EP1062413A1 - Procede de fonctionnement d'un moteur a allumage par etincelle a injection directe - Google Patents

Procede de fonctionnement d'un moteur a allumage par etincelle a injection directe

Info

Publication number
EP1062413A1
EP1062413A1 EP99913146A EP99913146A EP1062413A1 EP 1062413 A1 EP1062413 A1 EP 1062413A1 EP 99913146 A EP99913146 A EP 99913146A EP 99913146 A EP99913146 A EP 99913146A EP 1062413 A1 EP1062413 A1 EP 1062413A1
Authority
EP
European Patent Office
Prior art keywords
engine
exhaust gas
control times
charge
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99913146A
Other languages
German (de)
English (en)
Other versions
EP1062413B1 (fr
Inventor
Andreas Hertzberg
Klaus Rössler
Guido Vent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1062413A1 publication Critical patent/EP1062413A1/fr
Application granted granted Critical
Publication of EP1062413B1 publication Critical patent/EP1062413B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for operating a gasoline engine with direct injection, in which the engine is operated either with charge stratification or homogeneously.
  • charge stratification the so-called stratified charge mode
  • the fuel is known to be injected during the compression stroke, preferably with a clear excess of air, in such a way that the fuel is stratified in the combustion chamber in such a way that the fuel / air mixture is reliably ignited despite excess air.
  • Operation with charge stratification enables low fuel consumption compared to conventional external mixture formation, especially due to lower charge exchange and wall heat losses.
  • stratified charge operation is limited to the partial load range, with a higher engine load the direct-injection gasoline engine is operated homogeneously, i.e. the fuel is loaded into the combustion chamber in a largely homogeneous distribution, the injection taking place during the suction stroke, for example, with a stoichiometric fuel / air ratio.
  • this variable control of the intake valve opening times also realizes an internal exhaust gas recirculation by controlling the respective intake valve in such a way that it opens as long as the associated cylinder piston is still pushing exhaust gas out of the combustion chamber in question.
  • it can be provided to provide two inlet channels for each combustion chamber, namely a swirl channel and a filling channel, each of which is assigned its own controllable inlet valve. Air flowing in through the swirl duct is swirled to a great extent, which leads to a good mixture preparation, while the air flowing through the filling duct enters the combustion chamber with as little resistance as possible and thus with little swirling.
  • the filling channel inlet valves are then kept permanently closed in the lower load range. In a higher load range, the maximum possible amount of air flows in via the swirl duct inlet valves. Depending on the air volume requirement, individual cylinders remain completely switched off, or the remaining air mass is drawn in via the filling duct inlet valves.
  • German patent application 197 12 356.2 describes a method for reducing harmful exhaust gas emissions of a gasoline engine operated with a lean fuel / air mixture with direct injection, in which a switch is made between stratified charge operation and homogeneous operation for the regeneration of a nitrogen oxide adsorber catalyst. In the partial load range, the engine is normally operated lean in stratified charge mode.
  • the engine is switched to homogeneous operation in such a way that in a first step the air volume in the combustion chamber is changed by changes in the valve timing or by throttling devices in an associated intake duct is reduced and in a second step there is a transition from stratified charge operation to homogeneous operation with a rich fuel / air mixture.
  • the reduction in the amount of air can be achieved in particular through a delayed closing of the intake valves after bottom dead center or by prematurely closing them after top dead center of the combustion chamber piston.
  • the invention is based on the technical problem of providing an optimized method for operating a gasoline engine with direct injection.
  • variable valve control in which the intake and exhaust valves are controlled in their open and closed positions with control times that are variable depending on the engine operating state.
  • basic control times are assumed, which can be switched over by a basic control time map for operation with charge stratification on the one hand and homogeneous operation on the other hand, in order to operate the engine with this variable valve control either with charge stratification or homogeneously.
  • the basic control times specified by these two characteristic diagrams can be changed by correction control times in order to bring about an increase in exhaust gas temperature and / or an internal exhaust gas recirculation and / or a charge movement within the scope of the variable valve control.
  • the increase in exhaust gas temperature is particularly useful in the case of a downstream exhaust gas catalytic converter, since these usually, such as nitrogen oxide adsorber catalysts, only show satisfactory conversion behavior at a certain elevated exhaust gas temperature.
  • the special exhaust gas temperature increase measure prevents the exhaust gas temperature range, which is favorable for the catalytic converter, from being undershot at very low engine load and stratified charge operation.
  • two special advantageous measures for raising the exhaust gas temperature are provided via the selection of appropriate correction control times. This enables an exhaust gas temperature increase by reducing the air volume without significant throttling losses and without a significant increase in fuel consumption.
  • a further development of the invention according to claim 3 enables internal exhaust gas recirculation, in that the inlet valves are opened early during the exhaust gas push-out phase of a respective work cycle.
  • 1 is a schematic representation of a gasoline engine with direct injection, variable valve control and nitrogen oxide adsorber catalyst
  • Fig. 2 is a schematic flow diagram representation of the determination of the variable valve timing and performed by an engine control unit in Fig. 1
  • Fig. 3 timing diagrams of various engine-specific variables to illustrate a change in operating mode from stratified charge mode to homogeneous operation in a gasoline engine using the variable valve control.
  • Fig. 1 shows schematically in the block diagram a gasoline engine, as it is particularly suitable for a motor vehicle.
  • the gasoline engine shown contains the actual engine block 1, a valve train arrangement 2 with variably controllable inlet and outlet valves for the relevant engine cylinders, one from the engine Block 1 exhaust gas line 3, in which a nitrogen oxide adsorber catalyst 4 is arranged, and an engine control unit 5 for controlling the various engine functions.
  • a first wiring harness 6 leads from the engine control unit 5 to the engine block 1 and a second wiring harness 7 from the engine control unit 5 to the valve train arrangement 2 for the purpose of variable actuation of the intake and exhaust valves.
  • a temperature sensor 8 with an electrical connection is assigned to the catalytic converter 4, via which the engine control unit 5 detects the exhaust gas temperature there.
  • the target values for the control times of the various intake and exhaust valves of the valve train 2 are determined as a function of the respective current engine operating state and the desired engine functionality according to the diagram shown in FIG. 2.
  • a first basic control time map 9 for engine operation with charge stratification and a second basic control time map 10 for homogeneous engine operation are stored in engine control unit 5.
  • basic control times for the relevant engine operating mode are determined from the corresponding basic control time map 9, 10 as a function of the air mass setpoint.
  • these basic control times are changed by adding correction control times in order to obtain the desired control time setpoints for the current situation with regard to the injection valve opening times (E ⁇ ), the injection valve closing times (ES) and the exhaust valve opening times (A ⁇ ) and the exhaust valve closing times (AS) to win.
  • a correction control time contribution 11 for effecting internal exhaust gas recirculation a correction control time contribution 12 for increasing the exhaust gas temperature and a correction control time contribution 13 for generating a charge movement are provided in particular as correction control times.
  • the correction control time contribution 11 to effect an internal exhaust gas recirculation and the correction control time contribution to generate a charge movement 13 are provided in particular as correction control times.
  • additional correction control time contributions 14, 15 can also be provided both in stratified charge operation and in homogeneous operation.
  • valve timing setpoints E ⁇ , ES, A ⁇ , AS
  • the engine control unit 5 controls the various intake and exhaust valves of the valve train 2 on the basis of the determined valve timing setpoints (E ⁇ , ES, A ⁇ , AS), switching between the control time determination for stratified charge operation and the control time determination for homogeneous operation depending on the desired operating mode , as indicated in Fig. 5 with a switching functionality 16.
  • Various operating variants that can be implemented with the gasoline engine according to FIGS. 1 and 2 are discussed in more detail below.
  • variable valve control can be used to realize a charge movement in the entire engine operating range.
  • an intensive, specially coordinated charge movement is expedient and often also necessary.
  • the variable valve control enables the generation of a charge movement, ie a swirl generation for the air flow admitted into the combustion chamber, in that 13 different control times are set for the two or more intake valves of the respective combustion chamber by using the corresponding correction control contribution, so that the Total air flow in the combustion chamber results in a swirl movement.
  • variable charge movement by means of the variable valve control is also advantageous with homogeneous engine operation. Because at least in parts of the operating map, the combustion can be accelerated by a corresponding charge movement, which leads to a thermodynamically more favorable implementation. In addition, the running limit for homogeneous lean operation can be shifted towards a higher excess of air by appropriate charge movement. This enables a reduction in fuel consumption and raw nitrogen oxide emissions compared to stoichiometric operation. Homogeneous lean operation can be an alternative operating mode to stratified charge operation in certain map areas, for example with the lowest engine loads to achieve a higher exhaust gas temperature with relatively cheap fuel consumption or at higher speeds and engine loads.
  • Another operating variant that can be implemented using the variable valve control is to achieve internal exhaust gas recirculation.
  • the measure of exhaust gas recirculation is useful for gasoline engines with direct injection in order to keep the raw nitrogen oxide emissions as low as possible.
  • the internal exhaust gas recirculation has the advantage over an external exhaust gas recirculation that throttling, for example by means of a throttle valve, is not necessary, as a result of which an increased charge exchange work and an associated increased fuel consumption are avoided.
  • the internal exhaust gas recirculation is realized by a suitable choice of the control times of the intake and exhaust valves, in particular in that the intake valves are opened during the exhaust gas push-out phase of a respective work cycle, during which the exhaust gas is pushed out of the combustion chamber by the piston.
  • control time setpoints are suitable for achieving a residual gas content of approx. 20%.
  • the opening time for the exhaust valves is selected between 80 ° crankshaft angle (KW) and 40 ° KW before bottom dead center (UT), the closing time for the exhaust valves between 0 ° KW and 150 ° KW after top dead center (OT).
  • the opening time for the intake valves is in the range between -20 ° KW after TDC and 130 ° KW after TDC, and the closing time for the intake valves is between 10 ° KW after TDC and 50 ° KW after TDC.
  • the desired control time setpoints are obtained from the map-based basic control times by applying the relevant correction control time contribution 11.
  • the present gasoline engine load control by means of variable valve control enables the exhaust gas temperature to be raised in a low engine load range, in particular with the lowest engine load.
  • the direct-injection gasoline engine is usually operated in stratified charge mode with a very large excess of air, which results in exhaust gas temperatures that are approximately 200 ° C. to 300 ° C. lower than in stoichiometric operation.
  • the exhaust gas temperature can drop to below 150 ° C, for example, when idling. This is often undesirable.
  • the temperature range in which the catalytic converter is active in conversion must be maintained.
  • the following intake valve control times are suitable for raising the exhaust gas temperature, for example.
  • an intake valve opening time between 20 ° KW and 60 ° KW before TDC
  • an early closing of the intake valves between 10 ° KW and 50 ° KW after BDC leads to an exhaust gas temperature of the order of 200 ° C
  • an earlier closing of the Inlet valves between 10 ° KW and 50 ° KW upstream of the UT can lead to an exhaust gas temperature of the order of approx. 250 ° C.
  • the oxygen-containing exhaust gas can be sucked back for the next work cycle by keeping the intake valves closed for one or more cycles. This also enables a significant increase in the exhaust gas temperature.
  • variable valve control is also used when changing the operating mode between unthrottled operation with charge stratification and lean fuel / air mixture and homogeneous operation with rich or stoichiometric fuel / air mixture.
  • Such a change of operating mode is necessary when changing from a lower engine load range to a higher engine load range and vice versa.
  • a mode change is used when using a nitrogen oxide adsorber catalyst for the purpose of changing between the adsorption mode and the desorption mode of the catalyst.
  • the catalyst is saturated with adsorbed nitrogen oxides, it is switched from the adsorption mode to the desorption mode, in which the adsorbed nitrogen oxides are desorbed and reduced, so that the catalyst is regenerated.
  • FIG. 3 illustrates a mode change using the variable Valve control. Shown are time-synchronous diagrams of the time profile of engine-specific variables characteristic of the change in operating mode from stratified charge mode to homogeneous operation.
  • Fig. 3 shows that by using the variable valve control, a comparatively sudden change of operating mode from stratified charge mode to homogeneous operation is achieved from one work cycle to the next.
  • the vertical line here marks the time at which the inlet valves are closed, see the top diagram on the left. This instantaneously reduces the air mass in the combustion chamber to the desired value from one working cycle to the next, see the second diagram on the left.
  • the intake valves close, the changes in the end of injection, the lambda value, the injection time and the ignition point coincide, see the second bottom diagram on the left and the diagrams on the right.
  • the recirculation rate in the case of internal exhaust gas recirculation can be changed suddenly from one working cycle to the next.
  • the diagram below left illustrates the decrease in the exhaust gas recirculation rate from 25% to 0% when changing from stratified charging to homogeneous operation.
  • the internal exhaust gas recirculation can thus be easily integrated into the mode change.
  • the inlet and outlet valves a functionally optimal operation of a gasoline engine with direct injection can be achieved, which allows a high level of driving comfort, particularly when used in motor vehicles.
  • the present method can also be used to increase the maximum mean pressure in a manner known per se by combining direct injection and variable valve control, by improving the delivery rate compared to conventional manifold injection by adapting the valve timing to the engine speed at full load can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner un moteur à allumage par étincelle à injection directe, selon lequel le moteur est actionné au choix par stratification de la charge ou de manière homogène. Selon l'invention, les soupapes d'admission et de décharge sont pilotées avec des temps de commande variables en fonction de l'état de fonctionnement du moteur, dans leurs positions d'ouverture et/ou de fermeture. Pour déterminer les temps de commande, on part de temps de commande de base qui sont prédéterminés de manière réversible par, dans chaque cas, un réseau de caractéristiques de temps de commande de base pour le fonctionnement par stratification de la charge d'une part, et le fonctionnement homogène d'autre part. Les temps de commande de base peuvent être modifiés par des temps de correction et de commande pour augmenter la température des gaz d'échappement et/ou pour un recyclage intérieur et/ou pour produire un déplacement de la charge. Ce procédé s'utilise par exemple pour faire fonctionner des moteurs à allumage par étincelle d'automobiles.
EP99913146A 1998-03-11 1999-02-06 Procede de fonctionnement d'un moteur a allumage par etincelle a injection directe Expired - Lifetime EP1062413B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19810466A DE19810466C2 (de) 1998-03-11 1998-03-11 Verfahren zum Betrieb eines Ottomotors mit Direkteinspritzung
DE19810466 1998-03-11
PCT/EP1999/000794 WO1999046491A1 (fr) 1998-03-11 1999-02-06 Procede de fonctionnement d'un moteur a allumage par etincelle a injection directe

Publications (2)

Publication Number Publication Date
EP1062413A1 true EP1062413A1 (fr) 2000-12-27
EP1062413B1 EP1062413B1 (fr) 2002-10-02

Family

ID=7860469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99913146A Expired - Lifetime EP1062413B1 (fr) 1998-03-11 1999-02-06 Procede de fonctionnement d'un moteur a allumage par etincelle a injection directe

Country Status (5)

Country Link
US (1) US6390056B1 (fr)
EP (1) EP1062413B1 (fr)
JP (1) JP2002506168A (fr)
DE (2) DE19810466C2 (fr)
WO (1) WO1999046491A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948298A1 (de) * 1999-10-06 2001-04-12 Volkswagen Ag Direkteinspritzende Brennkraftmaschine mit NOx-reduzierter Emission
DE19950678A1 (de) * 1999-10-21 2001-04-26 Volkswagen Ag Verfahren zur Beeinflussung der Abgastemperatur in einer Brennkraftmaschine sowie Vorrichtung zur Beeinflussung der Abgastemperatur in einer Brennkraftmaschine
FR2803626B1 (fr) * 2000-01-10 2002-11-29 Magneti Marelli France Moteur a combustion interne a injection directe a soupapes commandees
US6519933B2 (en) 2000-03-21 2003-02-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having variable valve control system and NOx catalyst
DE10031173C1 (de) * 2000-06-27 2002-01-24 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine
JP3616320B2 (ja) * 2000-09-21 2005-02-02 本田技研工業株式会社 内燃機関の点火時期制御装置
DE10164729B4 (de) * 2001-03-23 2005-09-29 Audi Ag Verfahren zur Funktionsdiagnose mindestens eines Ladungsbewegungselements durch Auswertung der Laufunruhe
DE10114375B4 (de) * 2001-03-23 2004-09-30 Audi Ag Verfahren zur Funktionsdiagnose mindestens eines Ladungsbewegungselements
DE10164726B4 (de) * 2001-03-23 2004-09-23 Audi Ag Verfahren zur Funktionsdiagnose mindestens eines Ladungsbewegungselements
ES2378302T3 (es) 2001-03-23 2012-04-11 Audi Ag Procedimiento para el diagnóstico funcional de al menos un elemento de movimiento de carga mediante evaluación de la inestabilidad de marcha.
AT5300U1 (de) * 2001-09-06 2002-05-27 Avl List Gmbh Verfahren zum betrieb einer brennkraftmaschine
AT5720U1 (de) * 2001-09-25 2002-10-25 Avl List Gmbh Brennkraftmaschine
FR2836514B1 (fr) * 2002-02-25 2005-05-06 Renault Procede et dispositif de commande du fonctionnement d'un moteur a combustion interne
DE10208327A1 (de) * 2002-02-27 2003-09-11 Bosch Gmbh Robert Verfahren und Motorsteuereinheit zum schadstoffemissionsarmen Magerbetrieb eines Ottomotors
DE10230913A1 (de) * 2002-07-09 2004-01-22 Bayerische Motoren Werke Ag Verfahren zum Betrieb eines Benzinmotors mit Direkteinspritzung
DE10235732B4 (de) * 2002-07-29 2012-11-22 Volkswagen Ag Verfahren zur Erwärmung eines Katalysatorsystems
DE10344427B4 (de) * 2003-09-25 2015-02-19 Daimler Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE10359059B4 (de) * 2003-12-17 2016-06-09 Daimler Ag Verfahren zum Betrieb eines 4-Takt-Verbrennungsmotors
DE102004010519B4 (de) * 2004-03-04 2007-10-04 Mehnert, Jens, Dr. Ing. Verfahren zum Steuern des Luftmengenstromes von Verbrennungskraftmaschinen
DE102004017989B4 (de) 2004-04-14 2019-03-28 Daimler Ag Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung
GB2440595B (en) * 2006-07-28 2008-09-24 Lotus Car A gasoline direct injection internal combustion engine
FR2933449B1 (fr) * 2008-07-03 2010-07-30 Inst Francais Du Petrole Procede pour ameliorer la vaporisation d'un carburant utlise pour un moteur a combustion interne, notamment a injection directe, en particulier a autoallumage et plus particulierement de type diesel
DE102009028798A1 (de) * 2009-08-21 2011-02-24 Robert Bosch Gmbh Verfahren zum Durchführen einer Saugrohreinspritzung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3401362C3 (de) * 1983-02-04 1998-03-26 Fev Motorentech Gmbh Verfahren zur Steuerung von Viertakt-Kolbenbrennkraftmaschinen
DE3940752A1 (de) * 1989-12-09 1991-06-13 Bosch Gmbh Robert Verfahren zum steuern eines ottomotors ohne drosselklappe
US5078107A (en) * 1990-03-30 1992-01-07 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an internal combustion engine
JPH04183945A (ja) * 1990-11-19 1992-06-30 Toyota Motor Corp 筒内直接噴射式火花点火機関
EP0890725B1 (fr) * 1993-12-28 2002-05-08 Hitachi, Ltd. Dispositif et méthode de commande de moteur à combustion interne
US5709190A (en) * 1995-04-27 1998-01-20 Yamaha Hatsudoki Kabushiki Kaisha Combustion chamber and induction system for engine
JP3479379B2 (ja) * 1995-04-27 2003-12-15 ヤマハ発動機株式会社 筒内噴射エンジン
US6055948A (en) * 1995-10-02 2000-05-02 Hitachi, Ltd. Internal combustion engine control system
DE19546453C2 (de) * 1995-12-13 1998-07-02 Wolfgang Unger Leistungsregelung von 4-Takt Ottomotoren
DE19712356C1 (de) * 1997-03-25 1998-07-09 Daimler Benz Ag Verfahren zum Vermindern von schädlichen Abgasemissionen eines mit magerem Kraftstoff/Luftgemisch betriebenen Otto-Motores
JP3677954B2 (ja) * 1997-07-23 2005-08-03 日産自動車株式会社 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9946491A1 *

Also Published As

Publication number Publication date
US6390056B1 (en) 2002-05-21
WO1999046491A1 (fr) 1999-09-16
DE19810466A1 (de) 1999-09-30
DE19810466C2 (de) 1999-12-30
DE59902930D1 (de) 2002-11-07
EP1062413B1 (fr) 2002-10-02
JP2002506168A (ja) 2002-02-26

Similar Documents

Publication Publication Date Title
EP1062413B1 (fr) Procede de fonctionnement d'un moteur a allumage par etincelle a injection directe
EP0916829B1 (fr) Méthode d'opération d'un moteur Diesel
DE19824915C1 (de) Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
DE112006000513B4 (de) Lastsprungsteuerverfahren für Direkteinspritzmotoren mit gesteuerter Selbstzündungsverbrennung
DE112005001797B4 (de) Verfahren zum Betreiben eines Viertakt-Verbrennungsmotors während eines Teillastbetriebs
DE112006000527B4 (de) Verfahren für den Übergang zwischen einer Betriebsart mit gesteuerter Selbstzündung und einer Betriebsart mit Funkenzündung bei Motoren mit direkter Kraftstoffeinspritzung
DE60312941T2 (de) Zündungsregler für eine fremdgezündete Brennkraftmaschine
DE19610277C2 (de) Nach dem Dieselverfahren arbeitende Hubkolbenbrennkraftmaschine mit Einlaßventil-Schließzeitpunkteinstellung
DE60004712T2 (de) Steuervorrichtung für eine Brennkraftmaschine mit Direkteinspritzung
WO2006007954A1 (fr) Procede d'utilisation d'un moteur a combustion interne
DE112006000528T5 (de) Drehzahlübergangssteuerverfahren für Direkteinspritzmotoren mit gesteuerter Selbstzündungsverbrennung
WO2007031157A1 (fr) Procede pour faire fonctionner un moteur a combustion a allumage commande
DE102006041467A1 (de) Regelungskonzepte in Ottomotoren mit homogenkompressionsgezündeter Verbrennung
EP0972131B1 (fr) Procede permettant de reduire les emissions polluantes de gaz d'echappement d'un moteur a allumage par etincelles actionne avec un melange carburant/air pauvre
WO2002055857A1 (fr) Procede pour le chauffage d'un catalyseur dans des moteurs a combustion interne a injection directe d'essence
EP1066458B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
WO2005038220A1 (fr) Procede d'exploitation d'un moteur a combustion interne
DE102005046952B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
EP1338776B1 (fr) Moteur à quatre temps à allumage commandé avec deux arbres à cames à phase variable et sa méthode de commande
DE102008012612B4 (de) Verfahren für einen emissionsoptimierten Wechsel von einer Betriebsart eines Verbrennungsmotors in eine andere
EP0999357B1 (fr) Procédé d'opération pour un moteur à quatre temps avec allumage par étincelle et injection indirecte
DE10115968B4 (de) Verfahren zur Erwärmung eines Katalysators
EP2625407A2 (fr) Procédé pour faire fonctionner un moteur à combustion interne pourvu d'un catalyseur dans le circuit de recirculation des gaz lors de la transition entre un mode de combustion hcci et un mode de combustion avec allumage commandé.
EP1598541A2 (fr) Procédé de commande d'un moteur thermique
DE102004001724A1 (de) Verfahren zum Absenken einer Abgastemperatur im Hochlastbereich einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020327

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59902930

Country of ref document: DE

Date of ref document: 20021107

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050210

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59902930

Country of ref document: DE