EP1046724B1 - Metal matrix fiber reinforced composite material and its preparation - Google Patents

Metal matrix fiber reinforced composite material and its preparation Download PDF

Info

Publication number
EP1046724B1
EP1046724B1 EP00890121A EP00890121A EP1046724B1 EP 1046724 B1 EP1046724 B1 EP 1046724B1 EP 00890121 A EP00890121 A EP 00890121A EP 00890121 A EP00890121 A EP 00890121A EP 1046724 B1 EP1046724 B1 EP 1046724B1
Authority
EP
European Patent Office
Prior art keywords
vol
matrix
ceramic
process according
fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00890121A
Other languages
German (de)
French (fr)
Other versions
EP1046724A2 (en
EP1046724A3 (en
Inventor
Hans-Peter Prof. Dr. Degischer
Herbert Prof. Dr. Danninger
Brigitte Dr. Kriszt
Helmut Dipl. Ing. Ponemayr
Manfred Dipl. Ing. Daxelmller
Gottfried Dipl. Ing. Pöckl
Knut Dr. Consemüller
Bruno Dr Hribernik
Frantisek Dr. Simancik
Karol Dr. Izdinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Edelstahl GmbH
Original Assignee
Voestalpine Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Edelstahl GmbH filed Critical Voestalpine Edelstahl GmbH
Priority to SI200030781T priority Critical patent/SI1046724T1/en
Priority to AT00890121T priority patent/ATE306570T1/en
Publication of EP1046724A2 publication Critical patent/EP1046724A2/en
Publication of EP1046724A3 publication Critical patent/EP1046724A3/en
Application granted granted Critical
Publication of EP1046724B1 publication Critical patent/EP1046724B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a metal-ceramic material with a matrix of one Heavy metal or a similar alloy, in particular from a Iron-nickel-molybdenum or cobalt-based alloy, and one in this uniform distributed from short fibers formed ceramic phase, the particles optionally a Wear surface layer.
  • the invention relates to a method for producing a Material of the above type.
  • Substantially homogeneous materials can be characterized by their composition and Treatment, in particular thermal or thermomechanical treatment, the Requirements to be adapted to this.
  • the metals used by alloying and processing measures attainable property level and Like profile no longer a great way to improve include. Nevertheless, particularly pronounced stresses on parts Account has been taken of a use of heterogeneous or composite materials proposed and realized.
  • Composite bodies generally consist of at least two parts, the have different properties and according to the requirements with each other preferably non-detachably connected.
  • the respective parts take over those Stresses for which this particular suitability.
  • fiber reinforced composite is technically well known and denotes an object consisting of a mostly tough matrix, in which insoluble high-strength fibers are embedded .. This article possesses Consequently, at the same time advantageous good toughness and high rigidity and Strength in the fiber direction.
  • the Fiber material may consist of oxides, borides, nitrides, carbides and mixed forms consist of the same.
  • the ceramic fibers have, as stated above, consistently high temperature resistance as well as strength and rigidity, So cause a so-called reinforcement of a less firm, but tough Matrix metal.
  • a correspondingly long length and a like proportion of Fibers appear to be effective in incorporating them into the matrix and advantageous embodiment of a property segment of the composite of to be essential.
  • Such a reinforcement of the metallic material by high-strength fibers is pronounced usually only in one direction, namely the fiber direction, given what is in disadvantageously limits its general use. Also Manufacturing technology difficulties in an installation of appropriate be given long fibers.
  • a material which consists of a hard phase of TiN with short fibers having a diameter of 0.01 to 0.1 .mu.m, and a Binding phase consists of alloyed steel.
  • the stated object is in a generic subject According to the invention solved in that the ceramic short fibers have a diameter of 0.5 to 14.5 microns and a fiber length of at least 5 times but not more than 15 times the fiber diameter.
  • the advantages achieved by the invention are to be seen essentially in an isotropy of the material with significantly improved mechanical properties such as high strength and toughness and thermal shock resistance. It was completely surprising to the experts that short fibers in a heavy metal matrix can effect a sudden and pronounced improvement of the mechanical properties and that this is given in all directions. If the fiber length reaches a value of less than 5 times the diameter, substantially no solidification of the material is achievable, a transition to a dispersion hardening of the material, which is significantly lower for the same concentration of the ceramic particles, takes place only at a particle size in the range of 1x10 -1 ⁇ m. Longer lengths than 15 times the fiber diameter promote the anisotropy of the composite with fracture of the fibers in adjacent regions in a high compaction.
  • the fibers When it has been found, the fibers have a diameter in the range of 0.5 to Have 14.5 microns, their gain is particularly favorable and the Composite material economically producible. Fibers with a diameter of below Although 0.5 ⁇ m can be highly efficient in high proportions, a homogeneous one However, incorporation into the matrix requires considerable effort. In contrast, fibers with a thickness greater than 14.5 microns are increased Risk of breakage during material production.
  • the highest material quality is achieved with a fiber diameter of 0.7 to 9.5 ⁇ m reached.
  • the fiber content of the material 5 to 69 Vol. -% is. With concentrations below 5 vol .-% is not clear and favorable Influencing the material properties achievable. About 5 vol .-% is with increasing short fiber content an increase in strength, in particular Heat resistance, and the wear resistance of the composite given. Of particular importance are the simultaneously achieved improved thermal stability or reduced creep phenomena under hot conditions as well as a high thermomechanical fatigue resistance of the material. Larger short fiber fractions will further increase the modulus of elasticity the material and a reduction in the thermal conductivity causes the latter is to be considered in the thermal treatment of the matrix metal.
  • a fiber content of greater than 20 vol .-%, preferably greater than 30 vol .-% can from it in a favorable manner Parts are manufactured for high abrasive loads.
  • a Hot deformation optionally by press forging, preferably with a Reduction of the cross-sectional area by at least 20%, be provided wherein the composite body has a fiber content of at most 30% by volume, preferably less than 20% by volume.
  • the matrix material of the composite material of an iron-nickel-molybdenum or Cobalt-based alloy with high heat resistance in particular of an alloy with a decrease in strength at a temperature of over 600 ° C, in particular above 615 ° C, is formed.
  • the matrix material is copper or a copper alloy, can despite high fiber content and the like mechanical characteristics still considerable heat and electrical conductivity properties of the material be achieved.
  • the material by Hot isostatic pressing of a homogeneous mixture ceramic fibers of matrix metal powder with a grain size of 15 to 200 microns, preferably less than 50 microns, and optionally of carbides with a Grain size of less than 25 microns is created.
  • HIP method Hot isostatic pressing
  • the further object of the invention is a process for the production of To create metal-ceramic materials is inventively characterized achieved that the ceramic short fibers with a diameter between 0.5 and 14.5 microns and with a fiber length of at least 5 times, but not more than 15 times that of Fiber diameter created and with one or more ultimately the matrix forming metal powder with a particle size between 15 and 200 microns and optionally mixed homogeneously with a hard powder and directed on all sides are distributed, whereupon the thus prepared mixture is sintered.
  • the process advantages of the invention are to be seen in particular in that the miscibility of the ingredients is improved so that a homogeneous Distribution of short fibers can be achieved with less time. Furthermore, there is a general orientation of the short fibers and thus a creation Good conditions for a production of isotropic material to simple Way possible, with lower particle sizes of the powders have an advantageous effect can. Due to the low fiber length can also be a high density of the mixture at vibration, a so-called high tapping density, in the capsule before the Sintering can be achieved. When sintering itself, however, are slightly elongated Sintering times apply because higher fiber content of the temperature line of the Mixture humiliated.
  • a particularly high quality of the composite is achievable when short fibers with a diameter between 0.5 and 14.5 microns, preferably from 0.7 to 9.5 microns, and a fiber length of preferably at most 12 times the Diameter created and with the ultimately forming the matrix metal powder, which preferably has a particle size of less than 50 microns, mixed and be sintered.
  • High-hardness and solid metal-ceramic materials with much greater hardness, in particular hot hardness, as high-speed steel, but with lower hardness than Carbide, however, which are not thermoformable, for example, as wear resistant tool parts are advantageously used economically when the Sintered body with a short fiber content of greater than 20 vol .-%, preferably from greater than 30 vol .-% produced and by machining, for Example loops, being final formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft einen metall-keramischen Werkstoff mit einer Matrix aus einem Schwermetall oder einer dergleichen Legierung, insbesondere aus einer Eisen-Nickel-Molybdän- oder Kobaltbasislegierung, und einer in dieser gleichmäßig verteilten aus Kurzfasern gebildeten keramischen Phase, deren Teilchen gegebenenfalls eine Oberflächenschicht tragen.The invention relates to a metal-ceramic material with a matrix of one Heavy metal or a similar alloy, in particular from a Iron-nickel-molybdenum or cobalt-based alloy, and one in this uniform distributed from short fibers formed ceramic phase, the particles optionally a Wear surface layer.

Weiters bezieht sich die Erfindung auf ein Verfahren zur Herstellung eines Werkstoffes der oben genannten Art.Furthermore, the invention relates to a method for producing a Material of the above type.

Die stetigen Weiterentwicklungen im Maschinen- und Anlagenbau sowie insbesondere der Wunsch nach Werkzeugen mit verbesserten Gebrauchseigenschaften für eine spanende oder spanlose Formgebung von Materialien, auch bei erhöhten Temperaturen, begründen den Bedarf an Werkstoffen mit wesentlich verbesserten Eigenschaften bei Raumtemperatur und bei Temperaturen über 500°C sowie hoher Isotropie.The constant advancements in mechanical and plant engineering as well as in particular the desire for tools with improved Performance characteristics for cutting or non-cutting shaping of Materials, even at elevated temperatures, justify the need Materials with significantly improved properties at room temperature and at temperatures above 500 ° C and high isotropy.

Im wesentlichen homogene Materialien können durch deren Zusammensetzung und Behandlung, insbesondere thermische oder thermomechanische Behandlung, den Anforderungen an diese angepaßt werden. Bei den üblichen derzeit in der Technik eingesetzten Metallen scheint jedoch das durch legierungs- und verarbeitungstechnische Maßnahmen erreichbare Eigenschaftsniveau und dergleichen Profil nicht mehr im hohen Maße eine Verbesserungsmöglichkeit zu beinhalten. Um dennoch besonders ausgeprägten Beanspruchungen an Teile Rechnung zu tragen, wurde eine Verwendung von heterogenen oder VerbundWerkstoffen vorgeschlagen und verwirklicht.Substantially homogeneous materials can be characterized by their composition and Treatment, in particular thermal or thermomechanical treatment, the Requirements to be adapted to this. At the usual currently in the art However, the metals used by alloying and processing measures attainable property level and Like profile no longer a great way to improve include. Nevertheless, particularly pronounced stresses on parts Account has been taken of a use of heterogeneous or composite materials proposed and realized.

Verbundkörper bestehen im allgemeinen aus mindestens zwei Teilen, die unterschiedliche Eigenschaften besitzen und anforderungsgemäß miteinander vorzugsweise unlösbar verbunden sind. Die jeweiligen Teile übernehmen dabei jene Beanspruchungen, für welche diese besondere Eignung aufweisen. Composite bodies generally consist of at least two parts, the have different properties and according to the requirements with each other preferably non-detachably connected. The respective parts take over those Stresses for which this particular suitability.

Bauteile oder Werkzeuge weisen vielfach unter anderem eine besonders ausgeprägte Beanspruchungsart auf, wobei die mechanischen Beanspruchungen in den meisten Fällen richtungsabhängig bzw. gerichtet sind. Dies führt zumeist zu einer vorteilhaft gerichteten Ausführungsform von Verbundkörpern.In many cases, components or tools have a special one among others pronounced type of stress, the mechanical stresses in in most cases are directional or directed. This usually leads to an advantageous embodiment of composite bodies.

Der Begriff "faserverstärkter Verbundkörper " ist technisch allgemein bekannt und bezeichnet einen Gegenstand bestehend aus einer zumeist zähen Matrix, in welcher unlösbar hochfeste Fasern eingelagert sind.. Dieser Gegenstand besitzt konsequenterweise vorteilhaft gleichzeitig gute Zähigkeit sowie hohe Steifigkeit und Festigkeit in Faserrichtung.The term "fiber reinforced composite" is technically well known and denotes an object consisting of a mostly tough matrix, in which insoluble high-strength fibers are embedded .. This article possesses Consequently, at the same time advantageous good toughness and high rigidity and Strength in the fiber direction.

Es ist bekannt, in metallischen Werkstoffen keramische Fasern einzulagern und damit Verbundwerkstoffe mit besonderem Eigenschaftsprofil zu erstellen. Das Fasermaterial kann aus Oxiden, Boriden, Nitriden, Karbiden und Mischformen derselben bestehen. Die keramischen Fasern besitzen, wie oben festgehalten, durchwegs eine hohe Temperaturbeständigkeit sowie Festigkeit und Steifigkeit, bewirken also eine sogenannte Armierung eines weniger festen, jedoch zähen Matrixmetalles. Eine entsprechend große Länge und ein dergleichen Anteil von Fasern scheinen für einen wirkungsvollen Einbau derselben in die Matrix und die vorteilhafte Ausbildung eines Eigenschaftssegmentes des Verbundwerkstoffes von wesentlicher Bedeutung zu sein.It is known to store ceramic fibers in metallic materials and to create composites with a special property profile. The Fiber material may consist of oxides, borides, nitrides, carbides and mixed forms consist of the same. The ceramic fibers have, as stated above, consistently high temperature resistance as well as strength and rigidity, So cause a so-called reinforcement of a less firm, but tough Matrix metal. A correspondingly long length and a like proportion of Fibers appear to be effective in incorporating them into the matrix and advantageous embodiment of a property segment of the composite of to be essential.

Eine derartige Verstärkung des metallischen Werkstoffes durch hochfeste Fasern ist ausgeprägt meist nur in eine Richtung, nämlich der Faserrichtung, gegeben, was in nachteiliger Weise dessen allgemeine Verwendungsmöglichkeit einschränkt. Auch herstellungstechnisch können Schwierigkeiten bei einem Einbau von entsprechend langen Fasern gegeben sein.Such a reinforcement of the metallic material by high-strength fibers is pronounced usually only in one direction, namely the fiber direction, given what is in disadvantageously limits its general use. Also Manufacturing technology difficulties in an installation of appropriate be given long fibers.

Aus GB-A-1 521 599 ist ein Verbundwerkstoff aus Aluminium und Tonerdefasern bekannt. Der mittlere Durchmesser der Fasern gemäß der Beispiele beträgt jeweils 20 µm.From GB-A-1 521 599 a composite of aluminum and alumina fibers is known. The mean diameter of the fibers according to the examples is 20 μm in each case.

Aus JP-A-03 188 244 ist ein Werkstoff bekannt, welcher aus einer Hartphase aus TiN mit kurzen Fasern, welche einen Durchmesser von 0,01 bis 0,1 µm besitzen, und einer Bindephase aus legiertem Stahl besteht.From JP-A-03 188 244 a material is known, which consists of a hard phase of TiN with short fibers having a diameter of 0.01 to 0.1 .mu.m, and a Binding phase consists of alloyed steel.

Es ist nun Aufgabe der Erfindung, den Mangel einer Richtungsabhängigkeit der mechanischen Eigenschaften von mit keramischen Fasern bewehrten Werkstoffen zu beseitigen und dessen weitgehende Isotropie zu erreichen. Weiters setzt sich die Erfindung zum Ziel, ein Verfahren zur Herstellung von metall-keramischen Werkstoffen zu schaffen, mit welchen besonders vorteilhafte Gebrauchseigenschaften von Formen und von auf Verschleiß beanspruchten Werkzeugen erreicht werden.It is now an object of the invention, the lack of directional dependence of mechanical properties of materials reinforced with ceramic fibers to eliminate and to achieve its extensive isotropy. Furthermore, the Invention of the object, a method for producing metal-ceramic To create materials with which particularly advantageous Performance characteristics of molds and wear-stressed Tools are achieved.

Die gestellte Aufgabe wird bei einem gattungsgemäßen Gegenstand erfindungsgemäß dadurch gelöst, daß die keramischen Kurzfasern einen Durchmesser von 0,5 bis 14,5 µm besitzen und eine Faserlänge von mindestens dem 5-fachen höchstens jedoch dem 15-fachen, des Faserdurchmessers aufweisen.The stated object is in a generic subject According to the invention solved in that the ceramic short fibers have a diameter of 0.5 to 14.5 microns and a fiber length of at least 5 times but not more than 15 times the fiber diameter.

Die mit der Erfindung erreichten Vorteile sind im wesentlichen in einer Isotropie des Werkstoffes bei wesentlich verbesserten mechanischen Eigenschaften wie hohe Festigkeit und Zähigkeit sowie Temperaturwechselbeständigkeit zu sehen. Für die Fachwelt vollkommen überraschend war, daß Kurzfasem in einer Schwermetallmatrix eine sprunghafte und ausgeprägte Verbesserung der mechanischen Eigenschaften bewirken können und daß diese in alle Richtungen gegeben ist. Erreicht die Faserlänge einen Wert von geringer als das 5-fache des Durchmessers, so ist im wesentlichen keine Verfestigung des Werkstoffes erzielbar, ein Übergang zu einer Dispersionsverfestigung des Materiales, welche bei gleicher Konzentration der Keramikteilchen deutlich geringer ist, erfolgt erst bei einer Teilchengröße im Bereich von 1x 10-1 µm. Größere Längen als das 15-fache des Faserdurchmessers fördern die Anisotropie des Verbundwerkstoffes mit einem Brechen der Fasern in benachbarten Bereichen bei einer Hochkompaktierung.The advantages achieved by the invention are to be seen essentially in an isotropy of the material with significantly improved mechanical properties such as high strength and toughness and thermal shock resistance. It was completely surprising to the experts that short fibers in a heavy metal matrix can effect a sudden and pronounced improvement of the mechanical properties and that this is given in all directions. If the fiber length reaches a value of less than 5 times the diameter, substantially no solidification of the material is achievable, a transition to a dispersion hardening of the material, which is significantly lower for the same concentration of the ceramic particles, takes place only at a particle size in the range of 1x10 -1 μm. Longer lengths than 15 times the fiber diameter promote the anisotropy of the composite with fracture of the fibers in adjacent regions in a high compaction.

Von besonderem Vorteil im Hinblick auf eine im wesentlichen umfassende Isotropie ist, wenn die Faserlänge im Matrixmaterial höchstens das 12-fache des Faserdurchmessers beträgt. Dies gründet sich nach Fachmeinung darauf, daß der Mischvorgang auch bei jeweils hohen Anteilen der Komponenten leicht ausführbar ist und daß bei einer Fasereinbringung in die Matrix eine Ausrichtung derselben nicht erfolgt.Of particular advantage with respect to a substantially comprehensive isotropy is when the fiber length in the matrix material at most 12 times the Fiber diameter is. This is based on expert opinion that the Blending even with high proportions of the components easily executable and that upon fiber introduction into the matrix, an alignment thereof not happened.

Wenn, wie gefunden wurde, die Fasern einen Durchmesser im Bereich von 0,5 bis 14,5 µm besitzen, ist deren Verstärkungswirkung besonders günstig und der Verbundwerkstoff wirtschaftlich erstellbar. Fasern mit einem Durchmesser von unter 0,5 µm können in hohen Anteilen zwar hoch effizient sein, eine homogene Einbringung in die Matrix erfordert jedoch einen erheblichen Aufwand. Demgegenüber sind Fasern mit einer Stärke von größer als 14,5 µm einer erhöhten Bruchgefahr bei einer Werkstoffherstellung ausgesetzt.When it has been found, the fibers have a diameter in the range of 0.5 to Have 14.5 microns, their gain is particularly favorable and the Composite material economically producible. Fibers with a diameter of below Although 0.5 μm can be highly efficient in high proportions, a homogeneous one However, incorporation into the matrix requires considerable effort. In contrast, fibers with a thickness greater than 14.5 microns are increased Risk of breakage during material production.

Höchste Werkstoffqualität wird bei einem Faserdurchmesser von 0,7 bis 9,5 µm erreicht.The highest material quality is achieved with a fiber diameter of 0.7 to 9.5 μm reached.

Erfindungsgemäß ist es wichtig, daß der Faseranteil des Werkstoffes 5 bis 69 Vol. -% beträgt. Mit Konzentrationen unter 5 Vol.-% ist keine deutliche und günstige Beeinflussung der Materialeigenschaften erreichbar. Über 5 Vol.-% ist mit steigendem Kurzfaseranteil eine Erhöhung der Festigkeit, insbesondere Warmfestigkeit, und des Verschleißwiderstandes des Verbundwerkstoffes gegeben. Von besonderer Bedeutung sind die dabei gleichzeitig erreichte verbesserte thermische Stabilität bzw.verringerte Kriecherscheinungen bei Heißbedingungen sowie eine hohe thermomechanische Ermüdungsbeständigkeit des Werkstoffes. Durch größeren Kurzfaseranteile werden weiters ein steigender Elastizitätsmodul des Materials und eine Verringerung der Temperaturleitfähigkeit bewirkt, wobei letzteres bei der thermischen Vergütung des Matrixmetalles zu berücksichtigen ist.According to the invention it is important that the fiber content of the material 5 to 69 Vol. -% is. With concentrations below 5 vol .-% is not clear and favorable Influencing the material properties achievable. About 5 vol .-% is with increasing short fiber content an increase in strength, in particular Heat resistance, and the wear resistance of the composite given. Of particular importance are the simultaneously achieved improved thermal stability or reduced creep phenomena under hot conditions as well as a high thermomechanical fatigue resistance of the material. Larger short fiber fractions will further increase the modulus of elasticity the material and a reduction in the thermal conductivity causes the latter is to be considered in the thermal treatment of the matrix metal.

Umfangreiche Versuche haben gezeigt, daß die Kurzfasern, welche einen im Vergleich mit der Matrix unterschiedlichen Ausdehnungskoeffizienten aufweisen, eine allseitige Verspannung im Gefüge verursachen und insbesondere bei erhöhten Temperaturen eine Stützwirkung besitzen, was zu höheren Festigkeitswerten des Materiales führt. Weil nun die Fasern weiters eine hohe Härte haben, werden auch mit steigendem Anteil die Verschleißfestigkeitswerte angehoben.Extensive tests have shown that the short fibers, which in the Comparison with the matrix have different coefficients of expansion, cause an all-round tension in the structure and especially at elevated Temperatures have a supporting effect, resulting in higher strength values of Material leads. Because the fibers have a high hardness, too with increasing share the wear resistance values raised.

Besonders ausgeprägt ist diese Verbesserung der Verschleißfestigkeit bei Vermeidung von Materialriefen, wie gefunden wurde, durch die allseitige Ausrichtung der Kurzfasern in der Matrix und die Isotropie des Werkstoffes.This improvement in wear resistance is especially pronounced Avoidance of material marks, as found, by the all-round alignment the short fibers in the matrix and the isotropy of the material.

Weil nun das Fasermaterial durchwegs eine hohe Schmelz- oder Erweichungstemperatur und weitgehend temperaturunabhängige E-Moduli sowie Festigkeitswerte besitzt, werden bei höheren Konzentrationen desselben in der Matrix die Eigenschaften des Verbundwerkstoffes insbesondere bei Heißbedingungen angehoben. Because now the fiber material consistently high melting or Softening temperature and largely temperature-independent moduli of elasticity as well Strength values are at higher concentrations thereof in the Matrix the properties of the composite material in particular at Raised hot conditions.

Für Wechselbelastungen, zum Beispiel bei Preßformen im Langzeitbetrieb, ist es erheblich, daß die Kurzfasem in homogener allseits gerichteter Verteilung in der Legierungsmatrix die Ermüdungsbeständigkeit des Materiales wesentlich anheben und die Rißinitiation sowie den dergleichen Fortschritt im Hinblick auf Dauerbrüche entscheidend mindern.For alternating loads, for example, in molds in long-term operation, it is significant that the short fibers in homogeneous all-directed distribution in the Alloy matrix significantly increase the fatigue resistance of the material and the crack initiation as well as the like progress with regard to fatigue breaks decisively reduce.

Dem Fachmann ist geläufig, daß Maßnahmen zur Beeinflussung von Werkstoffeigenschaften nicht für alle Eigenschaftsmerkmale in gleicher Weise vorteilhaft sein können, sondern daß für gegebene Beanspruchungsbedingungen das Eigenschaftsprofil des Teiles oder Werkzeuges Bedeutung besitzt.The skilled worker is aware that measures for influencing Material properties not in the same way for all property features may be advantageous, but that for given stress conditions the property profile of the part or tool has meaning.

Wenn der Werkstoff erfindungsgemäß für eine Vewendung in unverformtem Zustand vorgesehen ist und einen Faseranteil von größer als 20 Vol.-%, vorzugsweise von größer als 30 Vol.-% aufweist, können daraus in günstiger Weise Teile für hohe abrasive Belastungen gefertigt werden. Demgegenüber kann für zumindest teilweise spanlos verformte bzw. geformte Komponenten eine Warmverformung gegebenenfalls durch Preßschmieden, vorzugsweise mit einer Verkleinerung der Querschnittsfläche um mindestens 20%, vorgesehen sein, wobei der Verbundkörper einen Faseranteil von höchstens 30 Vol.-%, vorzugsweise von geringer als 20 Vol.-%, besitzt.If the material according to the invention for a use in undeformed State is provided and a fiber content of greater than 20 vol .-%, preferably greater than 30 vol .-%, can from it in a favorable manner Parts are manufactured for high abrasive loads. In contrast, for at least partially chipless deformed or molded components a Hot deformation optionally by press forging, preferably with a Reduction of the cross-sectional area by at least 20%, be provided wherein the composite body has a fiber content of at most 30% by volume, preferably less than 20% by volume.

Bei höheren Verformungsgraden wird zwar ein Auftreten von Anisotropie beobachtet, es war jedoch überraschend, daß diese, wahrscheinlich der geringen Faserlänge im Werkstoff wegen, vergleichsweise gering ist. Höhere Fasergehalte als 20 Vol.-% bewirken eine Verschlechterung der Warmverformbarkeit des Materiales.At higher degrees of deformation, although an occurrence of anisotropy observed, but it was surprising that these, probably the slightest Fiber length in the material because, is relatively low. Higher fiber contents as 20 vol.% cause deterioration of the hot workability of Material.

Für hohe Temperaturen und oder oftmaligen Temperaturwechsel bei bedeutenden mechanischen Belastungen des Teiles ist es vorteilhaft, wenn der Matrixwerkstoff des Verbundwerkstoffes aus einer Eisen-Nickel- Molybdän- oder Kobaltbasislegierung mit hoher Warmfestigkeit, insbesondere aus einer Legierung mit einem Festigkeitsabfall bei einer Temperatur von über 600 °C, insbesondere über 615°C, gebildet ist. For high temperatures and or frequent temperature changes at significant mechanical loads on the part, it is advantageous if the matrix material of the composite material of an iron-nickel-molybdenum or Cobalt-based alloy with high heat resistance, in particular of an alloy with a decrease in strength at a temperature of over 600 ° C, in particular above 615 ° C, is formed.

Wenn weiters der Matrixwerkstoff aus Kupfer oder einer Kupferlegierung besteht, können trotz hoher Faseranteile und dergleichen mechanischer Kennwerte noch beachtliche Wärme- und elektrische Leitfähigkeitseigenschaften des Materiales erreicht werden.Further, if the matrix material is copper or a copper alloy, can despite high fiber content and the like mechanical characteristics still considerable heat and electrical conductivity properties of the material be achieved.

Insbesondere im Hinblick auf eine Isotropie ist es günstig, wenn der Werkstoff durch heißisostatisches Pressen (HIP-Verfahren) einer homogenen Mischung aus keramischen Fasern aus Matrix-Metallpulver mit einer Korngröße von 15 bis 200 µm, vorzugsweise von kleiner als 50 µm, und gegebenenfalls von Karbiden mit einer Korngröße von kleiner als 25 µm erstellt ist.In particular, with regard to an isotropy, it is advantageous if the material by Hot isostatic pressing (HIP method) of a homogeneous mixture ceramic fibers of matrix metal powder with a grain size of 15 to 200 microns, preferably less than 50 microns, and optionally of carbides with a Grain size of less than 25 microns is created.

Das weitere Ziel der Erfindung, ein Verfahren zur Herstellung von metall-keramischen Werkstoffen zu schaffen, wird erfindungsgemäß dadurch erreicht, daß die keramischen Kurzfasern mit einem Durchmesser zwischen 0,5 und 14,5 µm und mit einer Faserlänge von mindestens dem 5-fachen, höchstens jedoch dem 15-fachen des Faserdurchmessers erstellt und mit einem oder mehreren letztlich die Matrix bildenden Metallpulver mit einer Korngröße zwischen 15 und 200 µm und gegebenenfalls mit einem Hartstoffpulver homogen gemischt und allseits gerichtet verteilt werden, worauf die derart erstellte Mischung gesintert wird.The further object of the invention is a process for the production of To create metal-ceramic materials is inventively characterized achieved that the ceramic short fibers with a diameter between 0.5 and 14.5 microns and with a fiber length of at least 5 times, but not more than 15 times that of Fiber diameter created and with one or more ultimately the matrix forming metal powder with a particle size between 15 and 200 microns and optionally mixed homogeneously with a hard powder and directed on all sides are distributed, whereupon the thus prepared mixture is sintered.

Die erfindungsgemäßen Verfahrensvorteile sind insbesondere darin zu sehen, daß die Mischbarkeit der Bestandteile derart verbessert ist, daß eine homogene Verteilung der Kurzfasem mit geringerem Zeitaufwand erreicht werden kann. Weiters ist eine allseitige Ausrichtung der Kurzfasem und somit eine Schaffung guter Voraussetzungen für eine Herstellung von isotropem Material auf einfache Weise möglich, wobei geringere Korngrößen der Pulver sich vorteilhaft auswirken können. Durch die geringe Faserlänge kann auch eine hohe Dichte der Mischung bei Vibrationseinwirkung, eine sogenannte hohe Klopfdichte, in der Kapsel vor dem Sintern erreicht werden. Beim Sintern selbst sind jedoch geringfügig verlängerte Sinterzeiten anzuwenden, weil höhere Faseranteile die Temperaturleitung der Mischung erniedrigt.The process advantages of the invention are to be seen in particular in that the miscibility of the ingredients is improved so that a homogeneous Distribution of short fibers can be achieved with less time. Furthermore, there is a general orientation of the short fibers and thus a creation Good conditions for a production of isotropic material to simple Way possible, with lower particle sizes of the powders have an advantageous effect can. Due to the low fiber length can also be a high density of the mixture at vibration, a so-called high tapping density, in the capsule before the Sintering can be achieved. When sintering itself, however, are slightly elongated Sintering times apply because higher fiber content of the temperature line of the Mixture humiliated.

Eine besonders hohe Güte des Verbundwerkstoffes ist erreichbar, wenn Kurzfasem mit einem Durchmesser zwischen 0,5 und 14,5 µm, vorzugsweise von 0,7 bis 9,5 µm, und einer Faserlänge von vorzugsweise höchstens dem 12-fachen des Durchmessers erstellt und mit dem letzlich die Matrix bildenden Metallpulver, welches vorzugsweise eine Korngröße von kleiner als 50 µm aufweist, gemischt und gesintert werden.A particularly high quality of the composite is achievable when short fibers with a diameter between 0.5 and 14.5 microns, preferably from 0.7 to 9.5 microns, and a fiber length of preferably at most 12 times the Diameter created and with the ultimately forming the matrix metal powder, which preferably has a particle size of less than 50 microns, mixed and be sintered.

Wenn bei der Herstellung der metall-keramischen Körper als Metallpulver ein solches aus Werkzeugstahl, vorzugsweise aus Schnellstahl, verwendet wird, sind aus diesem hochwertige Werkzeuge mit gegenüber herkömmlichen Erzeugnissen überragenden Schnitt- und Verschleißfestigkeitseigenschaften herstellbar. Derartige Gütesteigerungen können auch bei spanlos formenden Werkzeugen erreicht werden.When in the production of the metal-ceramic body as a metal powder such tool steel, preferably made of high-speed steel, is used from this high quality tools with respect to conventional products outstanding cutting and wear resistance properties can be produced. such Gütsteigerungen can be achieved even with non-cutting forming tools become.

Um eine Oberflächenbeeinflussung der Fasern weitgehend auszuschalten und eine hervorragende Einbindung der Kurzfasem zu erreichen, aber auch um die Festigkeit der Matrix zu erhöhen, kann es von Vorteil sein, wenn die Pulverkörner vor oder während des Sinterns oberflächlich mit Stickstoff legiert bzw. aufgestickt werden. Durch Beimischen von Titan oder dergleichen Metallpulver in geringen Mengen kann der Fasereinbau gefördert werden.To largely eliminate a surface effect of the fibers and a To achieve excellent integration of the short fibers, but also to the Strength of the matrix increase, it may be beneficial if the powder grains before or during sintering superficially alloyed with nitrogen or embroidered become. By admixing titanium or similar metal powder in small Quantities can be promoted the fiber installation.

Wenn weiters in günstiger Weise das Mischen der Kurzfasem mit dem(den) Metallpulver(n) und/oder ein Befüllen eines Behälters bzw. ein Kapseln für ein nachfolgendes Sintern unter Stickstoffatmosphäre durchgeführt wird(werden), so ist ein weitgehend porenfreies Sintern begünstigt. Der zwischen den Fasern und den Metallpulverkörnern im Rohling eingeschlossene Stickstoff steht, wie gefunden wurde, bei der Erwärmung auf Sintertemperatur in Wechselwirkung mit den nichtmetallischen und metallischen Elementen und wird letztlich in der metallischen Matrix gelöst, was einerseits die Sinterdichte fördert und andererseits Vorteile bei der Fasereinbettung erbringt. Dabei kann der Zeitaufwand weiter gesenkt werden, wenn das Sintern der Mischung unter Druckeinwirkung erfolgt.Furthermore, if the mixing of the short fibers with the (den) Metal powder (s) and / or filling a container or capsules for a subsequent sintering under nitrogen atmosphere is (are) carried out so is a largely pore-free sintering favors. The between the fibers and the Metal powder grains in the blank enclosed nitrogen is as found was, when heated to sintering temperature in interaction with the nonmetallic and metallic elements and will ultimately be in the metallic Matrix solved, which on the one hand promotes sintering density and on the other hand benefits the fiber embedding yields. The time required can be further reduced, when sintering the mixture under pressure.

In Weiterbildung des Verfahrens zur Herstellung von Verbundkörpern wurde gefunden, daß sowohl die Produktgüte als auch die Wirtschaftlichkeit verbessert sind, wenn das Sintern der Mischung unter allseitiger Druckbeaufschlagung bzw. durch heißisostatisches Pressen erfolgt. In a further development of the method for producing composite bodies was found that improves both the product quality and the economy are when the sintering of the mixture under all-sided pressurization or done by hot isostatic pressing.

Hochharte und- feste metall-keramische Werkstoffe mit wesentlich größerer Härte, insbesondere Warmhärte, als Schnellstahl, jedoch mit geringerer Härte als Hartmetall, die allerdings nicht warmverformbar sind, können beispielsweise als verschleißfeste Werkzeugteile vorteilhaft wirtschaftlich verwendet werden, wenn der Sinterkörper mit einem Kurzfaseranteil von größer als 20 Vol.-%, vorzugsweise von größer als 30 Vol.-% hergestellt und durch spanabhebende Bearbeitung, zum Beispiel Schleifen, endgeformt wird.High-hardness and solid metal-ceramic materials with much greater hardness, in particular hot hardness, as high-speed steel, but with lower hardness than Carbide, however, which are not thermoformable, for example, as wear resistant tool parts are advantageously used economically when the Sintered body with a short fiber content of greater than 20 vol .-%, preferably from greater than 30 vol .-% produced and by machining, for Example loops, being final formed.

Sollte jedoch ein Werkzeug oder ein Teil, zum Beispiel Verschleißteil, zumindest teilweise durch plastische Formgebung hergestellt werden, so erscheint es vorteilhaft, wenn der Sinterkörper mit einem Kurzfaseranteil von höchstens 25 Vol.-%, vorzugsweise von höchstens 20 Vol.-%, hergestellt und einer Warmformgebung unterworfen wird.However, should a tool or part, for example, wearing part, at least partly produced by plastic shaping, it appears advantageous if the sintered body with a short fiber content of at most 25 Vol .-%, preferably of at most 20 vol .-%, prepared and a Hot forming is subjected.

In eingehenden praktischen Untersuchungen unter härtesten Bedingungen und Beanspruchungen wurde gefunden, daß eine Verwendung eines metall-keramischen Werkstoffes zur Schaffung von Druckgußformen sowie für Hochleistungskunststofformen, Strangpreßwerkzeugen und dergleichen auch bei extremer Wärmeeinwirkung und bei Kaltarbeitswerkzeugen wie Fließstempel, Matrizen und dergleichen mit hoher Verschleiß- und Druckbeanspruchung und für spanabhebende Werkzeuge hervorragende Leistungssteigerungen mit hoher Wirtschaftlichkeit erbringt.In-depth practical examinations under the harshest conditions and Stress has been found to be a use of a metal-ceramic material for the creation of pressure casting molds as well as for Hochleistungskunststofformen, extrusion tools and the like also at extreme heat and cold working tools such as flow punches, Matrices and the like with high wear and compression stress and for Cutting tools excellent performance increases with high Economic efficiency.

Claims (21)

  1. Metal-ceramic material having a matrix of a heavy metal or an alloy of such, in particular of an iron/nickel/molybdenum or cobalt-based alloy, and a ceramic phase formed from short fibres which is uniformly distributed in this, characterized in that the ceramic short fibres have a diameter of from 0.5 to 14.5 µm and a fibre length of at least 5 times, but not more than 15 times, the fibre diameter.
  2. Material according to claim 1, characterized in that the fibre length is not more than 10 times the fibre diameter.
  3. Material according to one of claims 1 or 2, characterized in that the fibre diameter is 0.7 to 9.5 µm.
  4. Material according to one of claims 1 to 3, characterized in that the fibre content is 5 to 69 vol.%.
  5. Material according to one of claims 1 to 4, characterized in that this is envisaged for a use in the non-formed state and has a fibre content of greater than 20 vol.%, preferably of greater than 30 vol.%.
  6. Material according to one of claims 1 to 5, characterized in that the short fibres carry a surface layer.
  7. Material according to one of claims 1 to 5, characterized in that this is hot-formed, preferably has been hot-formed with a reduction in the cross-section area by at least 20 %, and has a fibre content of not more than 30 vol.%, preferably of less than 20 vol.%.
  8. Material according to one of claims 1 to 7, characterized in that the matrix material is formed from an iron/nickel/molybdenum or cobalt-based alloy of high heat resistance, in particular with an alloy having a drop in strength above 600 °C, in particular above 615 °C.
  9. Material according to one of claims 1 to 7, characterized in that the matrix material is made of copper or a copper alloy.
  10. Material according to one of claims 1 to 9, characterized in that this is produced by hot isostatic pressing (HIP process) of a homogeneous mixture of ceramic fibres and of matrix metal powder having a particle size of 15 to 200 µm, preferably of less than 50 µm, and optionally of carbides having a particle size of less than 25 µm.
  11. Process for the production of metal-ceramic materials having a matrix of a heavy metal or an alloy of such, in particular of an iron/nickel/molybdenum or cobalt-based alloy, and a ceramic phase formed from short fibres which is uniformly distributed in this, in particular process for the production of objects according to the preceding claims, characterized in that the ceramic short fibres are produced with a diameter of between 0.5 and 14.5 µm and with a fibre length of at least 5 times, but not more than 15 times, the fibre diameter and are mixed homogeneously and distributed in all directions with one or more metal powders which finally form the matrix and have a particle size of between 15 and 200 µm and optionally with a hard material powder, after which the mixture produced in this way is sintered.
  12. Process according to claim 11, characterized in that short fibres having a diameter of from 0.7 to 9.5 µm and a fibre length of preferably not more than 12 times the diameter are produced and are mixed with the metal powder which finally forms the matrix and which preferably has a particle size of less than 50 µm.
  13. Process according to claim 11 or 12, characterized in that the metal powder used is one of tool steel, preferably of high-speed steel.
  14. Process according to one of claims 11 to 13, characterized in that the powder grains of the metal powder are superficially alloyed or nitrided with nitrogen before or during the sintering.
  15. Process according to one of claims 11 to 14, characterized in that the mixing of the short fibres with the metal powder(s) and/or a filling of a container or encapsulation for sintering is (are) carried out under a nitrogen atmosphere.
  16. Process according to one of claims 11 to 15, characterized in that the sintering of the mixture is carried out under the action of pressure.
  17. Process according to one of claims 11 to 15, characterized in that the sintering of the mixture is carried out under a pressure exerted on all sides or by hot isostatic pressing.
  18. Process according to one of claims 11 to 17, characterized in that the sintered body is produced with a short fibre content of greater than 20 vol.%, preferably of greater than 30 vol.%, and is finally formed by machining down, for example grinding.
  19. Process according to one of claims 11 to 17, characterized in that the sintered body is produced with a short fibre content of not more than 25 vol.%, preferably of not more than 20 vol.%, and is subjected to hot forming.
  20. Process according to one of claims 11 to 19, characterized in that short fibres which carry a surface layer are used.
  21. Use of a metal-ceramic material according to claims 1 - 10, produced by a process according to claims 11 to 20, for creating die-cast assemblies and for heavy duty plastics moulds, including under extreme exposure to heat.
EP00890121A 1999-04-19 2000-04-18 Metal matrix fiber reinforced composite material and its preparation Expired - Lifetime EP1046724B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200030781T SI1046724T1 (en) 1999-04-19 2000-04-18 Metal matrix fiber reinforced composite material and its preparation
AT00890121T ATE306570T1 (en) 1999-04-19 2000-04-18 METAL MATRIX FIBER COMPOSITE BODY AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0069699A AT408527B (en) 1999-04-19 1999-04-19 METAL-CERAMIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
AT69699 1999-04-19

Publications (3)

Publication Number Publication Date
EP1046724A2 EP1046724A2 (en) 2000-10-25
EP1046724A3 EP1046724A3 (en) 2004-01-07
EP1046724B1 true EP1046724B1 (en) 2005-10-12

Family

ID=3497418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00890121A Expired - Lifetime EP1046724B1 (en) 1999-04-19 2000-04-18 Metal matrix fiber reinforced composite material and its preparation

Country Status (5)

Country Link
EP (1) EP1046724B1 (en)
AT (1) AT408527B (en)
DE (1) DE50011313D1 (en)
DK (1) DK1046724T3 (en)
ES (1) ES2250095T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535370B (en) 2013-12-13 2020-05-27 Halliburton Energy Services Inc Fiber-reinforced tools for downhole use
US10145179B2 (en) 2013-12-13 2018-12-04 Halliburton Energy Services, Inc. Fiber-reinforced tools for downhole use
CN107427919A (en) 2015-04-24 2017-12-01 哈里伯顿能源服务公司 The mesoscale of metal-base composites is strengthened

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141704A (en) * 1975-05-31 1976-12-06 Honda Motor Co Ltd A process for production of short fibre reinforced composite material
JPS5246316A (en) * 1975-10-11 1977-04-13 Sumitomo Alum Smelt Co Ltd Process for producing aluminium base composite material reinforced wit h alumina fiber
US4140170A (en) * 1977-09-06 1979-02-20 Baum Charles S Method of forming composite material containing sintered particles
JPS6247409A (en) * 1985-08-26 1987-03-02 Nitto Electric Ind Co Ltd Autogenous alloy powder sheet and method for reforming surface of metallic base material using said sheet
JPH03188244A (en) * 1989-12-18 1991-08-16 Sumitomo Electric Ind Ltd Sintered alloy steel
US5413851A (en) * 1990-03-02 1995-05-09 Minnesota Mining And Manufacturing Company Coated fibers
DE4241420C1 (en) * 1992-12-09 1993-11-25 Mtu Muenchen Gmbh Process for the production of components or substrates with composite coatings and its application
DE4324755C1 (en) * 1993-07-23 1994-09-22 Mtu Muenchen Gmbh Method for the production of fibre-reinforced drive components

Also Published As

Publication number Publication date
DE50011313D1 (en) 2006-02-23
AT408527B (en) 2001-12-27
ATA69699A (en) 2001-05-15
EP1046724A2 (en) 2000-10-25
ES2250095T3 (en) 2006-04-16
DK1046724T3 (en) 2006-02-06
EP1046724A3 (en) 2004-01-07

Similar Documents

Publication Publication Date Title
DE3740547C2 (en) Process for the manufacture of extruder screws and extruder screws made therewith
DE3936129C2 (en) Blade part made of cemented carbide based on tungsten carbide for cutting tools and method for producing the same
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
EP2137331A1 (en) Tool
DE1558632C3 (en) Application of deformation hardening to particularly nickel-rich cobalt-nickel-chromium-molybdenum alloys
DE102006031366C5 (en) Process for producing molded parts from dispersion-strengthened metal alloys
DE19606689B4 (en) Process for the preparation of a composite product based on a light metal or a light metal alloy
DE10361321A1 (en) Disposable tip and cutting tool
EP1046724B1 (en) Metal matrix fiber reinforced composite material and its preparation
EP1412113B1 (en) Sinter metal parts with homogeneous distribution of non-homogeneously melting components and method for the production thereof
EP1680246B1 (en) Method for producing metal matrix composite materials
DE10102706B4 (en) Cubic boron nitride based sintered material and process for its preparation
DE19845376C5 (en) Hard metal or cermet body
EP1281459A2 (en) Process and device for thixo injection molding for making metal components
WO2018095610A1 (en) Powder metallurgy produced steel material, method for producing a component from said type of steel material and component produced from the steel material
EP2450132A2 (en) Processing body for grinding a dispensed product
WO2021190821A1 (en) Method and device for manufacturing a particle-reinforced composite-material component
EP2354264B1 (en) Wear-resistant, heat-resistant material and use of same
AT10479U1 (en) FLUID-DENSITY SINTERED METAL PARTS AND METHOD FOR THE PRODUCTION THEREOF
EP1129803B1 (en) Material prepared by powder metallurgy with improved isotropy of the mechanical properties
DE60302397T2 (en) Process for the production of wearing parts
AT394325B (en) METAL MOLD FOR EXTRUDING AND METHOD FOR PRODUCING THE SAME
EP1652608B2 (en) Method for manufacturing a cermet layer and coated product
DE69909307T2 (en) ALUMINUM LITHIUM ALLOY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 22C 47/14 A

Ipc: 7C 22C 47/00 B

17P Request for examination filed

Effective date: 20040311

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AXX Extension fees paid

Extension state: RO

Payment date: 20040311

Extension state: AL

Payment date: 20040311

Extension state: LT

Payment date: 20040311

Extension state: MK

Payment date: 20040311

Extension state: SI

Payment date: 20040311

Extension state: LV

Payment date: 20040311

17Q First examination report despatched

Effective date: 20040826

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050403779

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 50011313

Country of ref document: DE

Date of ref document: 20060223

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20051012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2250095

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20110429

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110414

Year of fee payment: 12

Ref country code: ES

Payment date: 20110426

Year of fee payment: 12

Ref country code: PT

Payment date: 20110413

Year of fee payment: 12

Ref country code: GR

Payment date: 20110418

Year of fee payment: 12

Ref country code: DE

Payment date: 20110421

Year of fee payment: 12

Ref country code: IE

Payment date: 20110426

Year of fee payment: 12

Ref country code: FR

Payment date: 20110510

Year of fee payment: 12

Ref country code: CH

Payment date: 20110428

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110426

Year of fee payment: 12

Ref country code: DK

Payment date: 20110418

Year of fee payment: 12

Ref country code: GB

Payment date: 20110421

Year of fee payment: 12

Ref country code: AT

Payment date: 20110414

Year of fee payment: 12

Ref country code: BE

Payment date: 20110414

Year of fee payment: 12

Ref country code: FI

Payment date: 20110414

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110421

Year of fee payment: 12

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20121018

BERE Be: lapsed

Owner name: *BOHLER-UDDEHOLM A.G.

Effective date: 20120430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121101

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 306570

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120418

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20121124

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20050403779

Country of ref document: GR

Effective date: 20121102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50011313

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120419

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101