EP1060517A1 - Bipolar transistor with an insulated gate electrode - Google Patents
Bipolar transistor with an insulated gate electrodeInfo
- Publication number
- EP1060517A1 EP1060517A1 EP99904672A EP99904672A EP1060517A1 EP 1060517 A1 EP1060517 A1 EP 1060517A1 EP 99904672 A EP99904672 A EP 99904672A EP 99904672 A EP99904672 A EP 99904672A EP 1060517 A1 EP1060517 A1 EP 1060517A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gate
- connection
- igbt
- bipolar transistor
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 12
- 229920005591 polysilicon Polymers 0.000 claims abstract description 12
- 238000009413 insulation Methods 0.000 claims description 7
- 238000009826 distribution Methods 0.000 description 11
- 238000001465 metallisation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/4824—Pads with extended contours, e.g. grid structure, branch structure, finger structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
- H01L29/7396—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
- H01L29/7397—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0601—Structure
- H01L2224/0603—Bonding areas having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13026—Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
- H01L2224/13028—Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body the bump connector being disposed on at least two separate bonding areas, e.g. bond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
Definitions
- the gate signal for IGBT chips with a minimum surface area of 0.2 cm 2 is first distributed over the periphery of the chips with the aid of a gate runner (see DE 196 12 516 AI). Narrow stripes (gate fingers) then lead the signal inside the chip (clearly seen in EP 0 755 076 A2). Both the gate runner and the gate finger are made of an AI metallization. It is also possible to start the signal from a - 2 -
- the design rule usually used states that the distance x of the gate fingers must meet the following condition.
- gate fingers require complex and expensive solder metallization, if cathode-side soldering is required, and place high demands on the passivation. Passivation weaknesses lead to gate-emitter short circuits that manifest themselves as early failures and can only be detected with complex burn-in tests. Similar problems occur with pressure contacting.
- the object of the invention is to provide an IGBT that can be manufactured in a simple manner and nevertheless switches on homogeneously. This object is solved by the features of the independent claims. - 3 -
- the gate current in the IGBT chip is passed on directly from the gate connection via the polysilicon layers of the gate electrodes to the IGBT emity cells without the use of gate fingers.
- the gate signal can be supplied to the IGBT chip via a gate connection (gate pad) arranged in a corner or, according to a second exemplary embodiment, via a central gate connection.
- the invention thus turns away diametrically from the prevailing view that, starting from a certain chip size, homogeneous switching on can only be achieved using gate fingers. Rather, the inventors recognized for the first time that different design rules apply to homogeneous switching off of an IGBT than to MOS transistors. In particular, the inventors have recognized that maximum power loss density is always homogeneous when the plasma distribution is still homogeneous.
- a bipolar component behaves fundamentally different from a unipolar element such as a MOS transistor, in particular when the MOS current is no longer sufficient to maintain the external current. After this point in time there is a transition from bipolar current to pure hole current, associated with clearing the main junction. Once this process is complete, the full current is carried through holes and the space charge zone builds up.
- the plasma distribution is still quite homogeneous laterally. Therefore, the very inhomogeneous current distribution is quickly homogenized. At the time of the maximum power loss, the current distribution is almost homogeneous. Therefore, the safe operating area is not reduced and the switch-off energy is hardly changed. As a consequence, IGBTs can be built without a gate finger, even if a minimum area of 0.2 cm 2 that applies to gate fingerless MOS transistors is exceeded.
- FIGS. 2a and 2b show an exemplary embodiment of an IGBT chip 1 according to the invention.
- a first main connection 3 is shown, which is connected by an insulation - 4 -
- gate frame 8 is surrounded.
- the gate frame 8 is connected to a gate connection 4, of which e.g. Can lead bond wires to the corresponding housing connection.
- gate fingers 6 are provided in the prior art according to FIGS. 1 a and 1 b, which distribute the gate signal from the gate connection 4 over the chip surface.
- Figure la A plan view of an IGBT chip according to the prior art
- Figure lb A perspective view of part of the IGBT chip according to Figure la
- Figure 2a A plan view of an IGBT chip according to the invention according to a first embodiment
- Figure 2b A perspective view of part of the IGBT chip according to Figure 2a
- Figure 3 A plan view of an IGBT chip according to the invention in a second embodiment
- Figure 4 A section through an IGBT chip according to the invention
- Figure 5 A plan view of a polysilicon layer.
- FIGS. 1 a and 1 b show a gate fingerless IGBT chip 1 according to the invention from above or in perspective with a first, visible skin connector 3 and a second, not shown main connector and a gate connector 4, which in the embodiment shown in Figures 2a and 2b on Edge, in particular in a corner of the IGBT chip 1 is arranged.
- FIGS. 1 a and 1 b which represent the prior art, no gate fingers 6 are provided, but the gate signal is distributed from the gate connection 4 via a gate frame 8 over the periphery.
- the gate frame 8 is also in direct operative connection with the gate electrodes 5. It preferably has a resistance of less than 5 ohms.
- the first main connection 3 is thus formed by a surface which is convex except for a recess for the gate connection 4, wherein in the case of the embodiment according to FIGS. 2a and 2b its convex surface area is surrounded by the gate frame 8. If a plurality of gate connections 4 are present, the essentially convex surface of the first main connection has a corresponding number of recesses. Insulation 7 is provided between the large-area first main connection (shown as metallization), which is formed in particular by the cathode of the IGBT, and the gate connection 4 and the gate frame 8. According to the invention, the gate connection 4 or the gate frame 8 is connected directly to the polysilicon layers of the gate electrodes 5 of the IGBT, ie without interposing gate fingers.
- the gate connection 4 can also be arranged centrally on the IGBT chip 1.
- Figure 3 shows this embodiment. Again, the gate connection 4 is surrounded by insulation 7, which decouples it from the main connection 3.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Thyristors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
The invention relates to an IGBT (Insulated Gate Bipolar Transistor) which is simple to produce but still switches on homogeneously. To this end, the inventive transistor does not have any gate fingers and starting from the gate terminal, the gate current in the IGBT chip is transmitted directly to the IGBT unit cells via the polysilicon layers of the gate electrodes.
Description
B E S C H R E I B U N G DESCRIPTION
BIPOLARTRANSISTOR MIT ISOLIERTER GATEELEKTRODEBIPOLAR TRANSISTOR WITH INSULATED GATE ELECTRODE
Technisches GebietTechnical field
Die Erfindung bezieht sich auf das Gebiet der Halbleitertechnologie. Sie betrifft insbesondere einen IGBT (Insulated Gate Bipolar Transistor) nach dem Oberbe- griff des ersten Anspruchs. Ein solcher IGBT ist beispielsweise aus der Deutschen Offenlegungsschrift DE 196 12 516 AI bekannt.The invention relates to the field of semiconductor technology. It relates in particular to an IGBT (Insulated Gate Bipolar Transistor) according to the preamble of the first claim. Such an IGBT is known, for example, from German Offenlegungsschrift DE 196 12 516 AI.
Stand der TechnikState of the art
In IGBTs nach dem Stand der Technik wird das Gate Signal bei IGBT-Chips mit einer Mindestoberfläche von 0.2 cm2 zunächst mit Hilfe eines Gate Runners über die Peripherie der Chips verteilt (siehe DE 196 12 516 AI). Schmale Streifen (Gatefinger) führen dann das Signal ins Innere des Chips (deutlich zu sehen in EP 0 755 076 A2). Sowohl der Gate Runner, wie auch die Gate Finger bestehen aus einer AI Metallisierung. Es ist auch möglich, das Signal ausgehend von ei-
- 2 -In IGBTs according to the prior art, the gate signal for IGBT chips with a minimum surface area of 0.2 cm 2 is first distributed over the periphery of the chips with the aid of a gate runner (see DE 196 12 516 AI). Narrow stripes (gate fingers) then lead the signal inside the chip (clearly seen in EP 0 755 076 A2). Both the gate runner and the gate finger are made of an AI metallization. It is also possible to start the signal from a - 2 -
nem in einer Ecke oder zentral angeordneten Gatepad über Gatefinger über die Chipoberfläche zu verteilen (siehe Figur 1). Die üblicherweise verwendete Designregel besagt, dass der Abstand x der Gate Finger folgende Bedingung erfüllen muss.to be distributed in a corner or centrally arranged gate pad via gate fingers over the chip surface (see FIG. 1). The design rule usually used states that the distance x of the gate fingers must meet the following condition.
x « Ä -x «Ä -
R ist der Schichtwiderstand des Poly Siliziums, welches das Signal vom Gatefinger zum physikalischen Gate führt, c die MOS Kapazität pro Fläche des Gates und, τ die charakteristische Schaltzeit des IGBTs gegeben durch r = RGate ■ Ct0, ■ . RGate ist der Gate Vorwiderstand und Ctot die totale MOS Kapazität des Chips. Typische Werte sind c = 30 nF/cm2 , R = 30 Ohm und τ = 200 nsec. Das resultiert in x«0.47 cm. Ist die obige Bedingung erfüllt, so ist - unabhängig vom Gate- Vorwiderstand - die Spannungsverteilung im Gate zu jedem Zeitpunkt während des Schaltens flach und damit die Stromdichte homogen.R is the sheet resistance of the poly silicon, which leads the signal from the gate finger to the physical gate, c the MOS capacitance per area of the gate and, τ the characteristic switching time of the IGBT given by r = R gate ■ C t0 , ■ . R Gate is the gate series resistor and C tot is the total MOS capacity of the chip. Typical values are c = 30 nF / cm 2 , R = 30 ohms and τ = 200 nsec. This results in x «0.47 cm. If the above condition is met, regardless of the gate series resistor, the voltage distribution in the gate is flat at all times during switching and thus the current density is homogeneous.
Gate Finger erfordern jedoch eine komplexe und teure Lötmetallisierung, falls kathodenseitiges Löten erforderlich ist, und stellen hohe Anforderungen an die Passivierung. Passivierungsschwächen führen zu Gate- Emitter Kurzschlüssen die sich als Frühausfälle manifestieren und nur mit aufwendigen Burn-in Tests erfasst werden können. Ähnliche Probleme treten bei der Druckkontaktierung auf.However, gate fingers require complex and expensive solder metallization, if cathode-side soldering is required, and place high demands on the passivation. Passivation weaknesses lead to gate-emitter short circuits that manifest themselves as early failures and can only be detected with complex burn-in tests. Similar problems occur with pressure contacting.
Darstellung der ErfindungPresentation of the invention
Aufgabe der Erfindung ist es, einen IGBT anzugeben, der auf einfache Weise hergestellt werden kann und trotzdem homogen einschaltet. Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.
- 3 -The object of the invention is to provide an IGBT that can be manufactured in a simple manner and nevertheless switches on homogeneously. This object is solved by the features of the independent claims. - 3 -
Kern der Erfindung ist es also, dass der Gatestrom im IGBT-Chip ausgehend vom Gateanschluss unmittelbar über die Polysiliziumschichten der Gateelektroden zu den IGBT-Emheitszellen weitergeleitet wird ohne Verwendung von Gate- fingern. Das Gatesignal kann nach einem ersten Ausführungsbeispiel über einen in einer Ecke angeordneten Gateanschluss (Gatepad) oder gemass einem zweiten Ausführungsbeispiel über einen zentralen Gateanschluss dem IGBT-Chip zugeführt werden.The essence of the invention is therefore that the gate current in the IGBT chip is passed on directly from the gate connection via the polysilicon layers of the gate electrodes to the IGBT emity cells without the use of gate fingers. According to a first exemplary embodiment, the gate signal can be supplied to the IGBT chip via a gate connection (gate pad) arranged in a corner or, according to a second exemplary embodiment, via a central gate connection.
Die Erfindung wendet sich somit diametral ab von der herrschenden Ansicht, dass ab einer gewissen Chipgrösse homogenes Einschalten nur unter Verwendung von Gatefingern erreicht werden kann. Vielmehr haben die Erfinder erstmals erkannt, dass für homogenes Abschalten eines IGBTs andere Designregeln gelten als für MOS Transistoren. Die Erfinder haben insbesondere erkannt, dass maximale Verlustleistungsdichte immer homogen ist, wenn die Plasmavertei- lung noch homogen ist. Ein bipolares Bauelement verhält sich insbesondere in dem Zeitpunkt, in dem der MOS-Strom nicht mehr genügt, um den äusseren Strom aufrecht zu erhalten, prinzipiell anders als ein unipolares Element wie z.B. ein MOS Transistor. Nach diesem Zeitpunkt erfolgt ein Übergang von bipolarem Strom zu reinem Löcherstrom, verbunden mit einem Ausräumen der Hauptjunction. Sobald dieser Prozess abgeschlossen ist, wird der volle Strom von Löchern getragen und die Raumladungszone baut sich auf. Die Plasmaverteilung ist aber lateral immer noch recht homogen. Deshalb wird auch die sehr inhomogene Stromverteilung rasch homogenisiert. Zum Zeitpunkt der maximalen Verlustleistung ist die Stromverteilung nahezu homogen. Deshalb wird die Safe Operating Area nicht reduziert und die Abschaltenergie kaum verändert. Als Konsequenz lassen sich IGBTs ohne Gate Finger bauen, auch wenn eine für gatefingerlose MOS Transistoren geltende Mindestfläche von 0.2 cm2 überschritten wird.The invention thus turns away diametrically from the prevailing view that, starting from a certain chip size, homogeneous switching on can only be achieved using gate fingers. Rather, the inventors recognized for the first time that different design rules apply to homogeneous switching off of an IGBT than to MOS transistors. In particular, the inventors have recognized that maximum power loss density is always homogeneous when the plasma distribution is still homogeneous. A bipolar component behaves fundamentally different from a unipolar element such as a MOS transistor, in particular when the MOS current is no longer sufficient to maintain the external current. After this point in time there is a transition from bipolar current to pure hole current, associated with clearing the main junction. Once this process is complete, the full current is carried through holes and the space charge zone builds up. The plasma distribution is still quite homogeneous laterally. Therefore, the very inhomogeneous current distribution is quickly homogenized. At the time of the maximum power loss, the current distribution is almost homogeneous. Therefore, the safe operating area is not reduced and the switch-off energy is hardly changed. As a consequence, IGBTs can be built without a gate finger, even if a minimum area of 0.2 cm 2 that applies to gate fingerless MOS transistors is exceeded.
Die Figuren 2a und 2b zeigen ein Ausführungsbeispiel eines erfindungsgemässen IGBT-Chips 1. Dargestellt ist ein erster Hauptanschluss 3, der von einer Isolie-
- 4 -FIGS. 2a and 2b show an exemplary embodiment of an IGBT chip 1 according to the invention. A first main connection 3 is shown, which is connected by an insulation - 4 -
rung 7 und einem Gaterahmen 8 umgeben ist. Der Gaterahmen 8 steht in Verbindung mit einem Gateanschluss 4, von welchem z.B. Bonddrähte zum entsprechenden Gehäuseanschluss führen können. Im Gegensatz dazu sind beim Stand der Technik nach den Figuren la und lb Gatefinger 6 vorgesehen, die das Gate- signal ausgehend vom Gateanschluss 4 über die Chipoberfläche verteilen.tion 7 and a gate frame 8 is surrounded. The gate frame 8 is connected to a gate connection 4, of which e.g. Can lead bond wires to the corresponding housing connection. In contrast to this, gate fingers 6 are provided in the prior art according to FIGS. 1 a and 1 b, which distribute the gate signal from the gate connection 4 over the chip surface.
Die Vorteile der Erfindung sind insbesondere darin zu sehen, dass durch den Wegfall der Gatefinger eine einfache und billige Ausführung der Lötmetallisierung ermöglicht wird, - die einfachere Technologie eine höhere Zuverlässigkeit bei der Druckkontak- tierung der Chips ermöglicht.The advantages of the invention can be seen in particular in that the omission of the gate fingers enables simple and inexpensive execution of the soldering metallization, and the simpler technology enables greater reliability in the pressure contacting of the chips.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Im folgenden wird die Erfindung anhand von Zeichnungen weiter erläutert. Es zeigen:In the following the invention is further explained with reference to drawings. Show it:
Figur la: Eine Aufsicht auf einen IGBT-Chip nach dem Stand der Technik; Figur lb: Eine perspektivische Darstellung eines Teils des IGBT-Chips gemass Figur la; Figur 2a: Eine Aufsicht auf einen IGBT-Chip nach der Erfindung nach einem ersten Ausführungsbeispiel; Figur 2b: Eine perspektivische Darstellung eines Teils des IGBT-Chips gemass Figur 2a;Figur 3: Eine Aufsicht auf einen IGBT-Chip nach der Erfindung nach einem zweiten Ausführungsbeispiel; Figur 4: Einen Schnitt durch einen IGBT-Chip nach der Erfindung Figur 5: Eine Aufsicht auf eine Polysiliziumschicht.Figure la: A plan view of an IGBT chip according to the prior art; Figure lb: A perspective view of part of the IGBT chip according to Figure la; Figure 2a: A plan view of an IGBT chip according to the invention according to a first embodiment; Figure 2b: A perspective view of part of the IGBT chip according to Figure 2a Figure 3: A plan view of an IGBT chip according to the invention in a second embodiment; Figure 4: A section through an IGBT chip according to the invention Figure 5: A plan view of a polysilicon layer.
Die in den Figuren verwendeten Bezugszeichen sind in der Bezugszeichenliste zusammengefasst aufgelistet.
- 5 -The reference symbols used in the figures are listed in summary form in the list of reference symbols. - 5 -
Wege zur Ausführung der ErfindungWays of Carrying Out the Invention
In Vorversuchen wurde ein langsamer 2.5 kV Chip mit einer Mindestchipoberflä- che von 0,2 cm"2 ohne Gate Finger gebaut und seine Eigenschaften gemessen. Sie waren innerhalb der Fehlergrenze ununterscheidbar von der Version mit Gate Finger. Die Befürchtung bestand jedoch, ein schneller Chip würde ohne Gate Finger unter extrem inhomogenen Stromverteilungen abschalten und deshalb hohe Schaltverluste, langsame Transienten und kleine SOA aufweisen. Analytische Rechnungen, numerische Simulationen des Schaltverhaltens sowie Schaltversuche von schnellen IGBTs ohne Gate Finger habe jedoch verblüffende Resultate gezeigt. Es zeigte sich, dass eine Signalausbreitungszeit vergleichbar mit der Schaltzeit τ nicht notwendigerweise zu einer inhomogenen Sromverteilung beim Abschalten führt. Die Versuche zeigten auch, dass das Einschalten im Vergleich zum Abschalten unkritisch ist.In preliminary tests, a slow 2.5 kV chip with a minimum chip surface area of 0.2 cm "2 was built without a gate finger and its properties measured. They were indistinguishable from the version with a gate finger within the error limit. However, there was a fear of a fast chip would switch off under extremely inhomogeneous current distributions without a gate finger and would therefore have high switching losses, slow transients and small SOA. However, analytical calculations, numerical simulations of the switching behavior and switching attempts by fast IGBTs without gate fingers have shown amazing results. It was found that a signal propagation time is comparable with the switching time τ does not necessarily lead to an inhomogeneous current distribution when switching off. The experiments also showed that switching on is not critical in comparison with switching off.
Für den Fall, dass die Gateansteuerung von der Chipperipherie erfolgt und dassIn the event that the gate control takes place from the chip periphery and that
R - cR - c
gewählt wird, tritt beim Abschalten nämlich zunächst eine Stromumverteilung auf. Die äusseren Teile des Chips beginnen abzuschalten, die Last hält den totalen Strom konstant und kommutiert Strom ins Zentrum des Chips. Zu dem Zeitpunkt ist die Anodenspannung noch im wesentlichen Null.is selected, a current redistribution occurs when switching off. The outer parts of the chip start to switch off, the load keeps the total current constant and commutates current into the center of the chip. At that point, the anode voltage is still essentially zero.
Zu diesem Zeitpunkt genügt der MOS Strom nicht mehr, um den äusseren Strom aufrecht zu erhalten. In einem reinen MOS Transistor setzt jetzt der Spannungsanstieg ein. Der Spannungsanstieg koppelt über die Gate-Anoden (Miller) Kapazität Ladung ins Gate, derart, dass die Spannungsverteilung über das Gate konstant bleibt und der Strom nicht weiter abfällt. Sobald die volle Lastspannung erreicht ist, bricht der Regelmechanismus ab, die Gatespannung sinkt und das Bauelement schaltet ab.
Der Kern der Erfindung ist nun, dass erkannt und vorteilhaft ausgenutzt wurde, dass sich ein bipolares Bauelement ab dem o.g. Zeitpunkt prinzipiell anders verhält. Nach diesem Zeitpunkt erfolgt ein Übergang von bipolarem Strom zu rei- nem Löcherstrom, verbunden mit einem Ausräumen der Hauptjunction. Sobald dieser Prozess abgeschlossen ist, wird der volle Strom von Löchern getragen und die Raumladungszone baut sich auf. Die Plasmaverteilung ist aber lateral immer noch recht homogen. Deshalb wird auch die zu diesem Zeitpunkt sehr inhomogene Stromverteilung rasch homogenisiert. Zum Zeitpunkt der maximalen Ver- lustleistung ist die Stromverteilung nahezu homogen. Deshalb wird die SafeAt this point, the MOS current is no longer sufficient to maintain the external current. The voltage rise now begins in a pure MOS transistor. The voltage rise couples charge into the gate via the gate anode (Miller) capacitance in such a way that the voltage distribution over the gate remains constant and the current does not drop any further. As soon as the full load voltage is reached, the control mechanism stops, the gate voltage drops and the component switches off. The essence of the invention is that it has been recognized and advantageously used that a bipolar component basically behaves differently from the above-mentioned point in time. After this point in time there is a transition from bipolar current to pure hole current, associated with clearing the main junction. Once this process is complete, the full current is carried through holes and the space charge zone builds up. The plasma distribution is still quite homogeneous laterally. For this reason, the very inhomogeneous current distribution is quickly homogenized. At the time of the maximum power loss, the current distribution is almost homogeneous. That is why the safe
Operating Area nicht reduziert und die Abschaltenergie kaum verändert. Damit können IGBTs gebaut werden, die ohne Gatefinger auskommen.Operating area not reduced and the switch-off energy hardly changed. This allows IGBTs to be built that do not need a gate finger.
Die Figuren 2a und 2b zeigen einen erfindungsgemässen, gatefingerlosen IGBT Chip 1 von oben beziehungsweise in perspektivischer Darstellung mit einem ersten, sichtbaren Hautpschluss 3 und einem zweiten, nicht dargestellten Hauptanschluss sowie einem Gateanschluss 4, welcher in der in den Figuren 2a und 2b dargestellten Ausführungsform am Rand, insbesondere in einer Ecke des IGBT-Chips 1 angeordnet ist. Im Gegensatz zu den Figuren la und lb, die den Stand der Technik darstellen, sind keine Gatefinger 6 vorgesehen, sondern das Gatesignal wird ausgehend vom Gateanschluss 4 über einen Gaterahmen 8 über die Peripherie verteilt. Wie in Figur 2b sichtbar ist, steht auch der Gaterahmen 8 in unmittelbarer Wirkverbindung mit den Gateelektroden 5. Vorzugsweise weist er einen Widerstand von kleiner als 5 Ohm auf.Figures 2a and 2b show a gate fingerless IGBT chip 1 according to the invention from above or in perspective with a first, visible skin connector 3 and a second, not shown main connector and a gate connector 4, which in the embodiment shown in Figures 2a and 2b on Edge, in particular in a corner of the IGBT chip 1 is arranged. In contrast to FIGS. 1 a and 1 b, which represent the prior art, no gate fingers 6 are provided, but the gate signal is distributed from the gate connection 4 via a gate frame 8 over the periphery. As can be seen in FIG. 2b, the gate frame 8 is also in direct operative connection with the gate electrodes 5. It preferably has a resistance of less than 5 ohms.
Der erste Hauptanschluss 3 ist somit durch eine Fläche gebildet, welche bis auf eine Aussparung für den Gateanschluss 4 konvex ist, wobei im Falle der Ausführungsform gemass den Figuren 2a und 2b sein konvex ausgebildeter Flächenbereich vom Gaterahmen 8 umgeben ist. Sind mehrere Gateanschlüsse 4 vorhanden, so weist die im wesentlichen konvexe Fläche des ersten Hauptanschlusses eine entsprechende Anzahl Ausnehmungen auf.
Zwischen dem grossflächigen ersten Hauptanschluss (dargestellt als Metallisierung), der insbesondere von der Kathode des IGBTs gebildet wird, und dem Gateanschluss 4 und dem Gaterahmen 8 ist eine Isolierung 7 vorgesehen. Nach der Erfindung ist der Gateanschluss 4 bzw. der Gaterahmen 8 mit den Polysiliziumschichten der Gateelektroden 5 des IGBTs direkt, d.h. ohne Zwischenschalten von Gatefingern verbunden. Figur 4 zeigt dies im Schnitt. Die Polysilizium- schicht 5 des IGBTs ist direkt mit dem Gateanschluss 4 verbunden. Die übrigen Polysiliziumschichten 5 der IGBT-Einheitszellen 2 sind im Bauelement parallelgeschaltet. Eine Ausführungsform einer Anordnung der Polysiliziumschichten 5 ist in Figur 5 dargestellt. Sie deckt in diesem Fall den Chip grossflächig ab und weist Ausnehmungen 5' auf. In Figur 4 ist auch die Isolierung 7, die zwischen dem Gateanschluss 4 und dem ersten Hauptanschluss 3 vorgesehen ist, bzw. der dafür vorgesehene Graben, deutlich zu sehen.The first main connection 3 is thus formed by a surface which is convex except for a recess for the gate connection 4, wherein in the case of the embodiment according to FIGS. 2a and 2b its convex surface area is surrounded by the gate frame 8. If a plurality of gate connections 4 are present, the essentially convex surface of the first main connection has a corresponding number of recesses. Insulation 7 is provided between the large-area first main connection (shown as metallization), which is formed in particular by the cathode of the IGBT, and the gate connection 4 and the gate frame 8. According to the invention, the gate connection 4 or the gate frame 8 is connected directly to the polysilicon layers of the gate electrodes 5 of the IGBT, ie without interposing gate fingers. Figure 4 shows this in section. The polysilicon layer 5 of the IGBT is connected directly to the gate connection 4. The remaining polysilicon layers 5 of the IGBT unit cells 2 are connected in parallel in the component. An embodiment of an arrangement of the polysilicon layers 5 is shown in FIG. 5. In this case, it covers the chip over a large area and has recesses 5 '. The insulation 7, which is provided between the gate connection 4 and the first main connection 3, or the trench provided for this purpose, can also be clearly seen in FIG.
Selbstverständlich kann der Gateanschluss 4 auch zentral auf dem IGBT-Chip 1 angeordnet sein. Figur 3 zeigt diese Ausführungsform. Wiederum ist der Gateanschluss 4 von einer Isolierung 7 umgeben, die ihn von dem Hauptanschluss 3 abkoppelt.
Of course, the gate connection 4 can also be arranged centrally on the IGBT chip 1. Figure 3 shows this embodiment. Again, the gate connection 4 is surrounded by insulation 7, which decouples it from the main connection 3.
- 8 -- 8th -
BezugszeichenlisteReference list
1 IGBT-Chip1 IGBT chip
2 IGBT-Einheitszelle 3 erster Hauptanschluss2 IGBT unit cell 3 first main connection
4 Gateanschluss (Gatepad)4 gate connection (gatepad)
5 Gateelektrode 5' Ausnehmung5 gate electrode 5 'recess
6 Gatefinger 7 Isolierung6 gate fingers 7 insulation
8 Gaterahmen
8 gate frames
Claims
1. Bipolartransistor mit isolierter Gateelektrode (IGBT) umfassend mindestens einen IGBT-Chip (1) mit einer Mehrzahl von parallelgeschalteten IGBT-Einheitszellen (2), pro Chip einem ersten (3) und zweitem Hauptanschluss und mindestens einem Gateanschluss (4), der mit den Gateelektroden (5) der IGBT-Einheitszellen (2) in elektrischer Wirkverbindung steht, wobei die Gateelektroden (5) durch elektrisch parallelgeschaltete Polysiliziumschichten gebildet werden, dadurch gekennzeichnet, dass der IGBT-Chip (1) eine gatefingerlose Fläche in einer Grosse aufweist, welche bei gatefingerlosen MOS-Transistoren zu einem inhomogenen Abschalten führt, und dass die Polysiliziumschichten mit dem oder jedem Gateanschluss (4) in unmittelbarer Wirkver- bindung verbunden sind.1. Bipolar transistor with insulated gate electrode (IGBT) comprising at least one IGBT chip (1) with a plurality of IGBT unit cells (2) connected in parallel, a first (3) and a second main connection and at least one gate connection (4) per chip the gate electrodes (5) of the IGBT unit cells (2) are in electrical operative connection, the gate electrodes (5) being formed by electrically parallel polysilicon layers, characterized in that the IGBT chip (1) has a gate fingerless area of a size which in the case of gate fingerless MOS transistors leads to inhomogeneous switching off and that the polysilicon layers are connected to the or each gate connection (4) in a direct operative connection.
2. Bipolartransistor mit isolierter Gateelektrode (IGBT) umfassend mindestens einen IGBT-Chip (1) mit einer Mehrzahl von parallelgeschalteten IGBT-Einheitszellen (2), pro Chip einem ersten (3) und zweitem Hauptanschluss und mindestens einem Gateanschluss (4), der mit den2. Bipolar transistor with insulated gate electrode (IGBT) comprising at least one IGBT chip (1) with a plurality of IGBT unit cells (2) connected in parallel, a first (3) and a second main connection and at least one gate connection (4) per chip the
Gateelektroden (5) der IGBT-Einheitszellen (2) in elektrischer Wirkverbindung steht, wobei die Gateelektroden (5) durch elektrisch parallelgeschaltete Polysiliziumschichten gebildet werden, dadurch gekennzeichnet, dass jeder IGBT-Chip (1) eine Fläche von mindestens 0.2 cm2 aufweist und dass die Polysiliziumschichten mit dem oder jedem Gateanschluss (4) in unmittelbarer Wirkverbindung verbunden sind.Gate electrodes (5) of the IGBT unit cells (2) are in electrical operative connection, the gate electrodes (5) being formed by electrically parallel polysilicon layers, characterized in that each IGBT chip (1) has an area of at least 0.2 cm 2 and that the polysilicon layers are connected to the or each gate connection (4) in a direct operative connection.
3. Bipolartransistor nach einem der Ansprüche 1 oder 2, dadurch ge- kennzeichnet, dass der erste Hauptanschluss (3) durch eine Fläche ge-
- 10 -3. Bipolar transistor according to one of claims 1 or 2, characterized in that the first main connection (3) through a surface - 10 -
bildet ist, welche bis auf mindestens eine Aussparung für den mindestens einen Gateanschluss (4) konvex ist.is formed, which is convex except for at least one recess for the at least one gate connection (4).
4. Bipolartransistor mit isolierter Gateelektrode nach einem der Ansprü- ehe 1 oder 2, dadurch gekennzeichnet, dass der Gateanschluss (4) am4. Bipolar transistor with insulated gate electrode according to one of claims 1 or 2, characterized in that the gate terminal (4) on
Rand des IGBT-Chips (1), insbesondere in einer Ecke, angeordnet ist.Edge of the IGBT chip (1), in particular in a corner.
5. Bipolartransistor nach Anspruch 4, dadurch gekennzeichnet, dass ein den IGBT-Chip (1) umgebender, metallisierter Gaterahmen (8) vorge- sehen ist, der mit dem Gateanschluss (4) elektrisch verbunden ist, und dass zwischen dem auf derselben Chipseite wie der Gateanschluss angeordneten, ersten Hauptanschluss (3) und dem Gaterahmen (8) bzw. dem Gateanschluss (4) eine Isolierung (7) vorgesehen ist.5. Bipolar transistor according to claim 4, characterized in that a metallized gate frame (8) surrounding the IGBT chip (1) is provided, which is electrically connected to the gate connection (4), and between that on the same chip side as the gate connection arranged, the first main connection (3) and the gate frame (8) or the gate connection (4) an insulation (7) is provided.
6. Bipolartransistor nach Anspruch 5, dadurch gekennzeichnet, dass der Gaterahmen (8) einen Schichtwiderstand von kleiner als 5 Ohm aufweist.6. Bipolar transistor according to claim 5, characterized in that the gate frame (8) has a sheet resistance of less than 5 ohms.
7. Bipolartransistor nach den Ansprüchen 3 und 5, dadurch gekenn- zeichnet, dass der Gaterahmen (8) den konvex ausgebildeten Flächenbereich des ersten Hauptanschlusses (3) umgibt.7. Bipolar transistor according to claims 3 and 5, characterized in that the gate frame (8) surrounds the convex surface area of the first main connection (3).
8. Bipolartransistor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Gateanschluss (4) im wesentlichen im Zentrum des IGBT-Chips (1) angeordnet ist und von einer Isolierung (7) umgeben ist.
8. Bipolar transistor according to one of claims 1 or 2, characterized in that the gate terminal (4) is arranged substantially in the center of the IGBT chip (1) and is surrounded by insulation (7).
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19808154A DE19808154A1 (en) | 1998-02-27 | 1998-02-27 | Bipolar transistor with insulated gate (IGBT) |
DE19808154 | 1998-02-27 | ||
DE1998123170 DE19823170A1 (en) | 1998-05-23 | 1998-05-23 | Bipolar transistor with insulated gate electrode |
DE19823170 | 1998-05-23 | ||
PCT/CH1999/000086 WO1999044240A1 (en) | 1998-02-27 | 1999-02-25 | Bipolar transistor with an insulated gate electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1060517A1 true EP1060517A1 (en) | 2000-12-20 |
Family
ID=26044178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99904672A Ceased EP1060517A1 (en) | 1998-02-27 | 1999-02-25 | Bipolar transistor with an insulated gate electrode |
Country Status (5)
Country | Link |
---|---|
US (1) | US6576936B1 (en) |
EP (1) | EP1060517A1 (en) |
JP (1) | JP2002505525A (en) |
CN (1) | CN1183603C (en) |
WO (1) | WO1999044240A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060151785A1 (en) * | 2005-01-13 | 2006-07-13 | Campbell Robert J | Semiconductor device with split pad design |
JP2015204374A (en) * | 2014-04-14 | 2015-11-16 | 株式会社ジェイテクト | semiconductor device |
JP2015204375A (en) * | 2014-04-14 | 2015-11-16 | 株式会社ジェイテクト | semiconductor device |
JP6476000B2 (en) * | 2015-02-17 | 2019-02-27 | 三菱電機株式会社 | Semiconductor device and semiconductor module |
US9685438B2 (en) | 2015-08-19 | 2017-06-20 | Raytheon Company | Field effect transistor having two-dimensionally distributed field effect transistor cells |
US9698144B2 (en) * | 2015-08-19 | 2017-07-04 | Raytheon Company | Field effect transistor having loop distributed field effect transistor cells |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5987828A (en) | 1982-11-12 | 1984-05-21 | Hitachi Ltd | Semiconductor device |
IE55753B1 (en) * | 1983-09-06 | 1991-01-02 | Gen Electric | Power semiconductor device with main current section and emulation current section |
US4783690A (en) | 1983-09-06 | 1988-11-08 | General Electric Company | Power semiconductor device with main current section and emulation current section |
US4644637A (en) | 1983-12-30 | 1987-02-24 | General Electric Company | Method of making an insulated-gate semiconductor device with improved shorting region |
US4672407A (en) | 1984-05-30 | 1987-06-09 | Kabushiki Kaisha Toshiba | Conductivity modulated MOSFET |
US5528058A (en) | 1986-03-21 | 1996-06-18 | Advanced Power Technology, Inc. | IGBT device with platinum lifetime control and reduced gaw |
US5208471A (en) | 1989-06-12 | 1993-05-04 | Hitachi, Ltd. | Semiconductor device and manufacturing method therefor |
WO1991003842A1 (en) | 1989-08-31 | 1991-03-21 | Nippondenso Co., Ltd. | Insulated gate bipolar transistor |
JP2858404B2 (en) | 1990-06-08 | 1999-02-17 | 株式会社デンソー | Insulated gate bipolar transistor and method of manufacturing the same |
US5448083A (en) | 1991-08-08 | 1995-09-05 | Kabushiki Kaisha Toshiba | Insulated-gate semiconductor device |
US5260590A (en) | 1991-12-23 | 1993-11-09 | Harris Corp. | Field effect transistor controlled thyristor having improved turn-on characteristics |
JPH05206469A (en) | 1992-01-29 | 1993-08-13 | Hitachi Ltd | Insulated gate bipolar transistor |
JPH05235345A (en) * | 1992-02-20 | 1993-09-10 | Nec Corp | Semiconductor device and manufacture thereof |
DE59207386D1 (en) | 1992-03-13 | 1996-11-21 | Asea Brown Boveri | Power semiconductor component that can be switched off |
GB2268332A (en) | 1992-06-25 | 1994-01-05 | Gen Electric | Power transistor with reduced gate resistance and inductance |
JP2837033B2 (en) | 1992-07-21 | 1998-12-14 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
JP3163820B2 (en) | 1992-07-28 | 2001-05-08 | 富士電機株式会社 | Semiconductor device |
JPH06244429A (en) | 1992-12-24 | 1994-09-02 | Mitsubishi Electric Corp | Insulated-gate semiconductor device and manufacture thereof |
DE4315178A1 (en) | 1993-05-07 | 1994-11-10 | Abb Management Ag | IGBT with self-aligning cathode structure and process for its production |
JPH07161992A (en) | 1993-10-14 | 1995-06-23 | Fuji Electric Co Ltd | Insulated-gate bipolar transistor |
JP2987040B2 (en) | 1993-11-05 | 1999-12-06 | 三菱電機株式会社 | Insulated gate semiconductor device |
JPH07235672A (en) | 1994-02-21 | 1995-09-05 | Mitsubishi Electric Corp | Insulated-gate type semiconductor device and manufacture thereof |
JP3481287B2 (en) | 1994-02-24 | 2003-12-22 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
US5539232A (en) | 1994-05-31 | 1996-07-23 | Kabushiki Kaisha Toshiba | MOS composite type semiconductor device |
US5581100A (en) | 1994-08-30 | 1996-12-03 | International Rectifier Corporation | Trench depletion MOSFET |
US5665996A (en) | 1994-12-30 | 1997-09-09 | Siliconix Incorporated | Vertical power mosfet having thick metal layer to reduce distributed resistance |
JPH08186258A (en) | 1995-01-06 | 1996-07-16 | Hitachi Ltd | Semiconductor device and its production |
DE19512799C2 (en) | 1995-04-05 | 1998-11-12 | Siemens Ag | Semiconductor component controllable by field effect |
JP3384198B2 (en) | 1995-07-21 | 2003-03-10 | 三菱電機株式会社 | Insulated gate semiconductor device and method of manufacturing the same |
JP3493903B2 (en) | 1995-09-29 | 2004-02-03 | 株式会社デンソー | Semiconductor device |
US5744861A (en) | 1995-11-13 | 1998-04-28 | Asea Brown Boveri Ag | Power semiconductor module |
US5661315A (en) | 1995-12-28 | 1997-08-26 | Asea Brown Boveri Ag | Controllable power semiconductor component |
US6008092A (en) | 1996-02-12 | 1999-12-28 | International Rectifier Corporation | Short channel IGBT with improved forward voltage drop and improved switching power loss |
GB9605672D0 (en) | 1996-03-18 | 1996-05-22 | Westinghouse Brake & Signal | Insulated gate bipolar transistors |
JP3410286B2 (en) | 1996-04-01 | 2003-05-26 | 三菱電機株式会社 | Insulated gate semiconductor device |
DE19651108C2 (en) | 1996-04-11 | 2000-11-23 | Mitsubishi Electric Corp | High breakdown voltage gate trench type semiconductor device and its manufacturing method |
JPH09331062A (en) | 1996-06-11 | 1997-12-22 | Mitsubishi Electric Corp | Semiconductor device and its manufacture |
DE19705276A1 (en) | 1996-12-06 | 1998-08-20 | Semikron Elektronik Gmbh | IGBT with trench gate structure |
JP2982785B2 (en) * | 1998-04-03 | 1999-11-29 | 富士電機株式会社 | Depletion type MOS semiconductor device and MOS power IC |
-
1999
- 1999-02-25 WO PCT/CH1999/000086 patent/WO1999044240A1/en active Application Filing
- 1999-02-25 EP EP99904672A patent/EP1060517A1/en not_active Ceased
- 1999-02-25 CN CNB998033847A patent/CN1183603C/en not_active Expired - Lifetime
- 1999-02-25 JP JP2000533906A patent/JP2002505525A/en active Pending
- 1999-02-25 US US09/622,839 patent/US6576936B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9944240A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2002505525A (en) | 2002-02-19 |
WO1999044240A1 (en) | 1999-09-02 |
US6576936B1 (en) | 2003-06-10 |
CN1292153A (en) | 2001-04-18 |
CN1183603C (en) | 2005-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0833386B1 (en) | Vertical semiconductor device controllable by field effect | |
DE102008056574B4 (en) | Semiconductor device and method of making the same | |
DE4208695C2 (en) | Line modulation MOSFET | |
EP0996981A1 (en) | High-voltage edge termination for planar structures | |
DE10246960B4 (en) | Field-effect power transistor | |
WO2000063972A1 (en) | Semiconductor component | |
DE102016104796B4 (en) | SEMICONDUCTOR DEVICE | |
DE10216015A1 (en) | Overvoltage protection circuit for CMOS circuits has potential divider and inverter circuits and switching element formed on same substrate as protected integrated CMOS circuit | |
DE102021110214A1 (en) | Semiconductor device | |
DE10247038B4 (en) | Semiconductor device for preventing overcurrent | |
EP1060517A1 (en) | Bipolar transistor with an insulated gate electrode | |
EP0381849A1 (en) | Fast power semiconductor circuit | |
DE4022022A1 (en) | HIGH VOLTAGE SEMICONDUCTOR DEVICE | |
DE3034902A1 (en) | PULSE CANCEL | |
DE3120254C2 (en) | ||
EP0559945B1 (en) | Turn-off power semi-conductor device | |
DE2545047C3 (en) | Process for the production of a semiconductor read-only memory | |
DE19823170A1 (en) | Bipolar transistor with insulated gate electrode | |
EP1135806A1 (en) | Controllable semiconductor element with a gate series resistor | |
DE19808154A1 (en) | Bipolar transistor with insulated gate (IGBT) | |
EP0616365B1 (en) | MOS-controlled power semiconductor device | |
EP0083801A2 (en) | MIS field-effect transistor with charge carriers injection | |
DE69321965T2 (en) | MOS power chip type and package assembly | |
EP1878059B1 (en) | Semiconductor arrangement of mosfets | |
DE4219019B4 (en) | MOS semiconductor element e.g. for power MOSFET, IGBT, etc. - has semiconductor layer in whose surface, regions of opposite conductivity are selectively formed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000710 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABB SCHWEIZ AG |
|
17Q | First examination report despatched |
Effective date: 20050922 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20081031 |