 122. Fire detector according to claim 1, characterized in that a plurality of optical receivers (4) in the direct radiation area (8) of the optical transmitter (2) are arranged, each of which is sensitive to different gases layers (18). 12
3. Brandmelder nach Anspruch 2, dadurch gekennzeichnet, daß den optischen Empfängern (4, 28) jeweils eine Optik (22, 24) vorgeschaltet ist.3. Fire detector according to claim 2, characterized in that the optical receivers (4, 28) each have an optical system (22, 24) upstream.
4. Brandmelder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein von wenigstens einem im direkten Strahlengang (8) des optischen Senders (2) angeordneten optischen Empfänger (4) empfan- genes Signal als das eines Durchlichtrauchmelders ausgewertet wird.4. Fire detector according to one of the preceding claims, characterized in that one of at least one in the direct beam path (8) of the optical transmitter (2) arranged optical receiver (4) received signal is evaluated as that of a transmitted light smoke detector.
5. Brandmelder nach Anspruch 4, dadurch gekennzeichnet, daß dem wenigstens einen im direkten Strahlen- gang (8) des optischen Senders (2) angeordneten optischen Empfänger (4) jeweils eine Auswerteeinheit zur Auswertung von Helligkeitsänderungen durch im Strahlengang befindliche Aerosole nachgeschaltet ist.5. Fire detector according to claim 4, characterized in that the at least one optical receiver (4) arranged in the direct beam path (8) of the optical transmitter (2) is followed by an evaluation unit for evaluating changes in brightness due to aerosols located in the beam path.
6. Brandmelder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der optische Sender (2) sowie die wenigstens zwei optischen Empfänger (4, 28) in einem gemeinsamen, für Luft durchlässigen und für Licht undurchlässigen, Gehäuse eingebaut sind. 6. Fire detector according to one of the preceding claims, characterized in that the optical transmitter (2) and the at least two optical receivers (4, 28) are installed in a common, air-permeable and light-impermeable, housing.
EP98952572A 1998-03-07 1998-09-17 Fire alarm box Expired - Lifetime EP1062647B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19809896A DE19809896A1 (en) 1998-03-07 1998-03-07 Fire alarm
DE19809896 1998-03-07
PCT/DE1998/002750 WO1999045515A1 (en) 1998-03-07 1998-09-17 Fire alarm box

Publications (2)

Publication Number Publication Date
EP1062647A1 true EP1062647A1 (en) 2000-12-27
EP1062647B1 EP1062647B1 (en) 2002-08-21

Family

ID=7860116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98952572A Expired - Lifetime EP1062647B1 (en) 1998-03-07 1998-09-17 Fire alarm box

Country Status (6)

Country Link
US (1) US6479833B1 (en)
EP (1) EP1062647B1 (en)
JP (1) JP3864048B2 (en)
DE (2) DE19809896A1 (en)
ES (1) ES2182366T3 (en)
WO (1) WO1999045515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112562253A (en) * 2019-09-26 2021-03-26 杭州海康消防科技有限公司 Smoke sensor, smoke alarm method and smoke alarm device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012705B4 (en) 2000-03-08 2006-09-14 Torsten Dipl.-Ing. Clauß Method and device for early detection and combat of fire in the interior and exterior, in particular residential, of houses and buildings
US6700130B2 (en) * 2001-06-29 2004-03-02 Honeywell International Inc. Optical detection system for flow cytometry
NO326482B1 (en) * 2005-05-31 2008-12-15 Integrated Optoelectronics As A new infrared laser based alarm
US7377147B1 (en) 2006-10-23 2008-05-27 3M Innovative Properties Company Testing performance of gas monitors
US7497108B2 (en) 2006-10-23 2009-03-03 3M Innovative Properties Company Gas monitor testing apparatus, method, and system
US7889220B2 (en) * 2006-10-31 2011-02-15 Hewlett-Packard Development Company, L.P. Device and method for maintaining optical energy density on a medium
WO2008124213A1 (en) * 2007-04-02 2008-10-16 3M Innovative Properties Company System, method and computer network for testing gas monitors
DE202007012255U1 (en) * 2007-08-31 2009-01-08 Ingenieurbüro Goebel GmbH Device for detecting optical radiation
JP2009229414A (en) * 2008-03-25 2009-10-08 Osaka Gas Co Ltd Detector
CN101763708B (en) * 2009-12-28 2012-01-18 公安部沈阳消防研究所 Wind pipe smoke-sensing fire detector
DE102011108390B4 (en) 2011-07-22 2019-07-11 PPP "KB Pribor" Ltd. Method of making an open type smoke detector
DE102011108389A1 (en) 2011-07-22 2013-01-24 PPP "KB Pribor" Ltd. smoke detector
JP6630045B2 (en) * 2015-02-09 2020-01-15 新コスモス電機株式会社 Alarm
CN105488942A (en) * 2016-01-21 2016-04-13 李文田 Small fire detector
KR101966492B1 (en) * 2016-03-25 2019-04-05 현대자동차주식회사 Dust sensor for vehicle
CN105913622B (en) * 2016-06-27 2017-12-12 宁波金盾电子工业股份有限公司 A kind of WiFi fire alarms repeater
KR102448715B1 (en) * 2017-12-22 2022-09-29 주식회사 히타치엘지 데이터 스토리지 코리아 Sensor combining dust sensor and gas sensor
CN110930630A (en) * 2019-11-26 2020-03-27 福建好神奇电子科技有限公司 Smoke alarm and method thereof
CN110930631A (en) * 2019-11-26 2020-03-27 福建好神奇电子科技有限公司 Photoelectric fire smoke alarm and smoke detection deviation compensation method thereof
CN111474130A (en) * 2020-05-29 2020-07-31 南昌航空大学 Simple device and method for on-line detection of gaseous propionaldehyde and acrolein based on spectrum method
CN112037463A (en) * 2020-09-11 2020-12-04 马艺卓 High-sensitivity smoke alarm
US11972676B2 (en) * 2021-10-25 2024-04-30 Honeywell International Inc. Initiating a fire response at a self-testing fire sensing device
CN117990655A (en) * 2024-04-02 2024-05-07 清华大学合肥公共安全研究院 Composite detector and detection method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3754867A (en) * 1970-12-11 1973-08-28 Bjorksten Res Lab Inc Carbon dioxide sensing system
CH546989A (en) 1972-12-06 1974-03-15 Cerberus Ag METHOD AND DEVICE FOR FIRE NOTIFICATION.
CH569972A5 (en) * 1974-07-16 1975-11-28 Cerberus Ag
US4677078A (en) * 1984-05-07 1987-06-30 Gould Inc. Oxygen monitoring device and method
US4752447A (en) * 1985-02-26 1988-06-21 Siemens Aktiengesellschaft Optical filter with reversible color change
US4857895A (en) 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
US5218212A (en) * 1989-11-24 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Device for optically detecting a chemical change in fluid
US5352901A (en) 1993-04-26 1994-10-04 Cummins Electronics Company, Inc. Forward and back scattering loss compensated smoke detector
DE9420231U1 (en) * 1994-12-21 1995-02-09 Hekatron GmbH, 79295 Sulzburg Device for detecting a gas
US5691465A (en) * 1995-08-07 1997-11-25 Texas Instruments Incorporated Multi-plate thin film carbon monoxide sensor
GB2314618B (en) * 1996-06-26 1999-12-29 David Appleby Smoke detector using light scatter and extinction
DE19741335C1 (en) * 1997-09-19 1999-06-10 Bosch Gmbh Robert Sensor membrane of an optode and method, device and its use for the determination of gases in gas mixtures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9945515A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112562253A (en) * 2019-09-26 2021-03-26 杭州海康消防科技有限公司 Smoke sensor, smoke alarm method and smoke alarm device
CN112562253B (en) * 2019-09-26 2022-06-03 杭州海康消防科技有限公司 Smoke sensor, smoke alarm method and smoke alarm device

Also Published As

Publication number Publication date
JP3864048B2 (en) 2006-12-27
DE19809896A1 (en) 1999-09-09
US6479833B1 (en) 2002-11-12
EP1062647B1 (en) 2002-08-21
ES2182366T3 (en) 2003-03-01
JP2002506261A (en) 2002-02-26
WO1999045515A1 (en) 1999-09-10
DE59805266D1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
EP1062647B1 (en) Fire alarm box
DE60315449T3 (en) SMOKE DETECTOR
DE3831654C2 (en)
DE69032686T2 (en) INFRARED SENSOR SUITABLE FOR FIRE-FIGHTING APPLICATIONS
EP2407949B1 (en) Ring shaped auxiliary light source
DE69118277T2 (en) Fire detection method and device
EP1389331B1 (en) Self-aspirating fire detection system
EP1783712B1 (en) Combined scattered light and extinction fire alarm
DE69811098T2 (en) OPTICAL GAS DETECTION
EP2252984A1 (en) Evaluation of a difference signal between output signals of two receiving devices in a sensor apparatus
WO2005069242A1 (en) Fire detector with several analysis volumes
DE2046492C3 (en) smoke detector
EP1408469A2 (en) Fire detection method and fire detector for its implementation
WO2004001693A1 (en) Scattered-light smoke detector
DE2346249C3 (en) Fire alarm
DE112020002849T5 (en) Optical particle sensor
DE10353837A1 (en) Testing device for fire detectors
EP3096130B1 (en) Device for identification of aerosols
DE2709866C2 (en) Device for the detection of suspended particles
DE102017217280A1 (en) Measuring device for particle measurement
EP0014874B1 (en) Fire detector using pulsed radiation
CH571750A5 (en) Photoelectricccc aerosol or smoke detector - second photo cell receives reflected light from prism surface to compensate for contamination
DE102004001926B4 (en) Method and device for measuring the load of an atmosphere with aerosols and dusts
DE2134563A1 (en) Smoke detector for the optical detection of aerosols generated by combustion
CH682428A5 (en) Optical smoke detector using light dispersion - has receiver providing signal representing received light polarised perpendicular to plane containing axes of source and receiver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20011129

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59805266

Country of ref document: DE

Date of ref document: 20020926

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021107

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2182366

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060922

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170925

Year of fee payment: 20

Ref country code: IT

Payment date: 20170926

Year of fee payment: 20

Ref country code: GB

Payment date: 20170925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171128

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171003

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59805266

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180916

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180918