EP1049861B1 - LEAN REGENERATION OF NOx STORAGE UNITS - Google Patents

LEAN REGENERATION OF NOx STORAGE UNITS Download PDF

Info

Publication number
EP1049861B1
EP1049861B1 EP98965852A EP98965852A EP1049861B1 EP 1049861 B1 EP1049861 B1 EP 1049861B1 EP 98965852 A EP98965852 A EP 98965852A EP 98965852 A EP98965852 A EP 98965852A EP 1049861 B1 EP1049861 B1 EP 1049861B1
Authority
EP
European Patent Office
Prior art keywords
lean
value
oscillation
exhaust gas
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98965852A
Other languages
German (de)
French (fr)
Other versions
EP1049861A1 (en
Inventor
Ekkehard Pott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1049861A1 publication Critical patent/EP1049861A1/en
Application granted granted Critical
Publication of EP1049861B1 publication Critical patent/EP1049861B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques

Definitions

  • the invention relates to a method for regeneration of a NOx storage catalytic converter in lean-burn internal combustion engines.
  • An internal combustion engine can be operated lean if it is used for at least a subset of all conceivable speed-load combinations (in particular 1.5 x idle speed up to 0.25 x nominal speed, 0.05 to 0.15 x P me, max ) with lambda> 1.1 and particularly advantageously lambda> 1.3 for periods of> 10 seconds and particularly advantageously> 30 seconds.
  • the air-fuel ratio in the exhaust gas of lambda-controlled gasoline engines is usually by one or more in the exhaust line before and / or after the Catalytic converter (s) arranged Lambda probe (s) monitors.
  • all cylinders run at real Engine operation neither without deviation from one another nor without deviation from Lambda desired signal. Because the gas columns on the way through the exhaust gas aftertreatment are mixed, stoichiometric control on the catalyst does not come into focus separate exhaust gas qualities, but clouds with rich and lean exhaust gas.
  • US-A-5,577,382 describes an exhaust gas purification system with a NOx storage device, in which the condition or the aging (degree of wear) of the NOx storage device is determined.
  • An O 2 sensor which measures the air / fuel ratio, is arranged behind the NOx accumulator in the exhaust gas flow direction.
  • the ⁇ value of the fuel / air mixture is briefly changed from lean to rich or vice versa.
  • the aging of the NOx accumulator can be determined from the peak value of the output signal of the O 2 sensor during the change in the ⁇ value.
  • the regeneration of the NOx storage is described in column 7, lines 37-44, where, by selecting an appropriate correction factor, the exhaust gas is made rich ( ⁇ ⁇ 1) for a predetermined time in order to regenerate the NOx storage.
  • US-A-5,622,047 describes a method for the detection of the saturation or Filling condition of an exhaust gas catalytic converter, i.e. a NOx storage catalytic converter, with an oxygen sensor arranged behind it.
  • the publication also describes a Method for detecting the aging or the condition of such a catalyst.
  • the change in Oxygen signal as a function of the fuel / air ratio supplied to the NOx accumulator evaluated, this ratio being varied accordingly.
  • Such a measurement program for determining the state of the catalyst is carried out after a predetermined operating time measured in operating kilometers, so for example all 2,000 km, carried out automatically.
  • the regeneration of a full NOx storage takes place in a known manner by loading the store with rich exhaust gas the memory is regenerated.
  • EP-A-719923 describes a device for controlling a lean operable Engine, due to the deviations in the air-fuel ratio of individual cylinders among themselves is avoided.
  • the invention is therefore based on the object of a method for the operation and regeneration of a To create NOx storage of an internal combustion engine, the regeneration also in one oxygen-laden exhaust gas atmosphere is performed.
  • the ⁇ value oscillates in the direction of the time axis around a mean value ⁇ m , the mean value ⁇ m being greater than or equal to one, in particular 1,0 1.05.
  • the oscillation of the ⁇ value around the mean value ⁇ m can be a sinusoidal oscillation or, for example, a triangular oscillation, such as a sawtooth.
  • the Frequency of the vibration can be made variable. In other words, it can Amplitude or frequency modulation of the ⁇ function take place. In the corresponding If necessary, amplitude and frequency modulation can be combined.
  • the mean ⁇ value can advantageously be controlled by cylinder-selective regulation of the Internal combustion engine are generated. That is, some of the cylinders have a rich ⁇ value operated while the other part of the cylinders with a lean ⁇ value is operated.
  • the individual ⁇ values can both the rich cylinder and those of the lean cylinders are different from each other and from each other and are adapted to the respective requirement. Furthermore, the ⁇ value of the individual cylinders can be changed from cycle to cycle.
  • the regulation of the lean exhaust gas can advantageously by a Change in the rate of emaciation or by changing the dead times the injection quantity change are generated.
  • control frequencies of the ⁇ oscillation are currently in the order of 0.1 up to 20 Hz and are ultimately a function of the reaction times of the ⁇ probes used. With the development of probes with faster response times, it will be possible to increase the control frequency, with very high control frequencies because of the decreasing "cloud formation" negatively on the regeneration times at im Can affect medium lean exhaust gas.
  • FIGS. 1-5 graphically show the underlying mechanisms of lean regeneration of NOx stores.
  • An exhaust system 1 which has a NOx storage catalytic converter 2, is shown in the respective upper part of FIGS. 1-5.
  • An idealized catalytic converter element 3 is considered in the storage catalytic converter, the flow through the catalytic converter element 3 being shown with the different exhaust gas qualities.
  • the corresponding ⁇ values are plotted against time t in the lower part of FIGS. 1-5.
  • the origin of the time axis is located at ⁇ value one.
  • the ⁇ values greater than one (lean exhaust gas) are shown above and the ⁇ values less than one (rich exhaust gas) are shown below.
  • the mean value ⁇ m is shown as a dashed line.
  • FIG. 1 shows an exclusively rich exhaust gas 4, represented by the hatching of the entire exhaust system 1. With this rich regeneration, the shortest regeneration times are possible thanks to time and location-resolved almost 100% rich flow. Because of the complete flow through the storage catalytic converter 2 with rich exhaust gas 4, any catalytic converter element 3 is always flowed through with rich exhaust gas 4 in both temporal and spatial resolution.
  • the time course of ⁇ on the catalyst element 4 is shown. Due to the control frequency of the ⁇ probe, the ⁇ value oscillates around an average value ⁇ m , the amplitude of the ⁇ oscillation always being in the rich range, ie ⁇ ⁇ 1.
  • the exhaust gas always flows through the catalytic element 3, the exhaust gas being periodically more or less rich.
  • FIG. 2 shows the situation in an exhaust system 1 with a NOx storage catalytic converter, through which rich exhaust gas 4 and lean exhaust gas 5 flow.
  • This is represented schematically by rich exhaust gas clouds 4 (hatched areas) which are surrounded by lean exhaust gas woikens 5 (shown as white areas).
  • any catalytic converter element 3 is flowed through in a temporally and spatially resolving manner, alternately with rich exhaust gas 4 and lean exhaust gas 5. That is, there are already small, lean portions in the exhaust gas, so that time and location-resolved flow through all catalyst zones is not always rich. Shown in the lower part of FIG.
  • the time components of rich and lean exhaust gas 4, 5 are thus approximately the same, which leads to approximately the same areas I of regeneration and areas II of no regeneration in the lower part of FIG. 3.
  • the NOx storage is also regenerated here, however, the regeneration duration continues to increase.
  • Fig. 4 shows the situation with globally leaner exhaust gas, represented schematically by the fact that the number of clouds of rich exhaust gas 4 is less than the lean exhaust gas 5.
  • the time and location components of the rich exhaust gas 4 continue to decrease and the regeneration duration increases increasingly ,
  • this means that the amplitudes of ⁇ are largely above the value 1 and only a small part of the values of ⁇ are below the value 1.
  • the mean value ⁇ m is above 1.
  • the regeneration areas I are smaller than the areas II in which no regeneration takes place. However, the NOx storage is still regenerated here.
  • Fig. 5 shows the situation with very lean exhaust gas 5.
  • a net storage discharge is only possible if the NOx mass flow converted by the time and location-resolved regeneration is greater than the lean NOx storage.
  • the course of ⁇ and the mean value ⁇ m are now completely above 1, ie there is only area II without regeneration.
  • FIG. 7 shows an optimization of the regeneration speed in NOx stores with oxygen storage capability by changing the control frequency, represented by a ⁇ oscillation in which the control frequency is varied.
  • the control frequency is reduced, with ⁇ fluctuating around an average value ⁇ m .
  • the frequency of the change between rich and lean flow influences the regeneration time.
  • a decreasing wobble frequency also causes a decrease in the regeneration times.
  • Regeneration areas I, non-regeneration areas II, and areas III can be seen in the areas defined by the oscillation of ⁇ , regeneration also not taking place in areas III below the stoichiometric ⁇ value, since stored O 2 consumes in the case of an oxygen-storing NOx store becomes.
  • the control frequencies are, as already mentioned, in the order of 0.1 to 20 Hz.
  • FIG. 8 shows the variation of the pollutant reduction properties by Shape shaping of ⁇ . It has been shown that a formation of the fat-lean jumps affects the regeneration behavior.
  • the left graph of FIG. 8 shows a rapid greasing and subsequent slow emaciation. This results in the Representation of the sawtooth curve falling rapidly after fat falling, also shown referred to as the right-hand sawtooth, which shortens the NOx regeneration by the NOx conversion starts quickly, but there is a risk of HC and CO breakthroughs.
  • the sawtooth shown on the right represents a rapid thinning and subsequently slow greasing (left-hand saw tooth).
  • the corresponding exhaust gas quality is regulated by a Step response or broadband lambda probe.
  • FIG. 9 shows the control of a lean exhaust gas by changing the dead times of the injection quantity change in the case of a step response probe.
  • the setting of the globally lean exhaust gas takes place through different dead times between the detection of lean exhaust gas and the command to enrich the mixture and the detection of rich exhaust gas and the command to lean the mixture.
  • T1 means the dead time until the detection of "lambda lean”
  • T2 the dead time until the readjustment of the injection after rich
  • T3 the dead time until the detection of "lambda rich”
  • T4 the dead time until the readjustment of the injection after lean.
  • FIG. 10 shows a control of a lean exhaust gas with a step response probe by changing the leaning rate, that is to say by means of different rates of change during enriching and leaning, whereby the ancestor of FIG. 8 is realized.
  • the meaning of the reference symbols T1, T2, T3 and T4 corresponds to that of FIG. 9.
  • the two arrows in the right part of FIG. 10 for ⁇ m > 1 indicate a faster and stronger emaciation with lean exhaust gas.
  • the target signal of the average lambda ⁇ m is set to the desired value (lambda> 1) and the time components of rich exhaust gas are monitored via frequency and amplitude.
  • FIG. 12 shows a cylinder-selective injection quantity influencing Lean exhaust gas generation with a step response probe.
  • the means thick line the ⁇ of the individual cylinders, the dashed line an averaged ⁇ over one cycle and the double solid line the mean ⁇ m over several Cycles.
  • the bold and / or stoichiometric cylinders are also controlled and the lean-running cylinder regulated. Since with the step response probe no information to get the degree of emaciation is initially a leaner than that Average desired lambda value ⁇ m (1 + 2 * ⁇ , i.e. lambda 1.06 if desired Lambda 1.03) started in a controlled manner by operating cylinders 2 and 3 very lean become.
  • S denotes the step response of the probe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regeneration eines NOx-Speicherkatalysators bei mager betreibbaren Brennkraftmotoren. Ein Brennkraftmotor ist mager betreibbar, wenn er zumindest für ein Teilmenge aller denkbaren Drehzahl-Last-Kombinationen (insbesondere 1,5 x Leerlauf-Drehzahl bis 0,25 x Nenn-Drehzahl, 0,05 bis 0,15 x Pme,max) mit Lambda > 1,1 und besonders vorteilhaft Lambda > 1,3 über Zeiträume von > 10 Sekunden und besonders vorteilhaft > 30 Sekunden betrieben werden kann.The invention relates to a method for regeneration of a NOx storage catalytic converter in lean-burn internal combustion engines. An internal combustion engine can be operated lean if it is used for at least a subset of all conceivable speed-load combinations (in particular 1.5 x idle speed up to 0.25 x nominal speed, 0.05 to 0.15 x P me, max ) with lambda> 1.1 and particularly advantageously lambda> 1.3 for periods of> 10 seconds and particularly advantageously> 30 seconds.

Das Luft-Kraftstoff-Verhältnis im Abgas von lambdageregelten Ottomotoren wird üblicherweise durch eine oder mehrere im Abgasstrang vor und/oder nach dem/den Katalysator(en) angeordnete Lambdasonde(n) überwacht. Konventionelle Sprungsonden zeigen bei Lambda = 1 einen ausgeprägten Spannungssprung, der in der Motorsteuerung genutzt wird, um die Einspritzmenge bei hoher Spannung in Richtung "Mager" und bei niedriger Spannung in Richtung "Fett" zu verschieben. Mit der Regelfrequenz der Sonde wird somit im Motor leicht fettes und leicht mageres Abgas erzeugt und in die Abgasanlage ausgeschoben. Überdies laufen alle Zylinder bei realem Motorbetrieb weder ohne Abweichung untereinander noch ohne Abweichung zum Lambda-Sollsignal. Da die Gassäulen auf dem Weg durch die Abgasnachbehandlung vermischt werden, kommen bei stöchiometrischer Regelung am Katalysator keine scharf getrennten Abgasqualitäten, sondern Wolken mit fettem und magerem Abgas an.The air-fuel ratio in the exhaust gas of lambda-controlled gasoline engines is usually by one or more in the exhaust line before and / or after the Catalytic converter (s) arranged Lambda probe (s) monitors. Conventional jump probes show a pronounced voltage jump at lambda = 1 Engine control is used to direct the injection quantity at high voltage "Lean" and shift towards "fat" at low voltage. With the The control frequency of the probe thus becomes slightly rich and slightly lean exhaust gas in the engine generated and pushed into the exhaust system. In addition, all cylinders run at real Engine operation neither without deviation from one another nor without deviation from Lambda desired signal. Because the gas columns on the way through the exhaust gas aftertreatment are mixed, stoichiometric control on the catalyst does not come into focus separate exhaust gas qualities, but clouds with rich and lean exhaust gas.

Die gesamte derzeitige Fach- und Patentliteratur, insbesondere diejenige von Toyota, gibt als Voraussetzung für die Regeneration von NOx-Speicherkatalysatoren ein fettes oder stöchiometrisches Luft-Kraftstoff-Verhältnis an. Für die Regeneration wird eine sauerstoffreie Umgebung sowie das Vorhandensein eines Reduktionsmittels (HC oder CO) gefordert. Bei homogener Anströmung, wie z.B. auf Synthesegasprüfständen, läßt sich diese Randbedingung über den gesamten Katalysatorquerschnitt für beliebig lange Zeiträume darstellen; am Motor ist dies nicht möglich. All of the current technical and patent literature, particularly that of Toyota, gives a rich as a prerequisite for the regeneration of NOx storage catalysts or stoichiometric air-fuel ratio. For the regeneration one oxygen-free environment and the presence of a reducing agent (HC or CO) required. With a homogeneous flow, e.g. on synthesis gas test benches this boundary condition over the entire catalyst cross-section for any length of time Represent periods; this is not possible on the motor.

US-A-5,577,382 beschreibt ein Abgasreinigungssystem mit einem NOx-Speicher, in dem der Zustand oder die Alterung (Abnutzungsgrad) des NOx-Speichers bestimmt wird. Dabei ist in Abgasströmungsrichtung hinter dem NOx-Speicher ein O2-Sensor angeordnet, der das Luft/Kraftstoff-Verhältnis mißt. Um die Alterung des NOx-Speichers zu bestimmen, wird der λ-Wert des Kraftstoff/Luft-Gemisches kurzzeitig von mager hin zu fett oder umgekehrt geändert. Aus dem Spitzenwert des Ausgangssignals des O2-Sensors während der Änderung des λ-Werts kann die Alterung des NOx-Speichers bestimmt werden. Die Regeneration des NOx-Speichers ist in Spalte 7, Zeilen 37 - 44 beschrieben, wo durch die Wahl eines entsprechenden Korrekturfaktors das Abgas für eine vorbestimmte Zeit fett (λ<1) eingestellt wird, um den NOx-Speicher zu regenerieren.US-A-5,577,382 describes an exhaust gas purification system with a NOx storage device, in which the condition or the aging (degree of wear) of the NOx storage device is determined. An O 2 sensor, which measures the air / fuel ratio, is arranged behind the NOx accumulator in the exhaust gas flow direction. In order to determine the aging of the NOx accumulator, the λ value of the fuel / air mixture is briefly changed from lean to rich or vice versa. The aging of the NOx accumulator can be determined from the peak value of the output signal of the O 2 sensor during the change in the λ value. The regeneration of the NOx storage is described in column 7, lines 37-44, where, by selecting an appropriate correction factor, the exhaust gas is made rich (λ <1) for a predetermined time in order to regenerate the NOx storage.

US-A-5,622,047 beschreibt ein Verfahren zur Detektion des Sättigungs- oder Füllungszustands eines Abgaskatalysators, d.h. eines NOx-Speicherkatalysators, mit einem dahinter angeordneten Sauerstoffsensor. Ferner beschreibt die Druckschrift ein Verfahren zur Detektion der Alterung oder des Zustandes eines derartigen Katalysators. Um den Zustand des Katalysators zu bestimmen, wird die Änderung des Sauerstoffsignals als Funktion des dem NOx-Speicher zugeführten Kraftstoff/Luft-Verhältnisses ausgewertet, wobei dieses Verhältnis entsprechend variiert wird. Ein derartiges Meßprogramm zur Bestimmung des Katalysatorzustands wird nach einer vorbestimmten Betriebsdauer gemessen in Betriebskilometern, also beispielsweise alle 2.000 km, automatisch durchgeführt. Die Regeneration eines vollen NOx-Speichers erfolgt in bekannter Weise durch Beaufschlagung des Speichers mit fettem Abgas bis der Speicher regeneriert ist.US-A-5,622,047 describes a method for the detection of the saturation or Filling condition of an exhaust gas catalytic converter, i.e. a NOx storage catalytic converter, with an oxygen sensor arranged behind it. The publication also describes a Method for detecting the aging or the condition of such a catalyst. To determine the condition of the catalyst, the change in Oxygen signal as a function of the fuel / air ratio supplied to the NOx accumulator evaluated, this ratio being varied accordingly. On Such a measurement program for determining the state of the catalyst is carried out after a predetermined operating time measured in operating kilometers, so for example all 2,000 km, carried out automatically. The regeneration of a full NOx storage takes place in a known manner by loading the store with rich exhaust gas the memory is regenerated.

EP-A-719923 beschreibt eine Vorrichtung zur Steuerung eines mager betreibbaren Motors, durch die Abweichungen des Kraftstoff/Luft-Verhältnisses einzelner Zylinder untereinander vermieden wird. EP-A-719923 describes a device for controlling a lean operable Engine, due to the deviations in the air-fuel ratio of individual cylinders among themselves is avoided.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren für den Betrieb und die Regeneration eines NOx-Speichers einer Brennkraftmaschine zu schaffen, wobei die Regeneration auch in einer sauerstoffbehafteten Abgasatmophäre durch geführt wird.The invention is therefore based on the object of a method for the operation and regeneration of a To create NOx storage of an internal combustion engine, the regeneration also in one oxygen-laden exhaust gas atmosphere is performed.

Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.The object is solved by the subject matter of claim 1. preferred Embodiments of the invention are the subject of the dependent claims.

Durch Versuche mit NOx-Speicherkatalysatoren an einem ausmagerungsfähigen Motor mit betriebszustandsabhängiger λ-Regelung konnte nachgewiesen werden, daß bei stöchiometrischem Abgas und relativ hohen Restsauerstoffkonzentrationen tatsächlich eine sichere NOx-Regeneration möglich ist. Dabei wird jedes Element des NOx-Speicherkatatysators zeit- und ortsabhängig abwechselnd mit fettem und magerem Abgas beaufschlagt. Die NOx-Regeneration findet dabei in den Zeitanteilen mit fetter Beaufschlagung statt. Dieser Effekt wird entsprechend dem erfindungsgemäßen Verfahren genutzt, um auch bei im Mittel magerem Abgas NOx-Speicherkatalysatoren reinigen zu können. Die Regenerationsdauer richtet sich nach den Zeitanteilen der fetten Beaufschlagung; gegenüber global fettem Abgas ist bei dem erfindungsgemäßen Verfahren mit einer Verlängerung der Regenerationsdauer zu rechnen.Through tests with NOx storage catalytic converters on a lean-out engine with λ-control depending on the operating state it could be demonstrated that at stoichiometric exhaust gas and relatively high residual oxygen concentrations safe NOx regeneration is possible. Each element of the NOx storage catalytic converter alternating with fat and lean depending on time and location Exhaust gas applied. The NOx regeneration takes place in the time portions with richer Acted upon instead. This effect is in accordance with the invention Process used for NOx storage catalytic converters even with lean exhaust gas to be able to clean. The regeneration time depends on the time shares of the fat ones admission; compared to globally rich exhaust gas in the invention Procedure to expect an extension of the regeneration period.

Vorteilhafterweise führt dabei der λ-Wert in Richtung der Zeitachse eine Schwingung um einen mittleren Wert λm aus, wobei der mittlere Wert λm größer oder gleich eins, insbesondere ≥ 1,05, ist. Dabei kann es sich bei der Schwingung des λ-Werts um den Mittelwert λm um eine sinusförmige Schwingung oder beispielsweise um eine Dreiecksschwingung, wie beispielsweise einen Sägezahn, handeln.Advantageously, the λ value oscillates in the direction of the time axis around a mean value λ m , the mean value λ m being greater than or equal to one, in particular 1,0 1.05. The oscillation of the λ value around the mean value λ m can be a sinusoidal oscillation or, for example, a triangular oscillation, such as a sawtooth.

Um eine bestimmtes Regenerationsverhalten des NOx-Speichers zu erhalten, wird vorteilhafterweise die Amplitude der Schwingung verändert. Ferner kann auch die Frequenz der Schwingung variabel gestaltet werden. Mit anderen Worten, es kann eine Amplituden- bzw. Frequenzmodulation der λ-Funktion erfolgen. Im entsprechenden Anwendungsfall können Amplituden- und Frequenzmodulation kombiniert werden.In order to obtain a specific regeneration behavior of the NOx storage, advantageously changes the amplitude of the vibration. Furthermore, the Frequency of the vibration can be made variable. In other words, it can Amplitude or frequency modulation of the λ function take place. In the corresponding If necessary, amplitude and frequency modulation can be combined.

Vorteilhafterweise kann der mittlere λ-Wert durch eine zylinderselektive Regelung der Brennkraftmaschine erzeugt werden. D. h., ein Teil der Zylinder wird mit einem fetten λ-Wert betrieben, während der andere Teil der Zylinder mit einem mageren λ-Wert betrieben wird. Dabei können die einzelnen λ-Werte sowohl der fetten Zylinder als auch diejenigen der mageren Zylinder voneinander und untereinander unterschiedlich sein und werden der jeweiligen Anforderung angepaßt. Ferner kann der λ-Wert des einzelnen Zylinders von Zyklus zu Zyklus geändert werden.The mean λ value can advantageously be controlled by cylinder-selective regulation of the Internal combustion engine are generated. That is, some of the cylinders have a rich λ value operated while the other part of the cylinders with a lean λ value is operated. The individual λ values can both the rich cylinder and those of the lean cylinders are different from each other and from each other and are adapted to the respective requirement. Furthermore, the λ value of the individual cylinders can be changed from cycle to cycle.

Ferner kann vorteilhafterweise die Regelung des mageren Abgases durch eine Änderung der Ausmagerungsgeschwindigkeit oder durch eine Änderung der Totzeiten der Einspritzmengenänderung erzeugt werden.Furthermore, the regulation of the lean exhaust gas can advantageously by a Change in the rate of emaciation or by changing the dead times the injection quantity change are generated.

Die Regelfrequenzen der λ- Schwingung liegen derzeit in der Größenordnung von 0,1 bis 20 Hz und sind letztlich eine Funktion der Reaktionszeiten der verwendeten λ-Sonden. Mit der Entwicklung von Sonden mit schnelleren Reaktionszeiten wird es möglich sein, die Regelfrequenz zu erhöhen, wobei sich sehr hohe Regelfrequenzen wegen der abnehmenden "Wolkenbildung" negativ auf die Regenerationszeiten bei im Mittel magerem Abgas auswirken können.The control frequencies of the λ oscillation are currently in the order of 0.1 up to 20 Hz and are ultimately a function of the reaction times of the λ probes used. With the development of probes with faster response times, it will be possible to increase the control frequency, with very high control frequencies because of the decreasing "cloud formation" negatively on the regeneration times at im Can affect medium lean exhaust gas.

Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnungen erläutert.

Die Figuren 1 - 5
zeigen jeweils im oberen Teil schematisch einen Speicherkatalysator und im unteren Teil die entsprechende λ-Funktion;
Fig. 6
zeigt eine Amplitudenmodulation des λ-Signals,
Fig. 7
zeigt eine Frequenzmodulation des λ-Signals,
Fig. 8
zeigt Verlaufsformungen des λ-Signals in der Form eines linksseitigen und rechtsseitigen Sägezahns,
Fig. 9
zeigt den Verlauf des λ-Signals bei einer Regelung des mageren Abgases durch Änderung der Totzeiten der Einspritzmengenänderung,
Fig. 10
zeigt den Verlauf des λ-Signals bei einer Regelung des mageren Abgases durch Änderung der Ausmagerungsgeschwindigkeit,
Fig. 11
zeigt die Einregelung von λ > 1 durch zylinderselektive Einspritzmengen-Beeinflussung bei Breitband-Lambdasonden, und
Fig. 12
zeigt die Einregelung von λ > 1 durch zylinderselektive Einspritzmengen-Beeinflussung bei Sprungantwort-Lambdasonden.
Preferred embodiments of the invention are explained below with reference to the drawings.
Figures 1-5
each schematically show a storage catalytic converter in the upper part and the corresponding λ function in the lower part;
Fig. 6
shows an amplitude modulation of the λ signal,
Fig. 7
shows a frequency modulation of the λ signal,
Fig. 8
shows waveforms of the λ signal in the form of a left-sided and right-sided sawtooth,
Fig. 9
shows the course of the λ signal when regulating the lean exhaust gas by changing the dead times of the injection quantity change,
Fig. 10
shows the course of the λ signal in a control of the lean exhaust gas by changing the leaning rate,
Fig. 11
shows the regulation of λ> 1 by cylinder-selective injection quantity influencing in broadband lambda sensors, and
Fig. 12
shows the regulation of λ> 1 by cylinder-selective injection quantity influencing in step response lambda sensors.

Die Figuren 1 - 5 zeigen grafisch die zugrundeliegenden Mechanismen der Mager-Regeneration von NOx-Speichern. Dargestellt sind im jeweiligen oberen Teil der Figuren 1 - 5 eine Abgasanlage 1, die einen Nox-Speicherkatalysator 2 aufweist. In dem Speicherkatalysator wird ein idealisiertes Katalysatorelement 3 betrachtet, wobei die Durchströmung des Katalysatorelements 3 mit den verschiedenen Abgasqualitäten dargestellt ist. Im unteren Teil der jeweiligen Figur 1 - 5 sind die entsprechende λ-Werte gegenüber der Zeit t aufgetragen. Dabei ist der Ursprung der Zeitachse am λ-Wert Eins angesiedelt. Nach oben sind die λ-Werte größer Eins (mageres Abgas) und nach unten die λ-Werte kleiner Eins (fettes Abgas) dargestellt. Ferner ist noch der mittlere Wert λm als gestrichelte Linie dargestellt.Figures 1-5 graphically show the underlying mechanisms of lean regeneration of NOx stores. An exhaust system 1, which has a NOx storage catalytic converter 2, is shown in the respective upper part of FIGS. 1-5. An idealized catalytic converter element 3 is considered in the storage catalytic converter, the flow through the catalytic converter element 3 being shown with the different exhaust gas qualities. The corresponding λ values are plotted against time t in the lower part of FIGS. 1-5. The origin of the time axis is located at λ value one. The λ values greater than one (lean exhaust gas) are shown above and the λ values less than one (rich exhaust gas) are shown below. Furthermore, the mean value λ m is shown as a dashed line.

Fig. 1 zeigt ein ausschließlich fettes Abgas 4, dargestellt durch die ausfüllende Schraffierung der gesamten Abgasanlage 1. Bei dieser fetten Regeneration sind die kürzesten Regenerationszeiten dank zeit- und ortsaufgelöst nahezu 100% fetter Durchströmung möglich. Aufgrund der kompletten Durchströmung der Speicherkatalysators 2 mit fettem Abgas 4 wird ein beliebiges Katalysatorelement 3 immer mit fettem Abgas 4 sowohl in zeitlicher als auch räumlicher Auflösung durchströmt. Im unteren Teil von Fig. 1 ist der zeitliche Verlauf von λ am Katalysatorelement 4 dargestellt. Aufgrund der Regelfrequenz der λ-Sonde schwingt der λ-Wert um einen mittleren Wert λm, wobei sich die Amplitude der λ-Schwingung immer im fetten Bereich, d. h. λ < 1, aufhält. Mit anderen Worten, wie es im oberen Teil der Fig. 1 schematisch dargestellt ist, das Katalysatorelement 3 wird immer mit fettem Abgas durchströmt, wobei das Abgas periodisch mehr oder weniger fett ist.1 shows an exclusively rich exhaust gas 4, represented by the hatching of the entire exhaust system 1. With this rich regeneration, the shortest regeneration times are possible thanks to time and location-resolved almost 100% rich flow. Because of the complete flow through the storage catalytic converter 2 with rich exhaust gas 4, any catalytic converter element 3 is always flowed through with rich exhaust gas 4 in both temporal and spatial resolution. In the lower part of FIG. 1, the time course of λ on the catalyst element 4 is shown. Due to the control frequency of the λ probe, the λ value oscillates around an average value λ m , the amplitude of the λ oscillation always being in the rich range, ie λ <1. In other words, as is shown schematically in the upper part of FIG. 1, the exhaust gas always flows through the catalytic element 3, the exhaust gas being periodically more or less rich.

Fig. 2 zeigt die Situation in einer Abgasanlage 1 mit NOx-Speicherkatalysator, die von fettem Abgas 4 und magerem Abgas 5 durchströmt wird. Dies ist schematisch durch fette Abgaswolken 4 (schraffierte Flächen) dargestellt, die von mageren Abgaswoiken 5 (dargestellt als weiße Flächen) umgeben sind. Anschaulich ist daher klar, daß ein beliebiges Katalysatorelement 3 in zeitlicher und räumlicher Auflösung statistisch abwechselnd mit fettes Abgas 4 und magerem Abgas 5 durchströmt wird. D.h. es sind bereits geringe magere Anteile im Abgas vorhanden, so daß zeit- und ortsaufgelöst nicht alle Katalysatorzonen ständig fett durchströmt werden. In dem unteren Teil der Fig. 2 dargestellt, bedeutet dies, das der mittlere Wert λm naher an λ = 1 liegt, und die Amplituden des λ-Werts den stöchiometrischen Wert von λ = 1 überschreiten. Damit findet in den schraffierten Gebieten I, in denen der λ-Wert den Wert 1 unterschreitet, eine Regeneration statt, während in den Gebieten II, in denen der λ-Wert von 1 überschritten wird, keine Regeneration erfolgt. Im statistischen Mittel erfolgt bezogen auf den mittleren Wert λm nahe 1 insgesamt eine Regeneration des NOx-Speichers.FIG. 2 shows the situation in an exhaust system 1 with a NOx storage catalytic converter, through which rich exhaust gas 4 and lean exhaust gas 5 flow. This is represented schematically by rich exhaust gas clouds 4 (hatched areas) which are surrounded by lean exhaust gas woikens 5 (shown as white areas). It is therefore clear that any catalytic converter element 3 is flowed through in a temporally and spatially resolving manner, alternately with rich exhaust gas 4 and lean exhaust gas 5. That is, there are already small, lean portions in the exhaust gas, so that time and location-resolved flow through all catalyst zones is not always rich. Shown in the lower part of FIG. 2, this means that the mean value λ m is closer to λ = 1 and the amplitudes of the λ value exceed the stoichiometric value of λ = 1. Regeneration therefore takes place in the hatched areas I in which the λ value falls below the value 1, while no regeneration takes place in the areas II in which the λ value is exceeded by 1. On average, the NOx storage is regenerated based on the average value λ m close to 1.

Fig. 3 zeigt eine ähnliche Situation wie Fig. 2 mit dem Unterschied, daß der mittlere Wert λm = 1 ist. Damit sind die Zeitanteile fetten und mageren Abgases 4, 5 etwa gleich, was in etwa zu gleichen Gebieten I einer Regeneration und solchen Gebieten II keiner Regeneration in dem unteren Teil der Fig. 3 führt. Eine Regeneration des NOx-Speichers erfolgt auch hier, allerdings nimmt die Regenerationsdauer weiter zu.Fig. 3 shows a similar situation as Fig. 2 with the difference that the mean value λ m = 1. The time components of rich and lean exhaust gas 4, 5 are thus approximately the same, which leads to approximately the same areas I of regeneration and areas II of no regeneration in the lower part of FIG. 3. The NOx storage is also regenerated here, however, the regeneration duration continues to increase.

Fig. 4 zeigt die Situation bei global weiter ausgemagertem Abgas, schematisch dadurch dargestellt, daß die Anzahl der Wolken fetten Abgases 4 geringer ist als die mageren Abgases 5. Die Zeit- und Ortsanteile des fetten Abgases 4 nehmen weiter ab und die Regenerationsdauer verlängert sich zunehmend. In der unteren Darstellung der Fig. 4 bedeutet dies, daß die Amplituden von λ zum Großteil oberhalb des Wertes 1 liegen und nur noch ein geringer Teil der Werte von λ unterhalb des Wertes 1 liegen. Der mittlere Wert λm liegt oberhalb von 1. Die Regenerationsbereiche I sind kleiner als die Bereiche II, in denen keine Regeneration stattfindet. Allerdings findet auch hier noch eine Regeneration des NOx-Speichers statt.Fig. 4 shows the situation with globally leaner exhaust gas, represented schematically by the fact that the number of clouds of rich exhaust gas 4 is less than the lean exhaust gas 5. The time and location components of the rich exhaust gas 4 continue to decrease and the regeneration duration increases increasingly , In the lower representation of FIG. 4, this means that the amplitudes of λ are largely above the value 1 and only a small part of the values of λ are below the value 1. The mean value λ m is above 1. The regeneration areas I are smaller than the areas II in which no regeneration takes place. However, the NOx storage is still regenerated here.

Fig. 5 zeigt die Situation bei sehr magerem Abgas 5. In der Darstellung sind keine fetten Abgaswolken mehr vorhanden, bzw. die Zeit- und Ortsanteile des fetten Abgases werden zu klein für eine praxisgerechte Regenerationsdauer. Eine Netto-Speicherentladung ist nur möglich, wenn der durch die zeit- und ortsaufgelöste Regeneration umgesetzte NOx-Massenstrom größer als die Mager-NOx-Einlagerung ist. In der unteren λ-Darstellung liegt nun der Verlauf von λ sowie der mittlere Wert λm komplett oberhalb von 1, d. h. es gibt nur noch Bereich II ohne Regeneration.Fig. 5 shows the situation with very lean exhaust gas 5. In the illustration, there are no more rich exhaust gas clouds, or the time and place components of the rich exhaust gas are too small for a practical regeneration period. A net storage discharge is only possible if the NOx mass flow converted by the time and location-resolved regeneration is greater than the lean NOx storage. In the lower λ representation, the course of λ and the mean value λ m are now completely above 1, ie there is only area II without regeneration.

Fig. 6 zeigt die Anhebung der Reduktionsmittelmenge bei vorgegebenem mittleren Wert λm durch eine Erhöhung der λ-Amplitude. Bei steigendem Schadstoffanteil ist tendenziell mit abnehmender Regenerationsdauer zu rechnen. Deutlich zu erkennen ist, daß in Richtung des Pfeiles die Amplitude von λ zunimmt und daher auch die Regenerationsbereiche I flächenmäßig größer werden, d. h. der zur Regeneration notwendige Schadstoffanteil erhöht sich in Richtung des Pfeiles. Ebenso nimmt die Regenerationsgeschwindigkeit in Richtung des Pfeiles zu. Die Amplitudenerhöhung von λ kann auch als Amplitudenmodulation bezeichnet werden.6 shows the increase in the amount of reducing agent at a predetermined mean value λm by increasing the λ amplitude. With increasing pollutant content tend to expect a shorter regeneration period. It can be clearly seen that the amplitude of λ increases in the direction of the arrow and therefore also the Regeneration areas I are larger in area, i. H. the one for regeneration necessary pollutant content increases in the direction of the arrow. Likewise, the Regeneration speed in the direction of the arrow. The increase in amplitude of λ can also be called amplitude modulation.

Fig. 7 zeigt eine Optimierung der Regenerationsgeschwindigkeit bei NOx-Speichern mit Sauerstoffspeicherfähigkeit durch Änderung der Steuerfrequenz, dargestellt durch eine λ-Schwingung, bei der die Steuerfrequenz variiert wird. Im vorliegenden Beispiel wird die Steuerfrequenz erniedrigt, wobei λ um einen mittleren Wert λm schwankt. Die Häufigkeit des Wechsels zwischen fetter und magerer Durchströmung (Wobble-Frequenz) beeinflußt die Regenerationsdauer. Mit steigender Sauerstoffspeicherfähigkeit des NOx-Speicher bewirkt eine abnehmende Wobble-Frequenz auch eine Abnahme der Regenerationszeiten. In den von der Schwingung von λ definierten Flächen sind Regenerationsbereiche I, Nichtregenerationsbereiche II, sowie Bereiche III zu erkennen, wobei in den Bereichen III unterhalb des stöchiometrischen λ-Werts ebenfalls keine Regeneration erfolgt, da gespeichertes O2 im Falle eines sauerstoffspeichernden NOx-Speichers verbraucht wird. In Richtung des Pfeiles erfolgt daher eine Abnahme der Steuerfrequenz, eine Zunahme der verwertbaren Reduktionsmittelmenge sowie eine Zunahme der Regenerationsgeschwindigkeit. Die Steuerfrequenzen liegen derzeit, wie bereits erwähnt in der Größenordnung von 0,1 bis 20 Hz.FIG. 7 shows an optimization of the regeneration speed in NOx stores with oxygen storage capability by changing the control frequency, represented by a λ oscillation in which the control frequency is varied. In the present example, the control frequency is reduced, with λ fluctuating around an average value λ m . The frequency of the change between rich and lean flow (wobble frequency) influences the regeneration time. As the oxygen storage capacity of the NOx storage increases, a decreasing wobble frequency also causes a decrease in the regeneration times. Regeneration areas I, non-regeneration areas II, and areas III can be seen in the areas defined by the oscillation of λ, regeneration also not taking place in areas III below the stoichiometric λ value, since stored O 2 consumes in the case of an oxygen-storing NOx store becomes. In the direction of the arrow there is therefore a decrease in the control frequency, an increase in the usable amount of reducing agent and an increase in the regeneration rate. The control frequencies are, as already mentioned, in the order of 0.1 to 20 Hz.

Fig. 8 zeigt die Variation der Schadstoffminderungseigenschaften durch eine Verlaufsformung von λ. Es hat sich gezeigt, daß eine Ausformung der fett-mager-Sprünge das Regenerationsverhalten beeinflußt. Der linke Graph der Fig. 8 zeigt ein rasches Anfetten und nachfolgendem langsamen Ausmagern. Dies ergibt in der Darstellung den links dargestellten schnell nach fett abfallenden Sägezahnverlauf, auch als rechtsseitigen Sägezahn bezeichnet, der die NOx-Regeneration verkürzt, indem die NOx-Umsetzung schnell anspringt, allerdings besteht die Gefahr von HC- und CO-Durchschlägen. Der rechts dargestellte Sägezahn stellt ein rasches Ausmagern und nachfolgend langsames Anfetten dar (linksseitiger Sägezahn). Ein derartiger schnell nach fett abfallender Verlauf bewirkt ein langsameres Anspringen der NOx-Umsetzung mit einer besseren Kontrolle der HC- und CO-Durchschläge und bewirkt eine längere Regenerationszeit im Vergleich zu dem linken Sägezahnverlauf des schnellen Anfettens. Das Ausmagern und Anfetten muß abweichend von der idealisierten Bilddarstellung nicht notwendigerweise linear erfolgen. Ferner sind wieder die Bereiche I der Regeneration sowie die ohne Regeneration II dargestellt.8 shows the variation of the pollutant reduction properties by Shape shaping of λ. It has been shown that a formation of the fat-lean jumps affects the regeneration behavior. The left graph of FIG. 8 shows a rapid greasing and subsequent slow emaciation. This results in the Representation of the sawtooth curve falling rapidly after fat falling, also shown referred to as the right-hand sawtooth, which shortens the NOx regeneration by the NOx conversion starts quickly, but there is a risk of HC and CO breakthroughs. The sawtooth shown on the right represents a rapid thinning and subsequently slow greasing (left-hand saw tooth). Such a quick one after a fat-decreasing course, the NOx conversion starts more slowly with better control of HC and CO penetrations and causes a longer one Regeneration time compared to the left sawtooth course of the quick greasing. The thinning and greasing must deviate from the idealized image representation not necessarily linear. Furthermore, areas I are again the Regeneration and without regeneration II shown.

Die Erzeugung der entsprechenden Abgasqualität erfolgt geregelt durch eine Sprungantwort- oder Breitband-Lambdasonde.The corresponding exhaust gas quality is regulated by a Step response or broadband lambda probe.

Fig. 9 zeigt die Regelung eines mageren Abgases durch Änderung der Totzeiten der Einspritzmengenänderung bei einer Sprungantwortsonde. Bei einer derartigen Sprungantwortsonde erfolgt die Einstellung des global mageren Abgases durch unterschiedliche Totzeiten zwischen dem Erkennen mageren Abgases und dem Befehl zur Gemischanfettung sowie dem Erkennen fetten Abgases und dem Befehl zum Gemisch-Ausmagern. Aufgetragen in Fig. 9 ist im oberen Graph die Sondenspannung VS einer Sprungantwortsonde gegenüber der Zeit t und im unteren Teil der Fig. 9 das entsprechende Einspritzmengensignal E gegenüber der Zeit., und zwar einmal für einen mittleren Wert λm = 1 und im rechten Teil für λm > 1. Dabei bedeutet T1 die Totzeit bis zum Erkennen "Lambda Mager", T2 die Totzeit bis zur Nachregelung der Einspritzung nach fett, T3 die Totzeit bis zum Erkennen "Lambda fett" und T4 die Totzeit bis zur Nachregelung der Einspritzung nach mager. Auf diese Weise ist eine Realisierung der Vorschläge der Figuren 4 und 6 möglich. Dabei zeigt der eingezeichnete Pfeil im rechten Teil der Fig. 9 für λm > 1 auf eine längere Totzeit T4 bei magerem Abgas im Vergleich zu T4 des linken Teils der Fig. 9 für λm = 1.9 shows the control of a lean exhaust gas by changing the dead times of the injection quantity change in the case of a step response probe. With such a step response probe, the setting of the globally lean exhaust gas takes place through different dead times between the detection of lean exhaust gas and the command to enrich the mixture and the detection of rich exhaust gas and the command to lean the mixture. Plotted in FIG. 9 is the probe voltage V S of a step response probe versus time t in the upper graph and the corresponding injection quantity signal E versus time in the lower part of FIG. 9, once for an average value λ m = 1 and in the right Part for λ m > 1. T1 means the dead time until the detection of "lambda lean", T2 the dead time until the readjustment of the injection after rich, T3 the dead time until the detection of "lambda rich" and T4 the dead time until the readjustment of the injection after lean. In this way, the proposals of FIGS. 4 and 6 can be implemented. The arrow shown in the right part of FIG. 9 for λm> 1 shows a longer dead time T4 with lean exhaust gas in comparison to T4 of the left part of FIG. 9 for λ m = 1.

Fig. 10 zeigt eine Regelung eines mageren Abgases mit einer Sprungantwortsonde durch eine Änderung der Ausmagerungsgeschwindigkeit, d. h. durch unterschiedliche Änderungsgeschwindigkeiten beim Anfetten und Ausmagern, wodurch das Vorfahren der Fig. 8 realisiert wird. Die Bedeutung der Bezugszeichen T1, T2, T3 und T4 entspricht derjenigen der Fig. 9. Die beiden Pfeile im rechten Teil der Fig. 10 für λm > 1 deuten auf eine schnellere und stärkere Ausmagerung bei magerem Abgas hin.FIG. 10 shows a control of a lean exhaust gas with a step response probe by changing the leaning rate, that is to say by means of different rates of change during enriching and leaning, whereby the ancestor of FIG. 8 is realized. The meaning of the reference symbols T1, T2, T3 and T4 corresponds to that of FIG. 9. The two arrows in the right part of FIG. 10 for λ m > 1 indicate a faster and stronger emaciation with lean exhaust gas.

Bei Breitbandsonden wird das Sollsignal des mittleren Lambda λm auf den gewünschten Wert (Lambda > 1) eingestellt und über Frequenz und Amplitude die Zeitanteile fetten Abgases überwacht.In the case of broadband probes, the target signal of the average lambda λ m is set to the desired value (lambda> 1) and the time components of rich exhaust gas are monitored via frequency and amplitude.

Fig. 11 zeigt die Einregelung von λm > 1 durch zylinderselektive Einspritzmengen-Beeinflussung bei Breitband-Lambsdasonden, wobei der mittlere Wert λm durch die gestrichelte Linie dargestellt ist. Neben der Beaufschlagung aller Zylinder mit dem gleichen Einspritzsignal ist auch denkbar, daß bei einem n-Zylinder-Motor 1 bis (n-1) Zylinder (hier Zylinder 1, 2, 3 und 4) ein von den übrigen Zylindern abweichendes Einspritzsignal bekommen, wobei auch mehr als zwei unterschiedliche Einspritzsignale vorgegeben werden können (z. B. 1x sehr fett, 1x leicht fett, 2x mager). Bei Breitband-Lambdasonden wird weiterhin das Lambdasignal zur globalen Regelung auf λm > 1 verwendet. Bei Steuerung der fett und/oder stöchiometrisch laufenden Zylinder wird Lambda durch Regelung mindestens eines mager laufenden Zylinders geregelt. Die Fig. 11 ist in die Bereiche A, B und C unterteilt, die die folgenden Bedeutungen haben:

  • A: Steuerung der fetten Zylinder 1 und 4, angepaßte Regelung der Zylinder 2 und 3 (Idealfall).
  • B: Nachregelung des Zylinders 2, falls Zylinder 4 vom vorgegebenen Sollwert abweicht.
  • C: Eine bewußt unterschiedliche Ansteuerung der fetten Zylinder 1 und 4 wird durch eine geänderte Regelung der Zylinder 2 und 3 ausgeglichen.
  • 11 shows the regulation of λ m > 1 by influencing the cylinder-selective injection quantity in broadband lambda sensors, the mean value λ m being represented by the dashed line. In addition to the application of the same injection signal to all cylinders, it is also conceivable that with an n-cylinder engine 1 to (n-1) cylinders (here cylinders 1, 2, 3 and 4) receive an injection signal that differs from the other cylinders, whereby more than two different injection signals can also be specified (e.g. 1x very rich, 1x slightly rich, 2x lean). In the case of broadband lambda probes, the lambda signal continues to be used for global control to λ m > 1. When controlling the rich and / or stoichiometrically running cylinders, lambda is regulated by regulating at least one lean-running cylinder. 11 is divided into areas A, B and C, which have the following meanings:
  • A: Control of rich cylinders 1 and 4, adjusted regulation of cylinders 2 and 3 (ideal case).
  • B: Readjustment of cylinder 2 if cylinder 4 deviates from the specified setpoint.
  • C: A deliberately different control of the rich cylinders 1 and 4 is compensated for by a modified regulation of the cylinders 2 and 3.
  • Fig. 12 schließlich zeigt eine zylinderselektive Einspritzmengenbeeinflussung zur Erzeugung eines mageren Abgases mit einer Sprungantwortsonde. Dabei bedeutet die dicke Linie das λ der einzelnen Zylinder, die gestrichelte Linie ein gemitteltes λ über einen Zyklus und die zweifach durchgezogenen Linie das mittlere λm über mehrere Zyklen. Auch hier liegt der Ursprung der Zeitachse bei λ = 1. Bei Sprungantwortsonden werden ebenfalls die fett und/oder stöchiometrisch laufenden Zylinder gesteuert und die mager laufenden Zylinder geregelt. Da mit der Sprungantwortsonde keine Information über den Grad der Ausmagerung zu bekommen ist, wird zunächst ein magererer als der mittlere gewünschte Lambdawert λm (1 + 2*Δλ, d.h.. Lambda 1,06 bei gewünscht Lambda 1,03) gesteuert angefahren, indem die Zylinder 2 und 3 sehr mager betrieben werden. S bezeichnet die Sprungantwort der Sonde.Finally, FIG. 12 shows a cylinder-selective injection quantity influencing Lean exhaust gas generation with a step response probe. The means thick line the λ of the individual cylinders, the dashed line an averaged λ over one cycle and the double solid line the mean λm over several Cycles. Here too, the origin of the time axis is λ = 1. For step response probes the bold and / or stoichiometric cylinders are also controlled and the lean-running cylinder regulated. Since with the step response probe no information to get the degree of emaciation is initially a leaner than that Average desired lambda value λm (1 + 2 * Δλ, i.e. lambda 1.06 if desired Lambda 1.03) started in a controlled manner by operating cylinders 2 and 3 very lean become. S denotes the step response of the probe.

    Die Ausmagerung der Zylinder 2 und 3 wird über die folgenden Arbeitsspiele sukzessive zurückgenommen, bis die Sprungantwortsonde global fettes Abgas erkennt. Dann wird wieder der höchste Ausmagerungswert der mager laufenden Zylinder eingestellt. Fig. 12 verdeutlicht prinzipiell diese Vorgehensweise, wobei auch hier unterschiedliche zylinderindividuelle Ausmagerungen/Anfettungen denkbar sind.The leaning out of cylinders 2 and 3 will be successive over the following work cycles withdrawn until the step response probe detects globally rich exhaust gas. Then it will be the highest lean value of the lean-running cylinders was set again. Fig. 12 principally illustrates this procedure, although here too different cylinder-specific leanings / enrichments are conceivable.

    Bei Mager-Otto- und Dieselmotoren vermindert diese Vorgehensweise neben dem Verbrauch auch HC- und CO-Durchschläge während der Regeneration; bei Dieselmotoren überdies noch die Partikelemissionen.For lean gasoline and diesel engines, this procedure reduces in addition to that Consumption also HC and CO breakthroughs during regeneration; at Diesel engines also have particle emissions.

    Wird die Verbrauchsminderung ganz oder teilweise in eine häufigere Regeneration umgesetzt, ist mit zusätzlichen Vorteilen bei der Schwefelvergiftung zu rechnen, da bei jeder NOx-Regeneration auch ein Teil der angelagerten Sulfate wieder mit ausgetragen wird. Der freigesetzte Schwefel wird über dies verstärkt in Form von SO2 emittiert; die geruchsbelästigende H2S-Bildung wird weitgehend unterdrückt. Ebenso ist mit einer nur geringflüssigen NH3-Bildung zu rechnen. If all or part of the reduction in consumption is converted into a more frequent regeneration, additional advantages in sulfur poisoning are to be expected, since a part of the deposited sulfates is also removed again with each NOx regeneration. The released sulfur is increasingly emitted in the form of SO 2 ; the odor-causing H 2 S formation is largely suppressed. Likewise, only minimal liquid NH 3 formation is to be expected.

    BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

    11
    Abgasanlageexhaust system
    22
    NOx-SpeicherkatalysatorNOx storage catalytic converter
    33
    Katalysatorelementcatalyst element
    44
    Fettes AbgasFat exhaust gas
    55
    Mageres AbgasLean exhaust
    II
    Regenerationsbereichregeneration area
    IIII
    NichtregenerationsbereichNon regeneration area
    IIIIII
    NichtregenerationsbereichNon regeneration area
    T1T1
    Totzeitdead
    T2T2
    Totzeitdead
    T3T3
    Totzeitdead
    T4T4
    Totzeitdead
    λm.lambda..sub.m
    mittlerer λ-Wertmean λ value
    VS V p
    Sondenspannungprobe voltage
    Ee
    EinspritzmengensignalInjection quantity signal
    SS
    SprungantwortsignalStep response signal

    Claims (12)

    1. Method for the operation and regeneration of an NOx-storage catalytic converter (2) of a lean-mix operable, λ-controlled internal combustion engine having at least one λ-probe, wherein a lean operation with λ > 1.1 is performed for more than 10 seconds, characterised in that during regeneration each volume element of the NOx-storage catalytic converter (2) is influenced alternately with rich and lean exhaust gas in a time and position-dependent manner, in that the λ-value performs an oscillation in the direction of the time axis about a mean value λm, wherein the minimum value of the oscillation is less than the value λ = 1 and the maximum value of the oscillation exceeds the value λ = 1.
    2. Method as claimed in claim 1, characterised in that the mean value λm is greater than or equal to 1.
    3. Method as claimed in any one of claims 1 or 2, characterised in that the frequency of the λ-oscillation is greater than or equal to 0.1 Hz.
    4. Method as claimed in any one of the preceding claims, characterised in that the λ-oscillation is a sinusoidal oscillation.
    5. Method as claimed in any one of claims 1 to 3, characterised in that the λ-oscillation is a triangular oscillation.
    6. Method as claimed in any one of claims 1 to 3, characterised in that the amplitude of the λ-oscillation is changed.
    7. Method as claimed in any one of the preceding claims, characterised in that the frequency of the λ-oscillation is variable.
    8. Method as claimed in any one of the preceding claims, characterised in that the mean value λm is produced by a cylinder-selective control of the internal combustion engine.
    9. Method as claimed in claim 8, characterised in that some of the cylinders are operated with a rich λ-value, whereas others are operated with a lean λ-value.
    10. Method as claimed in claim 9, characterised in that both the λ-values of the rich-operated cylinders and also those of the lean-operated cylinders are different in each case.
    11. Method as claimed in any one of claims 1 to 7, characterised in that the control of the lean exhaust gas is produced by changing the rate at which the operation becomes leaner.
    12. Method as claimed in any one of claims 1 - 7, characterised in that the control of the lean exhaust gas is produced by a change in the dead times of the change in injection quantity.
    EP98965852A 1998-01-19 1998-12-17 LEAN REGENERATION OF NOx STORAGE UNITS Expired - Lifetime EP1049861B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19801815 1998-01-19
    DE19801815A DE19801815A1 (en) 1998-01-19 1998-01-19 Lean-burn i.c. engine exhaust gas cleaning process
    PCT/EP1998/008290 WO1999036689A1 (en) 1998-01-19 1998-12-17 LEAN REGENERATION OF NOx STORAGE UNITS

    Publications (2)

    Publication Number Publication Date
    EP1049861A1 EP1049861A1 (en) 2000-11-08
    EP1049861B1 true EP1049861B1 (en) 2002-10-16

    Family

    ID=7855033

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98965852A Expired - Lifetime EP1049861B1 (en) 1998-01-19 1998-12-17 LEAN REGENERATION OF NOx STORAGE UNITS

    Country Status (3)

    Country Link
    EP (1) EP1049861B1 (en)
    DE (2) DE19801815A1 (en)
    WO (1) WO1999036689A1 (en)

    Families Citing this family (30)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19920515C2 (en) * 1999-05-05 2003-03-20 Daimler Chrysler Ag Emission control system with nitrogen oxide adsorber and Desulfatisierungsverfahren this
    DE19922962C2 (en) * 1999-05-19 2003-02-27 Daimler Chrysler Ag Method for the periodic desulfurization of a nitrogen oxide or sulfur oxide storage of an emission control system
    DE19923498A1 (en) * 1999-05-21 2000-11-23 Volkswagen Ag Controlling the regeneration of a nitrogen oxides storage catalyst in the exhaust gas channel of an IC engine comprises comparing the measured nitrogen oxides concentration with a set concentration after the storage catalyst
    DE19936200A1 (en) * 1999-07-31 2001-02-08 Bosch Gmbh Robert Method for operating an internal combustion engine
    DE19942270A1 (en) * 1999-09-04 2001-03-15 Bosch Gmbh Robert Method for operating an internal combustion engine
    DE19953601C2 (en) 1999-11-08 2002-07-11 Siemens Ag Method for checking an exhaust gas catalytic converter of an internal combustion engine
    DE19963938A1 (en) * 1999-12-31 2001-07-12 Bosch Gmbh Robert Method for operating a three-way catalytic converter of an internal combustion engine
    DE10005473C2 (en) * 2000-02-08 2002-01-17 Bayerische Motoren Werke Ag Method and device for desulfating a nitrogen oxide storage catalyst
    DE10005474C2 (en) * 2000-02-08 2003-04-17 Bayerische Motoren Werke Ag Method and device for desulfating a NOx storage catalytic converter with a NOx sensor
    DE50112018D1 (en) * 2000-04-07 2007-03-29 Volkswagen Ag Multi-flow exhaust system and method for controlling an air-fuel ratio of a multi-cylinder internal combustion engine
    DE10025076B4 (en) * 2000-05-20 2008-04-30 Bayerische Motoren Werke Ag Device for controlling / regulating the regeneration of a NOx storage catalyst in the exhaust system of an internal combustion engine
    DE10026379A1 (en) * 2000-05-27 2001-12-13 Volkswagen Ag Method and device for performing regeneration of a NOx storage catalytic converter
    DE10040517A1 (en) * 2000-08-18 2002-02-28 Bayerische Motoren Werke Ag Method for mixture formation for an internal combustion engine with a catalyst in the exhaust system
    DE10139992B4 (en) * 2001-08-16 2006-04-27 Daimlerchrysler Ag Method for controlling the mixture composition for a gasoline engine with NOx storage catalyst during a regeneration phase
    FR2830772B1 (en) * 2001-10-12 2004-12-24 Volkswagen Ag METHODS AND DEVICE FOR DESULFURIZING A NOX-ACCUMULATING CATALYST, IMPLANTED DOWNSTREAM OF A DIESEL ENGINE
    DE10153901B4 (en) * 2001-10-12 2011-07-14 Volkswagen AG, 38440 Method and device for desulfurization of a diesel engine downstream NOx storage catalyst
    JP3800080B2 (en) * 2001-11-30 2006-07-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    DE10220337B4 (en) * 2002-05-07 2006-04-20 Siemens Ag A method of operating an internal combustion engine equipped with a three-way catalytic converter
    ATE421375T1 (en) * 2002-07-31 2009-02-15 Umicore Ag & Co Kg METHOD FOR REGENERATING A NITROGEN OXIDE STORAGE CATALYST
    US6854264B2 (en) * 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
    US7146799B2 (en) * 2003-03-27 2006-12-12 Ford Global Technologies, Llc Computer controlled engine air-fuel ratio adjustment
    DE10321311B4 (en) * 2003-05-08 2013-09-12 Volkswagen Ag Method for heating a catalytic converter and engine with control unit
    FR2856741B1 (en) 2003-06-30 2005-09-30 Renault Sa METHOD AND DEVICE FOR ESTIMATING A MASS OF STORED NITROGEN OXIDES IN A CATALYTIC TRAPPING DEVICE OF A MOTOR VEHICLE
    DE10341930A1 (en) * 2003-09-11 2005-04-21 Audi Ag A method for heating a in an exhaust system of a diesel internal combustion engine of a vehicle, in particular a motor vehicle, arranged catalyst and / or particulate filter on Desulfatisierungs- and / or Entrußungstemperatur and catalyst, in particular nitrogen oxide storage catalytic converter for exhaust systems of internal combustion engines
    FR2876735B1 (en) * 2004-10-15 2007-01-12 Inst Francais Du Petrole PROCESS FOR PURGING A NOx TRAP WITH CONTROL OF EXHAUST GAS WEALTH
    CN100534590C (en) 2004-12-24 2009-09-02 乌米科雷股份两合公司 Method for the regeneration of a nitrogen oxide storage catalyst
    ITMI20060599A1 (en) * 2006-03-30 2007-09-30 Eldor Corp Spa METHOD AND DEVICES FOR THE CONTROL OF THE AIR-COMBUSTIBILR REPORT OF AN INTERNAL COMBUSTION ENGINE
    DE102006015509B3 (en) * 2006-03-31 2007-08-23 Avg Gmbh Retrofitting module for motor vehicles, has regulated catalyzer locking to Lambda-Sonde and motor control device of vehicle, where regulated catalyzer has medium to raise lambda value, with which engine of vehicle is operated
    DE102008036127A1 (en) * 2008-08-01 2010-02-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for operating an exhaust system with lambda control
    US9863348B2 (en) * 2009-09-29 2018-01-09 Ford Global Technologies, Llc Method for controlling fuel of a spark ignited engine while regenerating a particulate filter

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS62223427A (en) * 1986-03-20 1987-10-01 Nissan Motor Co Ltd Air-fuel ratio controller
    JP2765136B2 (en) * 1989-12-14 1998-06-11 株式会社デンソー Air-fuel ratio control device for engine
    JP2989929B2 (en) * 1991-05-13 1999-12-13 株式会社デンソー Air-fuel ratio control device for internal combustion engine
    DE4140618A1 (en) * 1991-12-10 1993-06-17 Bosch Gmbh Robert METHOD AND DEVICE FOR DETERMINING THE CONVERSIBILITY OF A CATALYST
    DE4211116A1 (en) * 1992-04-03 1993-10-07 Bosch Gmbh Robert On-board detection of state of IC engine exhaust catalyser - increasing lean-rich cycle until exhaust gas probe signal indicates noticeable change to determine oxygen@ storage capacity
    US5622047A (en) * 1992-07-03 1997-04-22 Nippondenso Co., Ltd. Method and apparatus for detecting saturation gas amount absorbed by catalytic converter
    DE4311890C2 (en) * 1993-04-10 1995-05-18 Comuna Metall Vorrichtungs Und Stationary internal combustion engine with exhaust gas purification
    JP3624429B2 (en) * 1994-02-28 2005-03-02 株式会社日立製作所 Control device for internal combustion engine
    JP3228006B2 (en) * 1994-06-30 2001-11-12 トヨタ自動車株式会社 Exhaust purification element deterioration detection device for internal combustion engine
    JP3309626B2 (en) * 1995-02-22 2002-07-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
    DE19511548A1 (en) * 1995-03-29 1996-06-13 Daimler Benz Ag Nitrous oxide reduction system in vehicle engine exhaust
    JPH09119310A (en) * 1995-10-26 1997-05-06 Denso Corp Emission control device for internal combustion engine
    DE19607151C1 (en) * 1996-02-26 1997-07-10 Siemens Ag Regeneration of nitrogen oxide storage catalyst

    Also Published As

    Publication number Publication date
    EP1049861A1 (en) 2000-11-08
    DE59806001D1 (en) 2002-11-21
    WO1999036689A1 (en) 1999-07-22
    DE19801815A1 (en) 1999-07-22

    Similar Documents

    Publication Publication Date Title
    EP1049861B1 (en) LEAN REGENERATION OF NOx STORAGE UNITS
    DE19837074C2 (en) Feedback control for desulfurization of a NOx trap
    DE19910503C1 (en) Desulfating the nitrogen oxide or sulfur oxide storage unit of a catalytic converter comprises variably operating different groups of engine cylinders with different fuel/air ratios
    DE19953601C2 (en) Method for checking an exhaust gas catalytic converter of an internal combustion engine
    DE10020639B4 (en) Method and device for controlling the temperature of an emission control device in the exhaust gas stream of an internal combustion engine
    EP1478834B1 (en) Method for adjusting a defined oxygen concentration by means of binary lambda regulation in order to diagnose an exhaust gas catalyst
    EP1227231B1 (en) Method of operation of a three-way catalyst, which comprises an oxygen storing element
    DE10205817A1 (en) Method and device for regulating the fuel / air ratio of a combustion process
    DE19851843B4 (en) A process for sulfate regeneration of a NOx storage catalyst for a lean-burn engine
    EP1192343B1 (en) METHOD FOR INITIATING AND MONITORING A DESULFURIZATION OF AT LEAST ONE NOx STORAGE-TYPE CATALYTIC CONVERTER ARRANGED IN AN EXHAUST CHANNEL OF AN INTERNAL COMBUSTION ENGINE
    DE10240977A1 (en) Method for operating an internal combustion engine and internal combustion engine itself
    EP1117916B1 (en) REGENERATION METHOD FOR A NOx STORAGE CATALYST PERTAINING TO AN INTERNAL COMBUSTION ENGINE
    DE10064665A1 (en) Petrol engine torque data collected and compared with target values under different conditions to trigger change in fuel-air mixture
    DE10349855B4 (en) Method and device for desulfurization of a catalyst
    EP1190164B1 (en) METHOD FOR DETECTING DETERIORATION OF AT LEAST ONE NOx STORAGE CATALYST ARRANGED IN THE EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
    DE10153901B4 (en) Method and device for desulfurization of a diesel engine downstream NOx storage catalyst
    EP1143131A2 (en) Multiple exhaust gas system and method to regulate an air/fuel ratio and to control the regeneration of an NOx storage catalyst
    DE102021102456B3 (en) Method for operating a drive device and corresponding drive device
    DE10305452B4 (en) Method for diagnosing a catalyst in the exhaust gas flow of an internal combustion engine and device for carrying out the method
    WO2000070203A1 (en) Desulphurisation method
    DE10018062B4 (en) Multi-cylinder engine for motor vehicles having a multi-flow exhaust gas purification system and method for controlling operation of the multi-cylinder engine
    DE10154041A1 (en) Process for reducing the pollutant emission of an I.C. engine exhaust gas comprises using a lower temperature threshold value for a temperature of catalysts and/or the impinged exhaust gas depending on the aging of the catalysts
    DE10130053B4 (en) Method and device for desulphurisation of a NOX storage catalytic converter
    WO2004059151A1 (en) Method and device for adjusting the fuel/ air ratio in an internal combustion engine
    DE10338181B4 (en) Method and device for influencing the temperature of a catalyst system

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000821

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT SE

    17Q First examination report despatched

    Effective date: 20010626

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20021016

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021016

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59806001

    Country of ref document: DE

    Date of ref document: 20021121

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030116

    ET Fr: translation filed
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20021016

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030429

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030717

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R084

    Ref document number: 59806001

    Country of ref document: DE

    Effective date: 20110716

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59806001

    Country of ref document: DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59806001

    Country of ref document: DE

    Representative=s name: TEGEL & MEYER, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20141231

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20141231

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59806001

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59806001

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151231