EP1046046A1 - Magnetoresistives sensorelement, insbesondere winkelsensorelement - Google Patents

Magnetoresistives sensorelement, insbesondere winkelsensorelement

Info

Publication number
EP1046046A1
EP1046046A1 EP99924763A EP99924763A EP1046046A1 EP 1046046 A1 EP1046046 A1 EP 1046046A1 EP 99924763 A EP99924763 A EP 99924763A EP 99924763 A EP99924763 A EP 99924763A EP 1046046 A1 EP1046046 A1 EP 1046046A1
Authority
EP
European Patent Office
Prior art keywords
layer
sensor element
element according
magnetization
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99924763A
Other languages
English (en)
French (fr)
Inventor
Klaus Marx
Franz Jost
Martin Freitag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1046046A1 publication Critical patent/EP1046046A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Definitions

  • Magnetoresistive sensor element in particular angle sensor element
  • the present invention relates to a magnetoresistive sensor element, in particular an angle sensor element, according to the preamble of patent claim 1.
  • Sensors in particular angle sensors, which work on the basis of the magnetoresistive effect are known.
  • the electrical resistance of sensor elements is measured as a function of the direction of an external magnetic field.
  • GMR sensor elements giant magneto resistance
  • self-stabilizing magnetic layers van den Berg et al., GMR angle detector with an artificial antiferromagnetic subsystem , Journal of Magnetism and Magnetic Materials 165 (1997) 524-528.
  • a first thin, so-called reference layer is generated by the fact that between two oppositely magnetized layers (for example made of Co) an antiferromagnetic coupling layer (for example made of Cu or Ru) is introduced.
  • the magnetic stability of the reference layer is increased by an order of magnitude compared to individual Co layers due to this multilayer structure.
  • the direction of magnetization of the reference layer does not (ideally) depend on the direction of the external (to be measured) magnetic field.
  • the reference layer is covered with a thin non-magnetic layer, on which in turn a thin soft magnetic layer, the so-called detection layer, is formed.
  • Angular errors are essentially caused by two factors.
  • the magnetic reference is influenced by the magnetic field to be measured and does not remain rigid in the excellent direction
  • the magnetization direction follows the Detection layer not free of errors or delays in the direction of the external magnetic field.
  • the object of the invention is therefore to create a magnetoresistive sensor element or sensor with which occurring angle errors can be avoided or at least reduced.
  • a sensor element is now created in which the direction of magnetization of the detection layer can follow an external magnetic field, in particular even with an external magnetic field that is small in terms of magnitude, much more easily and more accurately or more delay-free than was possible with conventional sensor elements.
  • the " improvement in the accuracy of the sensor element that can be achieved in this way can be achieved with little technical effort (for example structuring of the detection layer by known chemical methods).
  • the segments are at least partially circular or elliptical. With such a shape, a particularly delay-free or precise alignment of the direction of magnetization of the detection layer with respect to an external magnetic field is obtained.
  • the sensor element expediently has an elongated or elongated shape. This design ensures that the reference magnetization is largely independent of the external magnetic field.
  • the elongated shape or the anisotropy of the sensor element (its length should be significantly greater than its width) has a particularly favorable effect on the self-stabilization of a reference layer designed as an artificial antiferromagnet.
  • the first layer is expediently a hard magnetic layer.
  • Such layers are inexpensive to implement and ensure good magnetic stability of the reference layer.
  • the third layer is expediently designed as a soft magnetic layer.
  • Such layers can be implemented in a variety of different forms in a simple and inexpensive manner.
  • Ni-Fe alloys may be mentioned as a preferred example of soft magnetic materials.
  • the first layer consists of a layer arrangement with a self-stabilizing coupling (artificial antiferromagnet).
  • Such layers have a particularly high magnetic stability, furthermore an elongated shape of the Sensor element on the magnetic stability of such layer arrangements particularly favorable.
  • the first layer has an artificially pinned or biased magnetization.
  • magnetization can be achieved, for example, by means of a current-carrying conductor which is in operative connection with the first layer in order to stabilize its direction of magnetization.
  • the first and third layers are made using GMR materials.
  • Figure 1 is a schematic plan view of a preferred embodiment of the sensor element according to the invention.
  • Figure 2 shows the sensor element of Figure 1 schematically in a side view
  • the sensor element shown in FIG. 1 has a first, magnetic or magnetized layer 1, which represents a reference layer.
  • the internal structure of this first layer is not shown in detail. It is preferred that the first layer 1 is designed as an artificial antiferromagnet, ie between two thin magnetic layers with (in the basic state) antiparallel oriented magnetizations as antiferromagnetic coupling layer acting thin metallic intermediate layer.
  • an artificial antiferromagnet ie between two thin magnetic layers with (in the basic state) antiparallel oriented magnetizations as antiferromagnetic coupling layer acting thin metallic intermediate layer.
  • the magnetic framework necessary for the creation of a self-stabilizing artificial antiferromagnet reference is made to the article by van den Berg et. al. directed.
  • the direction of the reference magnetization created by the first layer 1 is shown in FIG. 1 and FIG. 2 by an arrow 5.
  • the direction of an external magnetic field to be measured is shown by the dashed arrow 6.
  • a thin, non-magnetic second layer 2 is applied to the first layer 1, on which in turn a magnetic third layer 3 (detection layer) is formed.
  • the layer system with the layers 1, 2, 3 is advantageously produced in the schematically illustrated elongated (or also a meandered) form, the third layer 3 also initially being unstructured, i.e. is formed according to layers 1, 2.
  • the third layer 3 is then removed, for example by means of chemical processes (e.g.
  • Etching process in the form of the illustrated ellipses 3a or in the form of circles selectively structured. Structuring of this type proves to be very favorable for the sensor function, since this means that the direction of magnetization can also follow relatively small external magnetic fields with relative amounts.
  • the (the direction 6 of the outer Magnetization corresponding to the magnetic field is represented by arrows 7 for the respective ellipses 3a.
  • the sensor elements according to the invention can be connected, for example, to bridge circuits in a manner known per se. With sensors that use such bridge circuits, angle measurements are possible in a particularly simple and reliable manner.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Magnetic Heads (AREA)

Abstract

Magnetoresistives Sensorelement, insbesondere Winkelsensorelement, mit einer ersten, magnetischen Schicht (1), deren Magnetisierungsrichtung eine Referenzrichtung darstellt, einer auf der ersten Schicht (1) ausgebildeten zweiten, nichtmagnetischen Schicht (2), und einer dritten, auf der zweiten Schicht ausgebildeten magnetischen Schicht (3), deren Magnetisierungsrichtung durch ein äusseres Magnetfeld beeinflussbar ist, wobei die dritte Schicht (3) wenigstens teilweise in Form von einzelnen Segmenten (3a) ausgebildet ist.

Description

Maσnetoresistives Sensorelement, insbesondere Winkelsensorelement
Die vorliegende Erfindung betrifft ein magnetoresist ives Sensorelement, insbesondere ein Winkelsensorelement, nach dem Oberbegriff des Patentanspruchs 1.
Sensoren, insbesondere WinkelSensoren, die auf der Grundlage des magnetoresistiven Effektes arbeiten, sind bekannt. Hierbei wird der elektrische Widerstand von Sensorelementen in Abhängigkeit von der Richtung eines äußeren Magnetfeldes gemessen. Es sind beispielsweise Systeme beschrieben worden, bei welchen sogenannte GMR- Sensorelemente (engl.: Giant-Magneto-Resistance) , insbesondere unter Verwendung von selbstabilisierenden magnetischen Schichten, eingesetzt werden (van den Berg et al . , GMR angle detector with an artificial antiferromagnetic Subsystem, Journal of Magnetism and Magnetic Materials 165 (1997) 524-528) . Hierbei wird eine erste dünne, sogenannte Referenzschicht dadurch erzeugt, daß zwischen zwei entgegengesetzt magnetisierten Lagen (beispielsweise aus Co) eine antiferromagnetische Kopplungsschicht (beispielsweise aus Cu oder Ru) eingebracht wird. Die magnetische Stabilität der Referenzschicht ist durch diesen Mehrschicht-Aufbau __ gegenüber einzelnen Co-Schichten um etwa eine Größenordnung erhöht. Die Magnetisierungsrichtung der Referenzschicht hängt (im Idealfall) nicht von der Richtung des äußeren (zu messenden) Magnetfeldes ab.
Die Referenzschicht ist mit einer dünnen nicht-magnetischen Schicht abgedeckt , auf der wiederum eine dünne weichmagnetische Schicht, die sogenannte Detektionsschicht, ausgebildet ist. Die Detektionsschicht richtet ihre Magnetisierung (wiederum im Idealfall) , auch bei betragsmäßig kleinen Feldern, in Richtung eines äußeren Magnetfeldes aus. Aus der Theorie des GMR-Effektes ist bekannt, daß ein Sensorsignal einer Funktion R(α) = R0 + ΔR*sin(α) folgt , wobei R0 ein Offsetwiderstand, ΔR ein Signalhub des Sensors und der zu messende Winkel zwischen einer ausgezeichneten Sensorrichtung (insbesondere der
Referenzrichtung) und der Richtung des äußeren Magnetfeldes ist.
Als nachteilig bei derartigen Systemen erweist sich, daß es aufgrund verschiedener magnetischer Wechselwirkungen bzw. Effekte zu Ungenauigkeiten bzw. Fehlern bei der Winkelbestimmung kommen kann. Winkelfehler werden im wesentlichen durch zwei Faktoren verursacht. Zum einen wird die magnetische Referenz von dem zu messenden Magnetfeld beeinflußt und bleibt nicht starr in der ausgezeichneten Richtung, zum anderen folgt die Magnetisierungrichtung der Detektionsschicht nicht fehler- bzw. verzögerungsfrei der Richtung des äußeren Magnetfeldes .
Aufgabe der Erfindung ist daher die Schaffung eines _ magnetoresistiven Sensorelements bzw. Sensors, mit dem auftretende Winkelfehler vermieden oder wenigstens verringert werden können.
Diese Aufgabe wird gelöst durch ein magnetoresistives Sensorelement mit den Merkmalen des Patentanspruchs 1.
Erfindungsgemäß ist nun ein Sensorelement geschaffen, bei dem die Magnetisierungsrichtung der Detektionsschicht einem äußeren Magnetfeld, insbesondere auch bei betragsmäßig kleinem äußeren Magnetfeld, wesentlich leichter und genauer bzw. verzögerungsfreier folgen kann als dies bei herkömmlichen Sensorelementen möglich war. Die hierdurch erzielbare "Verbesserung der Genauigkeit des Sensorelements ist mit geringem technischen Aufwand (beispielsweise Strukturierung der Detektionsschicht durch bekannte chemische Verfahren) erreichbar.
Vorteilhafte Ausgestaltungen des erfindungsgemäßen Sensorelements sind Gegenstand der Unteransprüche .
Es ist besonders bevorzugt, daß die Segmente wenigstens teilweise kreisförmig oder ellipsenförmig ausgebildet sind. Mit einer derartigen Formgebung erhält man eine besonders verzδgerungsfreie bzw. genaue Ausrichtung der Magnetisierungsrichtung der Detektionsschicht bezüglich eines äußeren Magnetfeldes. Zweckmäßigerweise weist das Sensorelement eine längliche bzw. langgestreckte Form auf. Durch diese Ausbildung wird eine weitgehende Unabhängigkeit der Referenzmagnetisierung von dem äußeren Magnetfeld erreicht . Durch die langgestreckte Form bzw. die Anisotropie des Sensorelements (seine Länge sollte wesentlich größer als seine Breite sein) ist insbesondere eine günstige Wirkung auf die Selbststabilisierung einer als künstlicher Antiferromagnet ausgebildeten Referenzschicht erzielbar.
Als besonders vorteilhaft wird angesehen, die Sensorelemente mäanderförmig auszubilden. Hierdurch sind auf geringem Raum sehr lange Sensorstrukturen realisierbar.
Zweckmäßigerweise ist die erste Schicht eine hartmagnetische Schicht. Derartige Schichten sind preiswert realisierbar und gewährleisten eine gute magnetische Stabilität der Referenzschicht.
Die dritte Schicht ist zweckmäßigerweise als weichmagnetische Schicht ausgebildet. Derartige Schichten sind in einfacher und preiswerter Weise in einer Vielzahl verschiedener Formen realisierbar. Als bevorzugtes Beispiel für weichmagnetische Werkstoffe seien Ni-Fe Legierungen genannt.
Es ist bevorzugt, daß die erste Schicht aus einer Schichtanordnung mit einer selbststabilisierenden Kopplung (künstlicher Antiferromagnet) besteht. Derartige Schichten weisen eine besonders hohe magnetische Stabilität auf, ferner wirkt sich eine längliche Formgebung des Sensorelement auf die magnetische Stabilität derartiger Schichtanordnungen besonders günstig aus.
Es ist ebenfalls bevorzugt, daß die erste Schicht eine künstlich gepinnte bzw. vorgespannte Magnetisierung aufweist. Eine derartige Magnetisierung ist beispielsweise mittels eines in Wirkverbindung mit der ersten Schicht stehenden stromdurchflossenen Leiters zur Stabilisierung ihrer Magnetisierungsrichtung erzielbar.
Es ist bevorzugt, daß die erste und dritte Schicht unter Verwendung von GMR-Werkstoffen hergestellt sind.
Die Erfindung wird nun anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die beigefügte Zeichnung im einzelnen erläutert . In dieser zeigt
Figur 1 eine schematische Draufsicht einer bevorzugten Ausführungsform des erfindungsgemäßen Sensorelements, und
Figur 2 das Sensorelement der Figur 1 schematisch in einer Seitenansicht
Das in Figur 1 dargestellte Sensorelement weist eine erste, magnetische bzw. magnetisierte Schicht 1 auf, welche eine Referenzschicht darstellt . Der innere Aufbau dieser ersten Schicht ist nicht im einzelnen dargestellt. Es ist bevorzugt, daß die erste Schicht 1 als künstlicher Antiferromagnet ausgebildet ist, d.h. zwischen zwei dünnen magnetischen Lagen mit (im Grundzustand) antiparallel ausgerichteten Magnetisierungen ist eine als antiferromagnetische Kopplungschicht wirkende, dünne metallische Zwischenschicht ausgebildet . Bezüglich der magnetischen Rahmenbedingungen, die zur Schaffung eines selbststabilierenden künstlichen Antiferromagneten _ notwendig sind, wird auf den bereits erwähnten Artikel von van den Berg et. al . verwiesen.
Die Richtung der durch die erste Schicht 1 geschaffenen Referenzmagnetisierung ist in Figur 1 und Figur 2 durch einen Pfeil 5 dargestellt. Die zu messende Richtung eines äußeren Magnetfeldes ist durch den gestrichelten Pfeil 6 dargestellt .
Auf die erste Schicht 1 ist eine dünne, unmagnetische zweite Schicht 2 aufgebracht, auf welcher wiederum eine magnetische dritte Schicht 3 (Detektionsschicht) ausgebildet ist.
Das SchichtSystem mit den Schichten 1, 2, 3 wird vorteilhafterweise in der schematisch dargestellten langgezogenen (oder auch einer mäandrierten) Form hergestellt, wobei zunächst auch die dritte Schicht 3 unstrukturiert, d.h. entsprechend den Schichten 1, 2 ausgebildet ist. Anschließend wird die dritte Schicht 3 beispielsweise mittels chemischer Verfahren (z.B.
Ätzverfahren) in Form der dargestellten Ellipsen 3a oder in Form von Kreisen selektiv strukturiert. Eine derartige Strukturierung erweist sich für die Sensorfunktion als sehr günstig, da hierdurch die Magnetisierungsrichtung auch betragsmäßig kleinen äußeren Magnetfeldern verhältnismäßig leicht folgen kann. Die (der Richtung 6 des äußeren Magnetfeldes entsprechende) Magnetisierung ist mittels Pfeilen 7 für die jeweiligen Ellipsen 3a dargestellt.
Bei Anlegen einer Spannung an die jeweiligen Enden 10, 11 des Sensorelements ergibt sich, in Abhängigkeit von einem anliegenden äußeren Magnetfeld, ein charakteristischer Widerstandswert des Sensorelements, aus welchem der Winkel der Magnetisierungsrichtung des äußeren Feldes bestimmbar ist.
Die erfindungsgemäßen Sensorelemente können in an sich bekannter Weise beispielsweise zu Brückenschaltungen verschaltet werden. Mit Sensoren, die derartige Brückenschaltungen verwenden, sind Winkelmessungen in besonders einfacher und zuverlässiger Weise möglich.

Claims

Ansprüche
1. Magnetoresistives Sensorelement, insbesondere Winkelsensorelement, mit einer ersten, magnetischen Schicht
(1) , deren Magnetisierungsrichtung eine Referenzrichtung darstellt, einer auf der ersten Schicht (1) ausgebildeten zweiten, nicht-magnetischen Schicht (2) , und einer dritten, auf der zweiten Schicht ausgebildeten magnetischen Schicht
(3), deren Magnetisierungsrichtung durch ein äußeres
Magnetfeld beeinflußbar ist, d a d u r c h g e k e n n z e i c h n e t , daß die dritte Schicht (3) wenigstens teilweise in Form von einzelnen Segmenten (3a) ausgebildet ist.
2. Sensorelement nach Anspruch 1, dadurch gekennzeichnet, daß die Segmente (3a) wenigstens teilweise kreisförmig oder ellipsenförmig ausgebildet sind.
3. Sensorelement nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß es eine längliche Form aufweist.
4. Sensorelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es mäanderförmig ausgebildet ist.
5. Sensorelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste Schicht (1) eine hartmagnetische Schicht ist.
6. Sensorelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die dritte Schicht (3) eine weichmagnetische Schicht ist.
7. Sensorelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste Schicht (1) aus einer Schichtanordnung mit einer selbststabilisierenden Kopplung besteht .
8. Sensorelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste Schicht (1) eine künstlich gepinnte Magnetisierung aufweist.
9. Sensorelement nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste und/oder die dritte Schicht (1,3) unter Verwendung von GMR-Werkstoffen hergestellt ist bzw. sind.
EP99924763A 1998-09-22 1999-04-03 Magnetoresistives sensorelement, insbesondere winkelsensorelement Withdrawn EP1046046A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19843349 1998-09-22
DE1998143349 DE19843349A1 (de) 1998-09-22 1998-09-22 Magnetoresistives Sensorelement, insbesondere Winkelsensorelement
PCT/DE1999/001013 WO2000017666A1 (de) 1998-09-22 1999-04-03 Magnetoresistives sensorelement, insbesondere winkelsensorelement

Publications (1)

Publication Number Publication Date
EP1046046A1 true EP1046046A1 (de) 2000-10-25

Family

ID=7881778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99924763A Withdrawn EP1046046A1 (de) 1998-09-22 1999-04-03 Magnetoresistives sensorelement, insbesondere winkelsensorelement

Country Status (5)

Country Link
EP (1) EP1046046A1 (de)
JP (1) JP2002525609A (de)
AU (1) AU758991B2 (de)
DE (1) DE19843349A1 (de)
WO (1) WO2000017666A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255327A1 (de) 2002-11-27 2004-06-24 Robert Bosch Gmbh Magnetoresistives Sensorelement und Verfahren zur Reduktion des Winkelfehlers eines magnetoresistiven Sensorelements
JP5590349B2 (ja) 2012-07-18 2014-09-17 Tdk株式会社 磁気センサシステム
US10096767B2 (en) 2013-03-09 2018-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Elongated magnetoresistive tunnel junction structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW265440B (de) * 1993-04-30 1995-12-11 Ibm
US5452163A (en) * 1993-12-23 1995-09-19 International Business Machines Corporation Multilayer magnetoresistive sensor
DE19507303A1 (de) * 1995-03-02 1996-09-05 Siemens Ag Sensoreinrichtung mit einer Brückenschaltung von magnetoresistiven Sensorelementen
JP3886589B2 (ja) * 1997-03-07 2007-02-28 アルプス電気株式会社 巨大磁気抵抗効果素子センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0017666A1 *

Also Published As

Publication number Publication date
JP2002525609A (ja) 2002-08-13
WO2000017666A1 (de) 2000-03-30
AU758991B2 (en) 2003-04-03
DE19843349A1 (de) 2000-03-23
AU4132399A (en) 2000-04-10

Similar Documents

Publication Publication Date Title
DE102009007479B4 (de) Dünnfilm-Magnetsensor
DE69534013T2 (de) Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE10028640B4 (de) Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
DE3308404C2 (de) Vorrichtung zur Messung einer Relativverschiebung
DE19539722C2 (de) Vorrichtung zur Erfassung einer Änderung eines Winkels oder der Feldstärke eines magnetischen Feldes
EP0905523B1 (de) Sensoreinrichtung zur Richtungserfassung eines äu eren Magnetfeldes mittels eines magnetoresistiven Sensorelementes
DE60025146T2 (de) Herstellungsverfahren für eine magnetische fühleranordnung
DE19933243C2 (de) Codierer mit GMR-Elementen
EP1567878B1 (de) Magnetoresistives sensorelement und verfahren zur reduktion des winkelfehlers eines magnetoresistiven sensorelements
DE4243358A1 (de) Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung
EP1046047B1 (de) Magnetoresistives sensorelement mit wahlweiser magnetisierungsausrichtung der biasschicht
EP2396666A2 (de) Anordnung zur messung mindestens einer komponente eines magnetfeldes
DE19532674C1 (de) Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
WO2005026746A2 (de) Magnetoresistiver sensor in from einer halb-oder vollbrückenschaltung
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
WO2012116933A1 (de) Magnetfeld-messanordnung
DE102004043737A1 (de) Vorrichtung zum Erfassen des Gradienten eines Magnetfeldes und Verfahren zur Herstellung der Vorrichtung
DE102004026802B4 (de) Vorrichtung zum Erfassen einer Drehbewegung eines Gegenstandes
DE4327458C2 (de) Sensorchip zur hochauflösenden Messung der magnetischen Feldstärke
DE102018122282A1 (de) Magnetsensoreinrichtung und Stromsensor
DE102011008704A1 (de) Dünnfilm-Magnetsensor und Verfahren zu seiner Herstellung
EP1046046A1 (de) Magnetoresistives sensorelement, insbesondere winkelsensorelement
WO2013174542A1 (de) Magnetische differenzfeldsensoranordnung
DE19954053A1 (de) Magnetfelddetektorelement
DE19861304B4 (de) Magnetfeld-Erfassungselement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 20001002

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FREITAG, MARTIN

Inventor name: JOST, FRANZ

Inventor name: MARX, KLAUS

17Q First examination report despatched

Effective date: 20040326

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040806