JP3624429B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP3624429B2
JP3624429B2 JP02927394A JP2927394A JP3624429B2 JP 3624429 B2 JP3624429 B2 JP 3624429B2 JP 02927394 A JP02927394 A JP 02927394A JP 2927394 A JP2927394 A JP 2927394A JP 3624429 B2 JP3624429 B2 JP 3624429B2
Authority
JP
Japan
Prior art keywords
engine
lean
nox
air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02927394A
Other languages
Japanese (ja)
Other versions
JPH07238852A (en
Inventor
武士 阿田子
俊雄 堀
雄一 北原
修 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02927394A priority Critical patent/JP3624429B2/en
Priority to US08/393,841 priority patent/US5791139A/en
Priority to KR1019950004207A priority patent/KR950033013A/en
Priority to DE19506980A priority patent/DE19506980C2/en
Publication of JPH07238852A publication Critical patent/JPH07238852A/en
Application granted granted Critical
Publication of JP3624429B2 publication Critical patent/JP3624429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • F02D41/1465Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、内燃機関の燃料噴射制御方法及び装置に係り、特に複数の触媒を装着することなく排気排出NOxを最少に抑制することの出来る内燃機関の燃料噴射制御方法及び装置に関する。
【0002】
【従来の技術】
従来のNOx還元触媒の発明では、たとえば特開昭63−100919号公報に記載されているように、リーン状態(酸素過多状態)でその浄化性能が発揮され、例えばストイキオの様な酸素が少量しか存在しない条件でのNOxの浄化は期待できなかった。尚、同様な技術として、特開平5−133260 号公報が挙げられる。
【0003】
【発明が解決しようとする課題】
上記従来技術では、NOxの浄化還元及びCO,HCの燃焼浄化の二つの目的のために、それぞれNOx還元触媒と酸化あるいは三元触媒とを最低でも2個装着使用せざるを得ない状況であった。また、三元触媒は従来より使用された実績のあるところであるが、NOx還元触媒についての開発が望まれていた。
【0004】
本発明では多硬質の担体にRh,Pt(and/or Pd)及びLaを担持した三元触媒がリーン領域状態に於いてNOx還元触媒の性能を有することに注目、更にリーン条件でのNOx還元性能はリーン状態が継続しその時間が長くなるに伴い変化する。
【0005】
本発明は、この性能を十二分に引き出す制御方法及び装置を供給するものである。
【0006】
【課題を解決するための手段】
上記課題即ちリーン状態に於けるNOx還元率を高い儘に保持するためにはリーン状態の継続時間を計測し、ある時間割合で触媒の雰囲気をストイキオあるいはそれよりリッチにすることが有効である。本発明はこの部分に関するものである。
【0007】
例えば、LA4モードに於けるNOxの還元浄化率は、この(リーン/ストイキオ)比(LS比と言う)に依って左右されるため、LS比の制御が重要になる。
【0008】
そこで、本発明はエンジンへの供給空燃比をエンジンの運転状態を表すパラメータ及びまたは所定運転の経過時間に関する因子に依って制御することを特徴とする。
具体的には、排気系にNOxを還元する機能を有した触媒を装着した内燃機関の制御装置であって、エンジンへの供給空燃比をリーン状態とストイキオ及びそれよりリッチ状態とに制御し、前記リーン状態前記ストイキオ及びそれよりリッチ状態との時間比(K)を、リーン状態が所定時間継続したときのエンジンから排出されるNOx排出値と排気ガスの規制値及び触媒の浄化率に基づいて定めることを特徴とする内燃機関の制御装置により上記課題を達成するようにしたものである。
【0009】
【作用】
多孔質の担体にRh,Pt(and/or Pd)及びLaを担持した三元触媒がリーン領域状態に於いてNOx還元性能を有することに注目、更にリーン条件でのNOx還元性能はリーン状態が継続しその時間が長くなるに伴い減少する。また、そのNOx還元性能はストイキオ状態に曝すことで復活する。従って、リーン状態で有効にNOx還元性能を引き出すために、有効にLS比を制御することが必要となる。
【0010】
そこで、本発明は、エンジンへの供給空燃比をエンジンの運転状態を表すパラメータ及び/または所定運転の経過時間に関する因子に依って制御することで NOxの排出量を最少にするように補正,機能することで、前述の課題を解決するものである。
【0011】
【実施例】
以下、本発明による内燃機関の燃料噴射制御方法及び装置について、図示の実施例により詳細に説明する。
【0012】
図1は本発明で適用されたエンジンシステムの一例を示したもので、図においてエンジンが吸入すべき空気はエアクリーナ1の入口部2から取り入れられ、吸気流量を制御する絞弁が収容された絞弁ボディ5を通り、コレクタ6に入る。そして、ここで吸気はエンジン7の各シリンダに接続された各吸気管8に分配され、シリンダ内に導かれる。
【0013】
他方、ガソリンなどの燃料は、燃料タンク9から燃料ポンプ10により吸引,加圧された上で、燃料ダンパ11,燃料フィルタ12,燃料噴射弁(インジェクタ)13、それに燃圧レギュレータ14が配管されている燃料系に供給される。そして、この燃料は上記した燃圧レギュレータ14により一定の圧力に調圧され、それぞれのシリンダの吸気管8に設けられている燃料噴射弁13から吸気管8の中に噴射される。
【0014】
又、上記空気流量計3からは吸気流量を表す信号が出力され、コントロールユニット15に入力されるようになっている。
【0015】
更に、上記絞弁ボディ5には絞弁の開度を検出するスロットルセンサ18が取付けてあり、その出力もコントロールユニット15に入力されるようになっている。次に、16はディスト(ディストリビュータ)で、このディストにはクランク角センサが内蔵されており、クランク軸の回転位置を表す基準角信号REFと回転速度(回転数)検出用の角度信号POSとが出力され、これらの信号もコントロールユニット15に入力されるようになっている。
【0016】
21は排気管に設けられた酸素センサで、実運転空燃比を検出する。酸素センサの出力はストイキオを境にしてリッチ側で約1Vの出力を発生し、リーン側では0.2V 程度となる。従ってこのセンサでは直接的には空燃比は測定できないが、本発明を実行するための障害にはならない。しかし、リッチリーンではなく真の空燃比を測定できる空燃比センサがもし用意出来るならばそれに越したことはない。何れにしろこの出力信号もコントロールユニット15に入力されるようになっている。また、排気管にはエンジンから排出された排気ガス中の有害成分(CO,HC,NOx)を無害化する三元触媒20(後で説明するがNOx還元性能も有している)が取り付けられている。
【0017】
コントロールユニット15の主要部は、図2に示すようにMPU,ROMとA/D変換器エンジンの運転状態を検出するエンジン回転数やエンジン負荷などの各種のセンサなどからの信号を入力として取り込み、所定の演算処理を実行し、この演算結果として、例えば運転状態により目標となる空燃比になるように燃料噴射弁13に供給するパルスの幅を出力する。また点火コイル17にも所定の制御信号を供給し、燃料供給量制御と点火時期制御とを遂行するのである。
【0018】
図3は排気管に装着された触媒20の「NOx還元浄化性能」を測定した一例を示したもので、縦軸にNOx浄化率を示し、横軸は時間軸でリーン(L)、ストイキオ(S)と所定時間で切り替えた状態での浄化性能を示している。図から判るようにストイキオ状態では浄化率は100%に近い値を示している。一方、リーン状態に於いてはNOx浄化率は徐々に低下しており、図では明示していないが約50%程度以下の浄化率まで低下する。このリーン状態の浄化率は触媒自体により決まるが、例として示したものは多孔質の担体にRh,Pt(and/ or Pd)及びLaを担持したものであり、これらの担持量や他の金属の添加によって浄化性能は向上する。しかし、リーン状態での浄化率が時間と共に減少するのは一般的な傾向であり、これをなくすことは理論的に不可能であるといえる。これらの性能を図4,図5を用いて、更に分かりやすく説明する。
【0019】
図4は安定した状態に於ける空燃比とNOxの浄化率関係を示したもので、空燃比が14.7 のストイキオよりもリッチの状態ではNOxの浄化率はほぼ100 %である。空燃比がストイキオから次第にリーン側に移行するに伴って、浄化率は減少しており空燃比が22近辺では浄化率は殆どなくなっている。しかし、この触媒はNOxの吸着性能を有しているため、ストイキオよりもリッチな状態からリーン状態に戻した場合は、図5に示したように初期にはNOxの浄化率は非常に高い値を示している。この浄化率は時間の経過と共に減少し、約2分程度で実質的には浄化性能を失う。この性質は再現性があり、再びリッチにしてリーンに戻した場合に同じ性能を発揮する。
【0020】
図6ではNOx浄化率の観点から考えてみる。リーン状態にする時間はNOxの浄化性能から例えば2分と設定する。その状態に於いてリーン/ストイキオの比(LS比)を変化させる(ストイキオの時間を変えると同じ意味)と、LS比によってNOx浄化率が設定できることが判かる。例えば、LA4モードに於いてNOxの排出量を規制値以内に抑える場合、元々のエンジンのNOx排出値が判っているために目標の浄化率が算出できる。図7の例では約80%必要である。この80%は図6に戻って考えると、LS比=50%と言うことになる。即ちLA4モードテストに於いてLS比を50%に設定すれば規制値はクリア出来ることになる。
【0021】
図8は本発明による実施例を説明するための元になるエンジンの空燃比の要求特性を説明する為のものである。通常エンジンの空燃比の設定は図8に示されるようになっており、領域Aがリーン領域(λ≫1,空燃比では22以上)、領域Bはλ=1領域、それ以外の領域Cは出力やエンジン保護の目的でのリッチ領域となっている。これら領域ABCは同一マップ上の値の場合もあるが、それぞれが別のマップと考えた方が分かりやすいかも知れない。LA4の排気ガステストモードは一般的に言って領域のAとBとが運転の範囲となっている。また、領域Aの広さはエンジンの出力余裕度に依存する。
【0022】
次に、本発明による空燃比の制御の実施例を図9に示すフローチャートを用いて説明する。フローチャートはエンジン制御システムの制御関係の内の本発明に関係する部分のみを抜き出してある。
【0023】
ステップ101はエンジン運転条件を測定するステップであり、具体的にはエンジン回転数Ne、エンジン負荷Lが計測され、図8で示した領域が決定され 102に於いて目標空燃比が設定される。次に、103は領域A(λ≫1)を判定するステップであり、そうでない場合はNOとなり本制御は終了する。一方、YESの場合はステップ104において領域Aに滞在した時間を示すタイマー {T(λ>1)}がカウントを開始する。次に、105ではタイマー{T(λ>1)}が所定時間{X}に達したかを判定する。即ち、図5で説明した時間(先に、仮に2分と定めたが)になったか否かを判定する。{X}迄達していない場合は領域Aの制御を継続することになる。一方、{X}を越えた場合はステップ106 にて空燃比をストイキオ(λ≦1)に設定する。この場合の運転条件は当然ではあるが、何の変化もさせない。また、各種の制御手段を使用して運転者には感知させないことが理想である。ストイキオに設定された時間はステップ107によりタイマー{T(λ<1)}としてカウントされる。このストイキオの時間{T(λ<1)}はステップ108においてK*{T(λ>1)}と比較され、K*{T(λ>1)}を越えない場合はステップ106に戻り制御を継続する。一方、越えた場合はこの制御は終了すると共に、カウンタ{T(λ>1)}{T(λ<1)}はクリアされる。ここで、Kは先に述べたLS比であり、エンジン運転条件に於けるNOxの排出量と規制値に対する余裕度に依って選定可能な値である。図10は運転領域に依ってK=LS比をマップ化した例を示したものであるが、自由に設定可能である。
【0024】
また、本実施例はリーン時の空燃比を22として説明したが、LS比との組み合わせで自由に設定できる。
【0025】
【発明の効果】
本発明によれば、三元触媒を使用して空燃比の制御を適切に行うことで、リーン空燃比設定条件でのNOxを還元浄化することができる。従って、従来三元触媒とNOx還元触媒の2個の触媒コンバータが必要であったシステムの簡素化,コスト低減等が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す図。
【図2】本発明の一実施例を示す図。
【図3】本発明で使用する触媒の空燃比と触媒浄化性能の関係を示す図。
【図4】本発明で使用する触媒の空燃比とNOx還元性能を示す図。
【図5】本発明で使用する触媒のNOx還元性能の時間に対する特性を示す図。
【図6】本発明で使用する触媒のエンジン運転条件中のリーン/ストイキオ比に対する性能の説明の図。
【図7】本発明で使用する触媒の目標浄化率の説明図。
【図8】本発明でのエンジン運転条件に対する空燃比の設定とその領域の説明図。
【図9】本発明の実施例の説明のためのフローチャート。
【図10】本発明の制御領域の追加説明図。
【符号の説明】
3…空気流量計、5…絞弁ボディ、7…エンジン、13…燃料噴射弁、20…三元触媒。
[0001]
[Industrial application fields]
The present invention relates to a fuel injection control method and apparatus for an internal combustion engine, and more particularly to a fuel injection control method and apparatus for an internal combustion engine that can minimize exhaust emission NOx without mounting a plurality of catalysts.
[0002]
[Prior art]
In the invention of the conventional NOx reduction catalyst, as described in, for example, Japanese Patent Application Laid-Open No. 63-1000091, the purification performance is exhibited in a lean state (excessive oxygen state). For example, only a small amount of oxygen such as stoichio is present. NOx purification under nonexistent conditions could not be expected. As a similar technique, JP-A-5-133260 can be cited.
[0003]
[Problems to be solved by the invention]
In the above prior art, at least two NOx reduction catalysts and oxidation or three-way catalysts must be installed and used for the two purposes of NOx purification and reduction and CO and HC combustion purification. It was. In addition, the three-way catalyst has been used in the past, but the development of a NOx reduction catalyst has been desired.
[0004]
In the present invention, it is noted that a three-way catalyst in which Rh, Pt (and / or Pd) and La are supported on a multi-rigid carrier has the performance of a NOx reduction catalyst in a lean region, and further, NOx reduction under lean conditions The performance changes as the lean state continues and the time becomes longer.
[0005]
The present invention provides a control method and apparatus that fully exploits this performance.
[0006]
[Means for Solving the Problems]
In order to keep the above problem, that is, the NOx reduction rate in the lean state at a high level, it is effective to measure the duration of the lean state and to make the atmosphere of the catalyst stoichiometric or richer at a certain time ratio. The present invention relates to this part.
[0007]
For example, the NOx reduction and purification rate in the LA4 mode depends on this (lean / stoichio) ratio (referred to as the LS ratio), and therefore, the control of the LS ratio is important.
[0008]
In view of this, the present invention is characterized in that the air-fuel ratio supplied to the engine is controlled based on a parameter representing the operating state of the engine and / or a factor relating to the elapsed time of the predetermined operation.
Specifically, it is a control device for an internal combustion engine equipped with a catalyst having a function of reducing NOx in an exhaust system, and controls an air-fuel ratio supplied to the engine to a lean state, a stoichiometric state, and a richer state, and based time ratio of the stoichiometric and rich conditions than with the lean state (K), the limits and the purification rate of the catalyst of the NOx emission value and the exhaust gas discharged from the engine when the lean state continues for a predetermined time The above-described problems are achieved by a control device for an internal combustion engine characterized by the above.
[0009]
[Action]
Note that the three-way catalyst in which Rh, Pt (and / or Pd) and La are supported on a porous carrier has NOx reduction performance in the lean region state. Further, the NOx reduction performance in the lean condition is in the lean state. Decreases as it continues and its time increases. In addition, the NOx reduction performance is restored by exposure to the stoichiometric state. Therefore, it is necessary to effectively control the LS ratio in order to effectively extract the NOx reduction performance in the lean state.
[0010]
Therefore, the present invention corrects and functions so as to minimize the amount of NOx emission by controlling the air-fuel ratio supplied to the engine according to a parameter representing the operating state of the engine and / or a factor related to the elapsed time of the predetermined operation. By doing so, the above-mentioned problems are solved.
[0011]
【Example】
Hereinafter, a fuel injection control method and apparatus for an internal combustion engine according to the present invention will be described in detail with reference to the illustrated embodiments.
[0012]
FIG. 1 shows an example of an engine system applied in the present invention. In the figure, air to be taken in by the engine is taken in from an inlet portion 2 of an air cleaner 1 and a throttle valve for controlling an intake flow rate is accommodated. Passes through the valve body 5 and enters the collector 6. Here, the intake air is distributed to each intake pipe 8 connected to each cylinder of the engine 7 and guided into the cylinder.
[0013]
On the other hand, fuel such as gasoline is sucked and pressurized from a fuel tank 9 by a fuel pump 10, and then a fuel damper 11, a fuel filter 12, a fuel injection valve (injector) 13, and a fuel pressure regulator 14 are connected. Supplied to the fuel system. The fuel is regulated to a constant pressure by the fuel pressure regulator 14 and is injected into the intake pipe 8 from the fuel injection valve 13 provided in the intake pipe 8 of each cylinder.
[0014]
The air flow meter 3 outputs a signal indicating the intake flow rate and is input to the control unit 15.
[0015]
Further, the throttle body 5 is provided with a throttle sensor 18 for detecting the opening of the throttle valve, and its output is also input to the control unit 15. Next, 16 is a dist (distributor), and this dist has a built-in crank angle sensor. A reference angle signal REF indicating the rotation position of the crankshaft and an angle signal POS for detecting the rotation speed (rotation speed) are provided. These signals are also input to the control unit 15.
[0016]
21 is an oxygen sensor provided in the exhaust pipe for detecting the actual operating air-fuel ratio. The output of the oxygen sensor generates an output of about 1V on the rich side at the stoichiometric boundary, and is about 0.2V on the lean side. Therefore, although this sensor cannot directly measure the air-fuel ratio, it does not become an obstacle for carrying out the present invention. However, if an air-fuel ratio sensor that can measure the true air-fuel ratio instead of rich lean is available, it will not go beyond that. In any case, this output signal is also input to the control unit 15. Further, a three-way catalyst 20 (having NOx reduction performance, which will be described later) for detoxifying harmful components (CO, HC, NOx) in the exhaust gas discharged from the engine is attached to the exhaust pipe. ing.
[0017]
As shown in FIG. 2, the main part of the control unit 15 takes in signals from various sensors such as the engine speed and engine load for detecting the operating state of the MPU, ROM and A / D converter engine, as inputs. Predetermined calculation processing is executed, and as a result of this calculation, for example, the width of a pulse supplied to the fuel injection valve 13 is output so as to achieve a target air-fuel ratio depending on the operating state. A predetermined control signal is also supplied to the ignition coil 17 to perform fuel supply amount control and ignition timing control.
[0018]
FIG. 3 shows an example of measuring the “NOx reduction purification performance” of the catalyst 20 attached to the exhaust pipe. The vertical axis shows the NOx purification rate, the horizontal axis shows lean (L), stoichiometric ( S) and the purification performance in the state switched for a predetermined time are shown. As can be seen from the figure, the purification rate is close to 100% in the stoichiometric state. On the other hand, in the lean state, the NOx purification rate gradually decreases, and although not clearly shown in the figure, it decreases to a purification rate of about 50% or less. The lean purification rate is determined by the catalyst itself. The example shown here is a porous carrier carrying Rh, Pt (and / or Pd) and La. These loadings and other metals Purification performance is improved by the addition of. However, it is a general tendency that the purification rate in the lean state decreases with time, and it can be said that it is theoretically impossible to eliminate this. These performances will be described more easily with reference to FIGS.
[0019]
FIG. 4 shows the relationship between the air-fuel ratio and the NOx purification rate in a stable state. When the air-fuel ratio is richer than the stoichiometric ratio of 14.7, the NOx purification rate is almost 100%. The purification rate decreases as the air-fuel ratio gradually shifts from stoichiometric to the lean side, and the purification rate almost disappears when the air-fuel ratio is around 22. However, since this catalyst has NOx adsorption performance, when returning from a rich state to a lean state than stoichio, the NOx purification rate is very high at the beginning as shown in FIG. Is shown. This purification rate decreases with the passage of time, and the purification performance is substantially lost in about 2 minutes. This property is reproducible and exhibits the same performance when rich again and leaned back.
[0020]
FIG. 6 considers from the viewpoint of the NOx purification rate. The lean time is set to 2 minutes, for example, from the NOx purification performance. It can be seen that when the lean / stoichio ratio (LS ratio) is changed in this state (same meaning as changing the stoichiometric time), the NOx purification rate can be set by the LS ratio. For example, when the NOx emission amount is suppressed within the regulation value in the LA4 mode, the target purification rate can be calculated because the NOx emission value of the original engine is known. In the example of FIG. 7, about 80% is necessary. This 80% is considered to be LS ratio = 50% when returning to FIG. That is, if the LS ratio is set to 50% in the LA4 mode test, the regulation value can be cleared.
[0021]
FIG. 8 is a view for explaining the required characteristic of the air-fuel ratio of the engine which is the basis for explaining the embodiment according to the present invention. Normally, the air-fuel ratio setting of the engine is as shown in FIG. 8, where the region A is a lean region (λ >> 1, air-fuel ratio is 22 or more), the region B is λ = 1 region, and the other regions C are It is a rich area for the purpose of output and engine protection. Although these areas ABC may have values on the same map, it may be easier to understand if each area is considered as a separate map. Generally speaking, in the exhaust gas test mode of LA4, the regions A and B are in the operation range. The area A depends on the engine output margin.
[0022]
Next, an embodiment of air-fuel ratio control according to the present invention will be described with reference to the flowchart shown in FIG. In the flowchart, only the part related to the present invention in the control relation of the engine control system is extracted.
[0023]
Step 101 is a step of measuring engine operating conditions. Specifically, the engine speed Ne and the engine load L are measured, the region shown in FIG. 8 is determined, and the target air-fuel ratio is set at 102. Next, reference numeral 103 denotes a step of determining the region A (λ >> 1). Otherwise, the determination is NO and this control is finished. On the other hand, if YES, the timer {T (λ> 1)} indicating the time spent in the area A in step 104 starts counting. Next, at 105, it is determined whether the timer {T (λ> 1)} has reached a predetermined time {X}. That is, it is determined whether or not the time described in FIG. 5 has been reached (although it was previously set to 2 minutes). When it does not reach {X}, the control of the area A is continued. On the other hand, if {X} is exceeded, the air-fuel ratio is set to stoichiometric (λ ≦ 1) in step 106. The operating conditions in this case are of course not changed. Also, it is ideal that the driver is not perceived using various control means. The time set to stoichio is counted as a timer {T (λ <1)} by step 107. This stoichiometric time {T (λ <1)} is compared with K * {T (λ> 1)} in step 108, and if K * {T (λ> 1)} is not exceeded, control is returned to step 106 and controlled. Continue. On the other hand, when it exceeds, this control is terminated and the counter {T (λ> 1)} {T (λ <1)} is cleared. Here, K is the above-described LS ratio, which is a value that can be selected based on the NOx emission amount under engine operating conditions and the margin for the regulation value. FIG. 10 shows an example in which the K = LS ratio is mapped according to the operation region, but it can be set freely.
[0024]
In this embodiment, the lean air-fuel ratio is described as 22. However, it can be freely set in combination with the LS ratio.
[0025]
【The invention's effect】
According to the present invention, NOx under the lean air-fuel ratio setting condition can be reduced and purified by appropriately controlling the air-fuel ratio using the three-way catalyst. Therefore, it is possible to simplify the system and reduce the cost, which conventionally required two catalytic converters of the three-way catalyst and the NOx reduction catalyst.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the air-fuel ratio of the catalyst used in the present invention and the catalyst purification performance.
FIG. 4 is a diagram showing the air-fuel ratio and NOx reduction performance of a catalyst used in the present invention.
FIG. 5 is a graph showing the characteristics of NOx reduction performance of the catalyst used in the present invention with respect to time.
FIG. 6 is a diagram for explaining the performance of the catalyst used in the present invention with respect to the lean / stoichio ratio under engine operating conditions.
FIG. 7 is an explanatory diagram of a target purification rate of a catalyst used in the present invention.
FIG. 8 is an explanatory diagram of the setting of the air-fuel ratio with respect to engine operating conditions and its region in the present invention.
FIG. 9 is a flowchart for explaining an embodiment of the present invention;
FIG. 10 is an additional explanatory diagram of a control area according to the present invention.
[Explanation of symbols]
3 ... Air flow meter, 5 ... Throttle valve body, 7 ... Engine, 13 ... Fuel injection valve, 20 ... Three-way catalyst.

Claims (2)

排気系にNOxを還元する機能を有した触媒を装着した内燃機関の制御装置であって、エンジンへの供給空燃比をリーン状態とストイキオ及びそれよりリッチ状態とに制御し、前記リーン状態前記ストイキオ及びそれよりリッチ状態との時間比(K)を、リーン状態が所定時間継続したときのエンジンから排出されるNOx排出値と排気ガスの規制値及び触媒の浄化率に基づいて定めることを特徴とする内燃機関の制御装置。A exhaust system control apparatus for an internal combustion engine equipped with a catalyst having a function of reducing NOx in, and controls the supply air to the engine to a lean state and stoichiometric and rich conditions than the said lean state The time ratio (K) between the stoichio and the rich state is determined based on the NOx emission value discharged from the engine when the lean state continues for a predetermined time, the regulation value of the exhaust gas, and the purification rate of the catalyst. A control device for an internal combustion engine. 請求項1において、上記リーンとストイキオとの時間比(K)はエンジンの運転条件によって可変的に設定することを特徴とする内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, wherein the time ratio (K) between the lean and the stoichiometric is variably set according to an operating condition of the engine.
JP02927394A 1994-02-28 1994-02-28 Control device for internal combustion engine Expired - Fee Related JP3624429B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02927394A JP3624429B2 (en) 1994-02-28 1994-02-28 Control device for internal combustion engine
US08/393,841 US5791139A (en) 1994-02-28 1995-02-24 Fuel injection control method for an internal-combustion engine provided with NOx reducing catalytic converter and fuel injection controller
KR1019950004207A KR950033013A (en) 1994-02-28 1995-02-28 Fuel dispersion control method and apparatus equipped with NOx catalyst
DE19506980A DE19506980C2 (en) 1994-02-28 1995-02-28 Control method for the fuel injection of an internal combustion engine, which is provided with a catalyst for reducing NO¶x¶, and a device for carrying out this control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02927394A JP3624429B2 (en) 1994-02-28 1994-02-28 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07238852A JPH07238852A (en) 1995-09-12
JP3624429B2 true JP3624429B2 (en) 2005-03-02

Family

ID=12271683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02927394A Expired - Fee Related JP3624429B2 (en) 1994-02-28 1994-02-28 Control device for internal combustion engine

Country Status (4)

Country Link
US (1) US5791139A (en)
JP (1) JP3624429B2 (en)
KR (1) KR950033013A (en)
DE (1) DE19506980C2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6345496B1 (en) 1995-11-09 2002-02-12 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of an engine
EP0861367B1 (en) * 1995-11-17 2000-08-16 Toyota Jidosha Kabushiki Kaisha Method and device for purifying exhaust gas of engine
WO1997019261A1 (en) * 1995-11-17 1997-05-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device for internal combustion engines
DE19646651C1 (en) * 1996-11-12 1998-04-09 Daimler Benz Ag Method for operating remotely ignited internal combustion engine with lambda probe, cylinder-specific fuel injection
JP3456408B2 (en) * 1997-05-12 2003-10-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
GB2326953A (en) * 1997-06-30 1999-01-06 Ford Motor Co Motor vehicle exhaust Catalyst regeneration
DE19739847A1 (en) * 1997-09-11 1999-04-15 Bosch Gmbh Robert Internal combustion engine, in particular for a motor vehicle
DE19739848A1 (en) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Internal combustion engine, in particular for a motor vehicle
DE19755600C2 (en) * 1997-12-15 2002-01-17 Bosch Gmbh Robert Operation of an internal combustion engine in connection with a NOx storage catalytic converter
DE19801815A1 (en) * 1998-01-19 1999-07-22 Volkswagen Ag Lean-burn i.c. engine exhaust gas cleaning process
DE19811257A1 (en) 1998-03-14 1999-09-16 Volkswagen Ag Process for controlling the exhaust gas aftertreatment of a DI Otto and lean-burn engine
DE19819461B4 (en) * 1998-04-30 2004-07-01 Siemens Ag Process for exhaust gas purification with trim control
DE19828928C2 (en) * 1998-06-29 2003-04-17 Siemens Ag Method for monitoring the exhaust gas purification system of an internal combustion engine
GB2350206A (en) * 1999-05-11 2000-11-22 Ford Motor Co Switching between lean and rich fuel/air mixtures in an internal combustion engine
US6266955B1 (en) 1999-08-20 2001-07-31 Caterpillar Inc. Diagnostic system for an emissions control on an engine
JP3496593B2 (en) * 1999-09-30 2004-02-16 マツダ株式会社 Control device for spark ignition type direct injection engine
US20040118034A1 (en) * 1999-11-23 2004-06-24 Williamson Ian Vernon Fuel composition containing heavy fraction
WO2001038464A1 (en) * 1999-11-23 2001-05-31 Tomah Products, Inc. Fuel additive, additive-containing fuel compositions and method of manufacture
GB9927563D0 (en) * 1999-11-23 2000-01-19 Williamson Ian A process and method for blending a fuel containing a high molecular weight compound
FR2804175B1 (en) * 2000-01-20 2002-04-12 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF A PARTICLE FILTER INTEGRATED IN AN EXHAUST LINE OF A DIESEL ENGINE OF A MOTOR VEHICLE
US7135153B2 (en) * 2002-03-07 2006-11-14 Southwest Research Institute NOx reduction system for diesel engines, using hydrogen selective catalytic reduction
JP3735594B2 (en) * 2002-06-28 2006-01-18 株式会社東芝 Optical disk device and standby method of optical disk device
US7199088B2 (en) 2002-07-01 2007-04-03 Shell Oil Company Lubricating oil for a diesel powered engine and method of operating a diesel powered engine
US20100018476A1 (en) * 2007-05-31 2010-01-28 Svetlana Mikhailovna Zemskova On-board hydrogen generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799110B2 (en) * 1987-08-17 1995-10-25 本田技研工業株式会社 Air-fuel ratio feedback control method for internal combustion engine
WO1993007363A1 (en) * 1991-10-03 1993-04-15 Toyota Jidosha Kabushiki Kaisha Device for purifying exhaust of internal combustion engine
EP0598917B2 (en) * 1992-06-12 2009-04-15 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine

Also Published As

Publication number Publication date
DE19506980C2 (en) 1996-07-18
DE19506980A1 (en) 1995-09-07
KR950033013A (en) 1995-12-22
US5791139A (en) 1998-08-11
JPH07238852A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
JP3624429B2 (en) Control device for internal combustion engine
US6993901B2 (en) Excess air factor control of diesel engine
US5628186A (en) Method and apparatus for controlled introduction of a reducing agent into a nitrogen oxide-containing exhaust gas
US8001765B2 (en) System operable to control exhaust gas emission of engine
EP0822323A1 (en) An exhaust emission purification apparatus for an internal combustion engine
US20100107610A1 (en) Exhaust System for an Internal Combustion Engine
JPH04224221A (en) Exhaust purification device for diesel engine
JP3531867B2 (en) Method for adapting unpurified (low) NOx concentration in an internal combustion engine operating with excess air
US7159389B2 (en) Engine fuel injection control apparatus
US20020124555A1 (en) Method and apparatus for optimizing purge fuel for purging emissions control device
EP1517012A2 (en) Filter regeneration control
US6698185B2 (en) Exhaust gas purification apparatus and process for internal combustion engine
US20100162687A1 (en) Method and device for the control of the operating state of the catalytic converter of the exhaust line of an internal combustion engine
JP3301093B2 (en) Exhaust gas purification device for internal combustion engine
JP3528698B2 (en) Fuel sulfur concentration estimation device
JPH0563621B2 (en)
JP3114414B2 (en) Air-fuel ratio control device for internal combustion engine
JP4158565B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JPH0466716A (en) Catalyst converter device for internal combustion engine
JP3641964B2 (en) Exhaust gas purification device for internal combustion engine
JP3318702B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP4255224B2 (en) Internal combustion engine
JP3991292B2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
JP3620680B2 (en) Exhaust gas purification device
JP2003521626A (en) Engine exhaust purification device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees