EP1045214A2 - Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe - Google Patents

Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe Download PDF

Info

Publication number
EP1045214A2
EP1045214A2 EP00104384A EP00104384A EP1045214A2 EP 1045214 A2 EP1045214 A2 EP 1045214A2 EP 00104384 A EP00104384 A EP 00104384A EP 00104384 A EP00104384 A EP 00104384A EP 1045214 A2 EP1045214 A2 EP 1045214A2
Authority
EP
European Patent Office
Prior art keywords
temperature
refrigerant
measured
evaporator
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00104384A
Other languages
English (en)
French (fr)
Other versions
EP1045214A3 (de
EP1045214B1 (de
Inventor
Andreas Bangheri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heliotherm Solartechnik Ges mbH
Original Assignee
Heliotherm Solartechnik Gesmbh & Co KG
Heliotherm Solartechnik Ges mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliotherm Solartechnik Gesmbh & Co KG, Heliotherm Solartechnik Ges mbH filed Critical Heliotherm Solartechnik Gesmbh & Co KG
Publication of EP1045214A2 publication Critical patent/EP1045214A2/de
Publication of EP1045214A3 publication Critical patent/EP1045214A3/de
Application granted granted Critical
Publication of EP1045214B1 publication Critical patent/EP1045214B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Definitions

  • the present invention relates to an absorption heat pump and a method for operating an absorption heat pump.
  • a solution containing a refrigerant is heated in a cooker, for example by means of a gas or oil burner, electrically or with the aid of additional heat exchangers by means of waste heat or solar energy, in order to expel refrigerant as refrigerant vapor from the solution.
  • the refrigerant vapor is brought to a high temperature level or high pressure level by this process.
  • the refrigerant vapor is then condensed against a heating medium in a condenser and thus supplies the heating medium with heat.
  • the strongly cooled and expanded refrigerant is evaporated in an evaporator against a medium that supplies ambient energy to the refrigerant and then fed to at least one absorber.
  • the solution depleted of refrigerant from the cooker is fed to the absorber via a heat exchanger, where the solution depleted of refrigerant is combined with refrigerant that has passed through the evaporator.
  • the resulting heat of solution is made available to the expeller process and the consumer or is only dissipated to the consumer.
  • the resulting refrigerant-rich solution from the absorber is pumped by means of a solution pump from the low-pressure level of the absorber, which corresponds approximately to the evaporation pressure, to a high-pressure level and is returned to the cooker.
  • the heating medium heated in the condenser is fed to a consumer and the heating medium cooled by the consumer is returned to the condenser.
  • the concentration stratification prevailing in the operation of the absorption heat pump in the cooker is reduced and brought to the level of the low-refrigerant solution.
  • a concentration stratification required for the steady-state operating state can be built up in the cooker only by gradually adding rich solution. After switching off the cooker, considerable startup times and energy losses must therefore be accepted when such a system is put back into operation.
  • EP-B-0 202 432 proposes a clocking absorption heat pump system in which the high-pressure part and the low-pressure part are blocked by means of solenoid valves in order to minimize the restart losses.
  • a disadvantage of this technique is that when the burner output changes, e.g. can be caused by temperature fluctuations, heat pump operation is not always guaranteed.
  • the invention is therefore based on the object of providing an absorption heat pump and a method for operating an absorption heat pump of the type described at the outset, in which or in which the energy losses which occur when the absorption heat pump is started up are minimized while reliable operation of the heat pump is nevertheless continuously ensured.
  • This object is achieved in a method for operating an absorption heat pump, as defined in the preamble of claim 1, which is based on EP-B-0 202 432, in that the outside temperature and the temperature of the heating medium are measured and the output of the The burner is set as a function of the measured temperature values, that the amount of refrigerant supplied to the evaporator is regulated, that the amount of solution depleted in refrigerant supplied to the at least one absorber is regulated, and that the delivery rate of the solution pump is also regulated.
  • an absorption heat pump as defined in the preamble of claim 22, which is also based on EP-B-0 202 432, in that there are further provided: a first control device which arranged one outdoors External sensor for measuring the outside temperature, at least one heating medium sensor for measuring the temperature of the heating medium, and a first controller for regulating the output of the burner as a function of the measured temperature values, a second regulating device for regulating the amount of refrigerant supplied to the evaporator, a third regulating device for regulating the amount of solution depleted in refrigerant supplied to the at least one absorber, and a fourth regulating device for regulating the delivery quantity of the solution pump.
  • the solution according to the invention which enables modulating operation of the absorption heat pump by means of the control and regulating circuits mentioned, minimizes unsteady start-up losses, while at the same time ensuring reliable heat pump operation.
  • a cycle operation as was provided in the systems proposed in the prior art, is prevented by the modulating technology.
  • an absorption heat pump comprises a cooker or expeller 1, in which a solution containing a refrigerant is heated by means of a burner 2 in order to expel refrigerant as refrigerant vapor from the solution.
  • the refrigerant vapor is fed in a line 30 via a rectifier 3 to a condenser 13, in which the refrigerant vapor is condensed against a heating medium.
  • the heating medium heated in this way is in turn fed into a line 32, the so-called preliminary to a consumer 34, for example a radiator.
  • Heating medium which has passed the consumer 34 returns to the absorption heat pump via a line 36, the so-called return.
  • the heating medium cooled in the consumer 34 can be heated in an exhaust gas heat exchanger 9 against hot exhaust gas emerging from the burner 2, which is released into the atmosphere at 44 or is otherwise disposed of or processed, before it is fed to an absorber 6.
  • the absorber 6 which can be, for example, a plate heat exchanger, the heating medium is fed again in a line 38 to the condenser 13, so that a closed heating medium circuit results.
  • the refrigerant which has been greatly cooled and expanded against the heating medium in the condenser 13, is fed in a line 40 to an aftercooler 10, from which it is supplied to an evaporator 11 via a throttle point 12.
  • Ambient energy is supplied to the refrigerant in the evaporator 11, which may in particular be heat that is generated in the surroundings (indicated at 42 in FIG. 1) of the building to be heated by the consumer 34, for example in the ground, in water, in air , especially stored in brine.
  • Refrigerant which leaves the evaporator 11, is again passed through the aftercooler 10 and from there to the absorber 6.
  • the absorber 6 or, as shown in FIG. 1, in a mixer 46 arranged in front of the absorber, the refrigerant is mixed with solvent which has left the cooker 1 via a line 48.
  • the resulting heat of solution is made available to the expeller process in the cooker 1 and the consumer 34 or is only dissipated to the consumer 34.
  • the refrigerant-rich solution leaving the absorber 6 is pumped after passing through a solution reservoir 7 by means of a solution pump 8 from the low-pressure level of the absorber 6, which corresponds approximately to the evaporation pressure, to a high-pressure level and is fed again to the cooker 1.
  • the solution rich in refrigerant can be absorbed by the absorber 6 as shown in FIG. 1 shown are passed over the rectifier 3 and a heat exchanger 4, in which the solution rich in refrigerant is subjected to a heat exchange against the refrigerant vapor leaving the cooker 1 or the solvent leaving the cooker 1.
  • Refrigerant, which already condenses in the rectifier 3, is returned to the cooker 1 via a return 50.
  • the aim of the absorption heat pump burner control is to achieve burner output control that is adapted to the heat requirements of the building to be heated, in order to ensure continuous operation of the absorption heat pump.
  • the concept described here unlike the known systems described at the outset, is based on the knowledge that, with suitable control and regulation of the system, it is quite sensible and energetically worthwhile not to switch off the absorption heat pump entirely when the heating requirement is reduced, but to regulate it down, because the losses that otherwise occur when the system is restarted outweigh the energy savings achieved by the shutdown.
  • an external sensor 14 for measuring the ambient temperature and a heating medium sensor for measuring the temperature of the heating medium are provided, wherein the heating medium sensor can be designed as a return sensor 15 for detecting the return temperature or as a flow sensor 16 for detecting the return temperature.
  • the outside sensor 14 and the return sensor 15 and / or the flow sensor 16 are connected to a controller 17, the output of which is connected to the burner 2.
  • the burner 2 is a controllable burner with a power consumption of, for example, 4 to 18 kW.
  • the controller 17 compares the measured return or flow temperature with a setpoint and throttles the burner output when the return or flow temperature approaches the setpoint.
  • the regulation can take place according to preset heating curves.
  • the burner output can be directly related to the measured outside temperature by assigning certain values for the burner's power consumption to certain outside temperature values. For example, a burner output of 4 kW could be assigned to an outside temperature of +15 ° C, while the burner output should be 13 kW at an outside temperature of -15 ° C.
  • the flow and / or the return temperature can also serve as control parameters for the burner output. For example, a return temperature of 25 ° C can be assigned to an outside temperature of +15 ° C, while a return temperature of 45 ° C can be assigned to an outside temperature of -15 ° C.
  • the temperature spread of the heating medium i.e.
  • the difference between flow and return temperature serve as control parameters.
  • the types of control mentioned can be implemented individually or together.
  • the burner control described thus modulates the entire heat energy generated by the absorption process to modulate the heat demand of the building to be heated, which can change continuously, for example, through individual settings (e.g. radiators are closed) or due to external influences (variation of solar radiation etc.).
  • the condensate throttle is regulated according to the concept described here.
  • the condensate throttle control also has the task of avoiding an unnecessarily high condensation pressure and thus contributes to an improvement in the overall efficiency.
  • the condensate throttle can take place with the aid of several different control parameters.
  • a pressure sensor 18 by means of a pressure sensor 18, the pressure p KKein of the refrigerant vapor entering the condenser 13 is measured.
  • This pressure value p KKein can then be converted into a temperature value T KKein with the aid of Ziegler's fundamental equation familiar to the person skilled in the art .
  • the temperature value T KKein calculated in this way is then compared with a reference temperature by means of a controller 19, in the illustrated example a PID controller, in order to form an output signal for controlling a continuously controllable actuator.
  • a controller 19 in the illustrated example a PID controller
  • the temperature T flow of the heating medium emerging from the condenser 13 which is measured by means of a temperature sensor 16. If the temperature difference T KKein - T Vorlauf is less than a predetermined setpoint of, for example, 1 to 4 K, the amount of refrigerant supplied to the evaporator 11 is reduced by means of the adjustable throttle point 12, which can be designed, for example, as a pulse-width modulated valve. If, on the other hand, the said temperature difference is greater than the predetermined target value, the amount of refrigerant supplied to the evaporator 11 is increased. The setpoint ensures that condensate subcooling of approx. 2 to 5 K always occurs. If the difference T KNo - T flow is equal to the specified setpoint, the valve position is optimal.
  • FIG. 3 A variant of the condensate throttle control of FIG. 2 is shown in FIG. 3 outlined.
  • a temperature sensor 20 is provided here, which detects the temperature T KKaus of the refrigerant emerging from the condenser 13. This temperature T KKaus is in turn compared with the temperature T flow of the heating medium emerging from the condenser 13.
  • the prevailing condensate supercooling can be assessed on the basis of the temperature difference between the flow temperature T flow , which corresponds to the condensation temperature, and the temperature T KK from the condensate, which is determined using a controller 19.
  • the throttle point 12 can be opened or closed completely or partially based on a comparison between the temperature difference mentioned and this setpoint.
  • the setpoint value for the condensate subcooling is preferably in the range between 2 and 5 K.
  • FIG. 4 Another variant of the condensate throttle control of FIG. 2 is shown in FIG. 4 shown.
  • the embodiment of FIG. 4 differs from that of FIG. 3 in that the temperature of the heating medium is not measured at the outlet of the condenser 13 but at its inlet.
  • the temperature T KKaus of the refrigerant emerging from the condenser 13 measured by means of a temperature sensor 20 is then compared with the temperature T HKein of the heating means entering the condenser 13 measured by means of a temperature sensor 21, the controller 19 preferably comprising a difference former for this purpose.
  • the temperature difference resulting from the comparison of the two temperatures mentioned can in turn be compared with a Setpoint value compared and the throttle point are regulated depending on this comparison.
  • Closing the solution throttle has corresponding opposite effects.
  • the temperature T KVein of the refrigerant supplied to the evaporator 11 is measured by means of a temperature sensor 22. With the aid of a second temperature sensor 23, the temperature T KVaus of the refrigerant emerging from the evaporator 11 is detected .
  • a PID controller 26 forms a difference from the two measured temperature values and, based on the result of the difference formation, applies an actuating signal to the solution throttle 5.
  • the ascertained temperature difference is compared with a predetermined setpoint value, similarly to the methods described above, a particularly preferred range for this setpoint value of 7 to 10 K being achieved in the embodiment described here.
  • the solution throttle 5 is closed; If the determined temperature difference is smaller than the specified target value, the solution throttle 5 is opened.
  • the regulation of the solution throttle 5 can also be done by measuring the flow temperature, as described with reference to FIG. 2 and 3 has been explained, influenced by the setpoint for the difference between the temperature T KVein the evaporator 11 supplied refrigerant and the temperature T KVaus of the refrigerant emerging from the evaporator 11 is varied depending on the flow temperature T flow .
  • control can be designed so that the setpoint for the temperature difference mentioned on the evaporator at a flow temperature of 30 ° C is, for example, 14 K, while this setpoint is lowered to, for example, 7 K at a flow temperature of 50 ° C.
  • the temperature T KVein of the refrigerant supplied to the evaporator 11 measured by the temperature sensor 22 is compared with the temperature T MVein of the medium supplied to the evaporator 11 (brine, water, air, etc.) measured by means of a temperature sensor 24. Based on this comparison, the controller 26 delivers an actuating signal to the solution throttle 5 as a function of a predetermined target value.
  • FIG. 7 Another variant of the solution throttle control is shown in FIG. 7, wherein the pressure p KVaus of the refrigerant emerging from the aftercooler 10 and the temperature T KVaus of the refrigerant emerging from the evaporator 11 are measured by means of a pressure transducer 28.
  • the measured pressure value can then be converted into a temperature value in a manner similar to that described above with reference to the condensate throttle control used here, and can be compared with the temperature value measured by means of the temperature sensor 24.
  • the temperature difference determined in this way is then compared with a predetermined target value in order to obtain a control signal for the solution throttle 5.
  • the in FIG. The arrangement of the pressure transducer 28 and the temperature sensor 24 shown in FIG.
  • both transducers could also be modified such that both transducers are arranged at essentially the same point in the process flow.
  • both the pressure transducer 28 and the temperature sensor 24 could be placed between the aftercooler 10 and the mixer 46 or between the evaporator 11 and the aftercooler 10.
  • FIG. 8 shows an embodiment of the solution pump control used in the present absorption heat pump concept.
  • the solution leaving the absorber 6 and rich in refrigerant after passing through the solution reservoir 7 is pumped by means of a solution pump 8 from the low pressure level of the absorber 6 to a high pressure level and fed again to the cooker 1.
  • the exemplary embodiment of the solution pump control shown in FIG. 8 is detected by means of a float 29 arranged in the solution reservoir 7, advantageously a magnetically inductive float, and the fill level of the solution reservoir 7 is detected and, based on the measured fill level, the speed of the solution pump 8 and thus the solution mass flow are adapted to the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Ein Verfahren zum Betrieb einer Absorptionswärmepumpe bei dem in einem Kocher (1) eine ein Kältemittel enthaltende Lösung mittels eines Brenners (2) erwärmt wird, um Kältemittel als Kältemitteldampf auszutreiben; der Kältemitteldampf in einem Kondensator (13) gegen ein Heizmittel kondensiert wird; das Kältemittel von dem Kondensator (13) einem Verdampfer (11) sowie einem Absorber (6) zugeführt wird; an Kältemittel verarmte Lösung aus dem Kocher (1) dem Absorber (6) zuführt wird; an Kältemittel reiche Lösung von dem Absorber (6) auf ein Hochdruckniveau gepumpt und erneut dem Kocher (1) zugeführt wird; und das in dem Kondensator (13) erwärmte Heizmittel einem Verbraucher zugeführt wird sowie das von dem Verbraucher abgekühlte Heizmittel zu dem Kondensator (13) zurück geführt wird, ist dadurch gekennzeichnet, daß die Außentemperatur und die Temperatur des Heizmittels gemessen werden und die Leistung des Brenners (2) in Abhängigkeit von den gemessenen Temperaturwerten eingestellt wird; und die Menge des dem Verdampfer (11) zugeführten Kältemittels, die Menge der dem Absorber (6) zugeführten, an Kältemittel verarmten Lösung und die Fördermenge der Lösungspumpe (8) geregelt werden. <IMAGE>

Description

  • Die vorliegende Erfindung betrifft eine Absorptionswärmepumpe sowie ein Verfahren zum Betrieb einer Absorptionswärmepumpe.
  • Bei Absorptionswärmepumpenanlagen wird in einem Kocher eine ein Kältemittel enthaltende Lösung beispielsweise mittels eines Gas- oder Ölbrenners, elektrisch oder auch unter Zuhilfenahme zusätzlicher Wärmetauscher mittels Abwärme oder Solarenergie erwärmt, um Kältemittel als Kältemitteldampf aus der Lösung auszutreiben. Der Kältemitteldampf wird durch diesen Vorgang auf ein Hochtemperaturniveau bzw. Hochdruckniveau gebracht. Der Kältemitteldampf wird dann in einem Kondensator gegen ein Heizmittel kondensiert und führt so dem Heizmittel Wärme zu. Das stark abgekühlte und entspannte Kältemittel wird einem Verdampfer, in welchem es gegen ein Medium, das dem Kältemittel Umgebungsenergie zuführt, verdampft und anschließend mindestens einem Absorber zugeführt.
  • Die an Kältemittel verarmte Lösung aus dem Kocher wird über einen Wärmetauscher dem Absorber zuführt, wo sich die an Kältemittel verarmte Lösung mit Kältemittel, welches den Verdampfer durchlaufen hat, vereinigt. Die dabei entstehende Lösungswärme wird dem Austreiberprozeß und dem Verbraucher zur Verfügung gestellt oder nur an den Verbraucher abgeführt. Die dabei entstehende an Kältemittel reiche Lösung von dem Absorber wird mittels einer Lösungspumpe von dem Niederdruckniveau des Absorbers, welches ungefähr dem Verdampfüngsdruck entspricht, auf ein Hochdruckniveau gepumpt und erneut dem Kocher zugeführt. Schließlich wird das in dem Kondensator erwärmte Heizmittel einem Verbraucher zugeführt und das von dem Verbraucher abgekühlte Heizmittel zu dem Kondensator zurückgeleitet.
  • Wird bei einer Absorptionswärmepumpenanlage die Beheizung des Kochers abgeschaltet, so wird die im Betrieb der Absorptionswärmepumpe vorherrschende Konzentrationsschichtung im Kocher abgebaut und auf das Niveau der an Kältemittel armen Lösung gebracht. Während eines instationären Anfahrvorgangs kann erst durch alimähliches Zuführen von reicher Lösung eine für den stationären Betriebszustand erforderliche Konzentrationsschichtung im Kocher aufgebaut werden. Nach einem Abschalten des Kochers sind daher bei Wiederinbetriebnahme einer solchen Anlage erhebliche Anfahrzeiten und Energieverluste in Kauf zu nehmen.
  • Um diese Probleme zu überwinden, wird in EP-B-0 202 432 eine taktende Absorptionswärmepumpenanlage vorgeschlagen, bei welcher der Hochdruckteil und der Niederdruckteil im Stillstand mittels Magnetventilen versperrt sind, um die Wiederanfahrverluste zu minimieren. Nachteilig bei dieser Technik ist, daß bei einer Veränderung der Brennerleistung, die z.B. durch Temperaturschwankungen verursacht sein kann, ein Wärmepumpenbetrieb nicht immer gewährleistet ist.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Absorptionswärmepumpe sowie ein Verfahren zum Betrieb einer Absorptionswärmepumpe der eingangs beschriebenen Art zu schaffen, bei welcher bzw. bei welchem die beim Anfahren der Absorptionswärmepumpe entstehenden Energieverluste minimiert werden während dennoch fortwährend ein zuverlässiger Betrieb der Wärmepumpe gewährleistet ist.
  • Diese Aufgabe wird bei einem Verfahren zum Betrieb einer Absorptionswärmepumpe, wie es im Oberbegriff von Anspruch 1, der auf EP-B-0 202 432 basiert, definiert ist, dadurch gelöst, daß die Außentemperatur und die Temperatur des Heizmittels gemessen werden und die Leistung des Brenners in Abhängigkeit von den gemessenen Temperaturwerten eingestellt wird, daß die Menge des dem Verdampfer zugeführten Kältemittels geregelt wird, daß die Menge der dem mindestens einen Absorber zugeführten, an Kältemittel verarmten Lösung geregelt wird, und daß ferner die Fördermenge der Lösungspumpe geregelt wird.
  • Entsprechend wird die gestellte Aufgabe ferner bei einer Absorptionswärmepumpe, wie sie im Oberbegriff von Anspruch 22, der ebenfalls auf EP-B-0 202 432 basiert, definiert ist, dadurch gelöst, daß ferner vorgesehen sind: eine erste Regeleinrichtung, die einen im Freien angeordneten Außenfühler zum Messen der Außentemperatur, mindestens einen Heizmittelfühler zum Messen der Temperatur des Heizmittels, sowie einen ersten Regler zum Regeln der Leistung des Brenners in Abhängigkeit von den gemessenen Temperaturwerten umfaßt, eine zweite Regeleinrichtung zum Regeln der Menge des dem Verdampfer zugeführten Kältemittels, eine dritte Regeleinrichtung zum Regeln der Menge der dem mindestens einen Absorber zugeführten, an Kältemittel verarmten Lösung, sowie eine vierte Regeleinrichtung zum Regeln der Fördermenge der Lösungspumpe.
  • Durch die erfindungsgemäße Lösung, die mittels der genannten Steuer- und Regelkreise einen modulierenden Betrieb der Absorptionswärmepumpe ermöglicht, werden instationäre Anfahrverluste minimiert, während gleichzeitig ein zuverlässiger Wärmepumpenbetrieb gewährleistet wird. Ein Taktbetrieb, wie er bei den im Stand der Technik vorgeschlagenen Anlagen vorgesehen war, wird durch die modulierende Technik unterbunden.
  • Aus Gründen der Übersichtlichkeit werden die bei dem erfindungsgemäßen Konzept beteiligten Steuerungs- und Regelungsvorgänge, d.h. die Brennersteuerung, die Kondensatdrosselregelung, die Lösungsdrosselregelung sowie die Lösungspumpenregelung, getrennt voneinander beschrieben. Es versteht sich jedoch, daß bei dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung alle vier der genannten Steuerungs- und Regelungsvorgänge gleichzeitig implementiert sind.
  • Die Erfindung, deren bevorzugte Ausführungsbeispiele in den Unteransprüchen angegeben sind, wird nachstehend unter Bezugnahme auf die Zeichnungen im Einzelnen erläutert, wobei
  • FIG. 1
    eine schematische Darstellung des Aufbaus einer Absorptionswärmepumpe sowie einer darin verwendeten Brennersteuerung nach der Erfindung zeigt;
    FIG. 2 bis 4
    Darstellungen ähnlich FIG. 1 sind, in welchen Ausführungsbeispiele der gemäß dem vorliegend beschriebenen Absorptionswärmepumpenkonzept verwendeten Kondensatdrosselregelung veranschaulicht sind;
    FIG. 5 bis 7
    Darstellungen ähnlich FIG. 1 sind, in welchen Ausführungsbeispiele der gemäß dem vorliegend beschriebenen Absorptionswärmepumpenkonzept eingesetzten Lösungsdrosselregelung veranschaulicht sind; und
    FIG. 8
    eine Darstellung ähnlich FIG. 1 ist, in welcher ein Ausführungsbeispiel einer gemäß dem vorliegend beschriebenen Absorptionswärmepumpenkonzept verwendeten Lösungspumpenregelung dargestellt ist.
  • Wie in FIG. 1 schematisch angedeutet ist, umfaßt eine Absorptionswärmepumpe einen Kocher oder Austreiber 1, in welchem mittels eines Brenners 2 eine ein Kältemittel enthaltende Lösung erwärmt wird, um Kältemittel als Kältemitteldampf aus der Lösung auszutreiben. Bei der Ausgestaltung nach FIG. 1 wird der Kältemitteldampf in einer Leitung 30 über einen Rektifikator 3 einem Kondensator 13 zugeleitet, in welchem der Kältemitteldampf gegen ein Heizmittel kondensiert wird. Das auf diese Weise erwärmte Heizmittel wird wiederum in einer Leitung 32, dem sogenannten Vorlaut einem Verbraucher 34, beispielsweise einem Radiator, zugeführt.
  • Heizmittel, welches den Verbraucher 34 passiert hat, kehrt über eine Leitung 36, den sogenannten Rücklauf, zurück zu der Absorptionswärmepumpe. Insbesondere kann das in dem Verbraucher 34 abgekühlte Heizmittel in einem Abgaswärmetauscher 9 gegen aus dem Brenner 2 austretendes heißes Abgas, welches bei 44 in die Atmosphäre entlassen oder anderweitig entsorgt oder verarbeitet wird, wird, erwärmt werden, bevor es einem Absorber 6 zugeführt wird. Nach Passieren des Absorbers 6, bei dem es sich beispielsweise um einen Plattenwärmetauscher handeln kann, wird das Heizmittel in einer Leitung 38 erneut dem Kondensator 13 zugeleitet, so daß sich ein geschlossener Heizmittelkreis ergibt.
  • Das in dem Kondensator 13 gegen das sich erwärmende Heizmittel stark abgekühlte und entspannte Kältemittel wird in einer Leitung 40 einem Nachkühler 10 zugeleitet, von welchem aus es über eine Drosselstelle 12 einem Verdampfer 11 zugeführt wird. In dem Verdampfer 11 wird dem Kältemittel Umgebungsenergie zugeführt, wobei es sich hier insbesondere um Wärme handeln kann, die in der Umgebung (in FIG. 1 bei 42 angedeutet) des durch den Verbraucher 34 zu beheizenden Gebäudes z.B. im Erdreich, in Wasser, in Luft, insbesondere in Sole gespeichert ist.
  • Kältemittel, welches den Verdampfer 11 verläßt, wird erneut durch den Nachkühler 10 geleitet und von dort zu dem Absorber 6. In dem Absorber 6 oder, wie es in FIG. 1 dargestellt ist, in einem vor dem Absorber angeordneten Mischer 46 wird das Kältemittel mit Lösungsmittel gemischt, welches den Kocher 1 über eine Leitung 48 verlassen hat. Die dabei entstehende Lösungswärme wird dem Austreiberprozeß im Kocher 1 und dem Verbraucher 34 zur Verfügung gestellt oder nur an den Verbraucher 34 abgeführt. Die den Absorber 6 verlassende an Kältemittel reiche Lösung wird nach Passieren eines Lösungsvorratsbehälters 7 mittels einer Lösungspumpe 8 von dem Niederdruckniveau des Absorbers 6, welches ungefähr dem Verdampfungsdruck entspricht, auf ein Hochdruckniveau gepumpt und erneut dem Kocher 1 zugeführt. Hierbei kann die an Kältemittel reiche Lösung von dem Absorber 6 wie in FIG. 1 dargestellt über den Rektifikator 3 und einen Wärmetauscher 4 geleitet werden, in welchen die an Kältemittel reiche Lösung einem Wärmeaustausch gegen den den Kocher 1 verlassenden Kältemitteldampf bzw. das den Kocher 1 verlassende Lösungsmittel unterzogen wird. Kältemittel, welches bereits im Rektifikator 3 kondensiert, wird über einen Rücklauf 50 erneut dem Kocher 1 zugeleitet.
  • Der bis hier beschriebene generelle Aufbau der vorliegenden Absorptionswärmepumpe ist allen nachstehend beschriebenen Ausführungsbeispielen gemein und wird daher bei der Beschreibung der übrigen Zeichnungen nicht erneut beschrieben werden. Die folgende Beschreibung konzentriert sich in erster Linie auf die einzelnen Steuerungs- und Regelungsaspekte des erfindungsgemäßen Konzepts. Wie bereits erwähnt, sind in den einzelnen Zeichnungen nicht alle Steuerungs- und Regelungsaspekte gleichzeitig dargestellt sondern werden die Brennersteuerung, die Kondensatdrosselregelung, die Lösungsdrosselregelung sowie die Lösungspumpenregelung nacheinander anhand von schematischen Teilzeichnungen erläutert.
  • Unter Bezugnahme auf FIG. 1 werden zunächst die die Brennersteuerung betreffenden Komponenten beschrieben. Ziel der Absorptionswärmepumpenbrennersteuerung ist es, eine dem Wärmebedarf des zu beheizenden Gebäudes angepaßte Regelung der Brennerleistung zu erreichen, um so ein kontinuierliches Arbeiten der Absorptionswärmepumpe zu gewährleisten. Das vorliegend beschriebene Konzept basiert, anders als die eingangs beschriebenen bekannten Systeme, auf der Erkenntnis, daß es bei geeigneter Steuerung und Regelung der Anlage durchaus sinnvoll und energetisch lohnend ist, die Absorptionswärmepumpe bei einem verminderten Heizbedarf nicht gänzlich abzuschalten sondern herunterzuregeln, da die andernfalls bei einem erneuten Anfahren der Anlage auftretenden Verluste die durch die Abschaltung erzielte Energieeinsparung überwiegen.
  • Bei Einrichtung gemäß FIG. 1 sind ein Außenfühler 14 zum Messen der Umgebungstemperatur und ein Heizmittelfühler zum Messen der Temperatur des Heizmittels vorgesehen, wobei der Heizmittelfühler als ein Rücklauffühler 15 zur Erfassung der Rücklauftemperatur oder als ein Vorlauffühler 16 zum Erfassung der Rücklauftemperatur ausgeführt sein kann. Der Außenfühler 14 sowie der Rücklauffühler 15 und/oder der Vorlauffühler 16 sind mit einem Regler 17 verbunden, dessen Ausgang mit dem Brenner 2 verbunden ist. Bei dem Brenner 2 handelt es sich hierbei um einen regelbaren Brenner mit einer Leistungsaufnahme von beispielsweise 4 bis 18 kW. Der Regler 17 vergleicht die gemessene Rücklauf- oder Vorlauftemperatur mit einem Sollwert und drosselt die Brennerleistung bei Annäherung der Rücklauf- bzw. der Vorlauftemperatur an den Sollwert. Die Regelung kann hierbei entsprechend voreingestellter Heizkurven erfolgen. So kann einerseits die Brennerleistung direkt mit der gemessenen Außentemperatur in Beziehung gesetzt werden, indem bestimmten Außentemperaturwerten bestimmte Werte für die Leistungsaufnahme des Brenners zugeordnet werden. So könnte beispielsweise einer Außentemperatur von +15 °C eine Brennerleistung von 4 kW zugeordnet werden, während bei einer Außentemperatur von -15 °C die Brennerleistung 13 kW betragen soll. Als Stellparameter für die Leistung des Brenners können jedoch auch die Vorlauf- und/oder die Rücklauftemperatur dienen. So kann beispielsweise einer Außentemperatur von +15 °C eine Rücklauftemperatur von 25 °C zugeordnet sein, während einer Außentemperatur von -15 °C eine Rücklauftemperatur von 45 °C zugeordnet ist. Neben dem Vergleich von Sollwert und Istwert der Rücklauf- oder der Vorlauftemperatur kann jedoch auch die Temperaturspreizung des Heizmittels, d.h. die Differenz zwischen Vorlauf- und Rücklauftemperatur, als Regelparameter dienen. Die genannten Regelungsarten können hierbei einzeln oder gemeinsam implementiert sein. Die beschriebene Brennersteuerung paßt somit die gesamte durch den Absorptionsprozeß erzeugte Wärmeenergie modulierend dem Wärmebedarf des zu beheizenden Gebäudes an, der sich beispielsweise durch individuelle Einstellungen (z.B. Heizkörper werden geschlossen) oder aber durch Fremdeinwirkung (Variation der Sonneneinstrahlung etc.) ständig ändern kann.
  • Um bei der vorstehend beschriebenen modulierenden Brennersteuerung die Kondensation des Kältemittels im Kondensator über den gesamten modulierenden Wärmepumpenbetrieb zu gewährleisten, wird gemäß dem vorliegend beschriebenen Konzept die Kondensatdrossel geregelt. Die Kondensatdrosselregelung hat auch die Aufgabe, einen unnötig hohen Kondensationsdruck zu vermeiden und trägt damit zu einer Verbesserung des Gesamtwirkungsgrades bei.
  • Wie im folgenden unter Bezugnahme auf die FIGN. 2 bis 4 im Einzelnen erläutert wird, kann die Kondensatdrossel unter Zuhilfenahme mehrerer unterschiedlicher Regelparameter erfolgen. Insbesondere kann, wie es in FIG. 2 veranschaulicht ist, mittels eines Drucksensors 18 der Druck pKKein des in den Kondensator 13 eintretenden Kältemitteldampfes gemessen werden. Dieser Druckwert pKKein kann dann unter Zuhilfenahme der dem Fachmann geläufigen Fundamentalgleichung von Ziegler in einen Temperaturwert TKKein umgerechnet werden. Mittels eines Reglers 19, im veranschaulichten Beispiel ein PID-Regler, wird dann der so errechnete Temperaturwert TKKein mit einer Referenztemperatur verglichen, um ein Ausgangssignal zur Ansteuerung eines stetig regelbaren Stellorgans zu bilden. Bei der in FIG. 2 dargestellten Ausführungsform wird als die Referenztemperatur die Temperatur TVorlauf des aus dem Kondensator 13 austretenden Heizmittels benutzt, die mittels eines Temperaturfühlers 16 gemessen wird. Ist die Temperaturdifferenz TKKein - TVorlauf kleiner als ein vorgegebener Sollwert von z.B. 1 bis 4 K, so wird die Menge des dem Verdampfer 11 zugeführten Kältemittels mittels der regelbaren Drosselstelle 12, die beispielsweise als pulsweitenmoduliertes Ventil ausgeführt sein kann, verkleinert. Ist hingegen die besagte Temperaturdifferenz größer als der vorgegebene Sollwert, so wird die Menge des dem Verdampfer 11 zugeführten Kältemittels vergrößert. Mittels des Sollwerts wird gewährleistet, daß sich immer eine Kondensatunterkühlung von ca. 2 bis 5 K einstellt. Ist die Differenz TKKein - TVorlauf gleich dem vorgegebenen Sollwert, so ist die Ventilstellung optimal.
  • Eine Variante der Kondensatdrosselregelung von FIG. 2 ist in FIG. 3 skizziert. Anstelle des Drucksensors 18 (FIG. 2) ist hier ein Temperatursensor 20 vorgesehen, der die Temperatur TKKaus des aus dem Kondensator 13 austretenden Kältemittels erfaßt. Diese Temperatur TKKaus wird wiederum mit der Temperatur TVorlauf des aus dem Kondensator 13 austretenden Heizmittels verglichen. Anhand der mit einem Regler 19 ermittelten Temperaturdifferenz zwischen der Vorlauftemperatur TVorlauf, die der Kondensationstemperatur entspricht, und der Temperatur TKKaus des Kondensats läßt sich die herrschende Kondensatunterkühlung bewerten. Wird für die Kondensatunterkühlung ein Sollwert vorgegeben, so kann die Drosselstelle 12 basierend auf einem Vergleich zwischen der genannten Temperaturdifferenz mit diesem Sollwert ganz oder teilweise geöffnet oder geschlossen werden. Der Sollwert der Kondensatunterkühlung liegt vorzugsweise im Bereich zwischen 2 und 5 K.
  • Eine weitere Variante der Kondensatdrosselregelung von FIG. 2 ist in FIG. 4 dargestellt. Das Ausführungsbeispiel der FIG. 4 unterscheidet sich von dem der FIG. 3 darin, daß die Temperatur des Heizmittels nicht am Auslaß des Kondensators 13 sondern an dessen Einlaß gemessen wird. Die mittels eines Temperatursensors 20 gemessene Temperatur TKKaus des aus dem Kondensator 13 austretenden Kältemittels wird dann mit der mittels eines Temperatursensors 21 gemessenen Temperatur THKein des in den Kondensator 13 eintretenden Heizmittels verglichen, wobei zu diesem Zweck der Regler 19 vorzugsweise einen Differenzbildner umfaßt. Wie bei den obigen Ausführungsbeispielen kann die sich aus dem Vergleich der beiden genannten Temperaturen ergebende Temperaturdifferenz wiederum mit einem Sollwert verglichen und die Drosselstelle in Abhängigkeit von diesem Vergleich geregelt werden.
  • Bezugnehmend auf die FIGN. 5 bis 7 wird nachstehend die bei dem vorliegenden Absorptionswärmepumpenkonzept eingesetzte Lösungsdrosselregelung erläutert. Die in den Zeichnungen gezeigte Lösungsdrossel 5 bestimmt den Strom der aus dem Kocher 1 über den Wärmetauscher 4 ausgeleiteten, an Kältemittel armen Lösung, die in dem Mischer 46 (FIG. 1) mit aus dem Nachkühler 10 austretenden Kältemittel gemischt wird, bevor sie in den Absorber 6 eingeleitet wird. Durch Verstellung der Lösungsdrossel 5 wird der bei niedrigem Druck betriebene Absorber bzw. der Verdampfungsdruck beeinflußt. Ziel dieser Regelung ist es, den Niederdruck in jedem Betriebszustand der Wärmepumpe so zu halten, daß der Verdampfer 11 die maximal mögliche Energie aufnimmt und gleichzeitig gewährleistet ist, daß sich nicht ein unnötig hoher Massenstrom der an Kältemittel armen Lösung einstellt. Wird die Lösungsdrossel 5 geöffnet, so hat dies eine Reihe von Auswirkungen:
    • der Durchfluß und somit die Konzentration der an Kältemittel armen Lösung nehmen zu,
    • der spezifische Lösungsumlauf wird größer,
    • das Lösungsfeld wird weiter zusammengezogen,
    • die Konzentrationsdifferenz und damit auch die Temperaturdifferenz zwischen Kesselfuß und Kesselkopf des Kochers verringert sich,
    • die Konzentration der reichen" Lösung im Absorber wird kleiner
    • der Niederdruck sinkt.
  • Eine Schließung der Lösungsdrossel hat entsprechend gegenteilige Effekte.
  • Entsprechend FIG. 5 wird mittels eines Temperaturfühlers 22 die Temperatur TKVein des dem Verdampfer 11 zugeführten Kältemittels gemessen. Mit Hilfe eines zweiten Temperaturfühlers 23 wird die Temperatur TKVaus des aus dem Verdampfer 11 austretenden Kältemittels erfaßt. Ein PID Regler 26 bildet aus den beiden gemessenen Temperaturwerten eine Differenz und legt basierend auf dem Ergebnis der Differenzbildung ein Stellsignal an die Lösungsdrossel 5 an. Insbesondere wird die ermittelte Temperaturdifferenz ähnlich wie bei den oben beschriebenen Verfahren mit einem vorgegebenen Sollwert verglichen, wobei bei der vorliegend beschriebenen Ausgestaltung ein besonders bevorzugter Bereich für diesen Sollwert von 7 bis 10 K reicht. Ist die ermittelte Temperaturdifferenz größer als der vorgegebene Sollwert, so wird die Lösungsdrossel 5 geschlossen; ist die ermittelte Temperaturdifferenz kleiner als der vorgegebene Sollwert, wird die Lösungsdrossel 5 geöffnet. Die Regelung der Lösungsdrossel 5 kann darüberhinaus auch durch eine Messung der Vorlauftemperatur, wie sie unter Bezugnahme auf die FIGN. 2 und 3 erläutert wurde, beeinflußt werden, indem der Sollwert für die Differenz zwischen der Temperatur TKVein des dem Verdampfer 11 zugeführten Kältemittels und der Temperatur TKVaus des aus dem Verdampfer 11 austretenden Kältemittels in Abhängigkeit von der Vorlauftemperatur TVorlauf variiert wird. Beispielsweise kann die Regelung so angelegt sein, daß der Sollwert für die genannte Temperaturdifferenz am Verdampfer bei einer Vorlauftemperatur von 30 °C z.B. 14 K beträgt, während dieser Sollwert bei einer Vorlauftemperatur von 50 °C auf z.B. 7 K abgesenkt wird.
  • Bei der in FIG. 6 skizzierten Variante der Lösungsdrosselregelung gemäß FIG. 5 wird die mittels des Temperaturfühlers 22 gemessene Temperatur TKVein des dem Verdampfer 11 zugeführten Kältemittels mit der mittels eines Temperaturfühlers 24 gemessenen Temperatur TMVein des dem Verdampfer 11 zugeführten Mediums (Sole, Wasser, Luft etc.) verglichen. Basierend auf diesem Vergleich liefert der Regler 26 in Abhängigkeit von einem vorgegebenen Sollwert ein Stellsignal an die Lösungsdrossel 5.
  • Eine weitere Variante der Lösungsdrosselregelung ist in FIG. 7 dargestellt, wobei hier mittels eines Druckaufnehmers 28 der Druck pKVaus des aus dem Nachkühler 10 austretenden Kältemittels sowie mittels eines Temperaturfühlers 24 die Temperatur TKVaus des aus dem Verdampfer 11 austretenden Kältemittels gemessen werden. Der gemessene Druckwert kann dann ähnlich wie es oben unter Bezugnahme auf die vorliegend eingesetzte Kondensatdrosselregelung beschrieben wurde, in einen Temperaturwert umgerechnet und durch Differenzbildung mit dem mittels des Temperaturfühlers 24 gemessenen Temperaturwert verglichen werden. Die so ermittelte Temperaturdifferenz wird dann mit einem vorgegebenen Sollwert verglichen, um ein Steuersignal für die Lösungsdrossel 5 zu erhalten. Die in FIG. 7 gezeigte Anordnung des Druckaufnehmers 28 und des Temperaturfühlers 24 könnte ferner dahingehend abgewandelt werden, daß beide Aufnehmer an im wesentlichen der gleichen Stelle des Prozeßablaufs angeordnet werden. Insbesondere könnten sowohl der Druckaufnehmer 28 als auch der Temperaturfühler 24 zwischen dem Nachkühler 10 und dem Mischer 46 oder aber zwischen dem Verdampfer 11 und dem Nachkühler 10 plaziert werden.
  • FIG. 8 zeigt ein Ausführungsbeispiel der bei dem vorliegenden Absorptionswärmepumpenkonzept eingesetzten Lösungspumpenregelung. Wie unter Bezugnahme auf FIG. 1 erläutert wurde, wird die den Absorber 6 verlassende, an Kältemittel reiche Lösung nach Passieren des Lösungsvorratsbehälters 7 mittels einer Lösungspumpe 8 von dem Niederdruckniveau des Absorbers 6 auf ein Hochdruckniveau gepumpt und erneut dem Kocher 1 zugeführt. Bei dem in FIG. 8 dargestellten Ausführungsbeispiel der Lösungspumpenregelung wird mittels eines in dem Lösungsvorratsbehälter 7 angeordneten Schwimmers 29, vorteilhafterweise eines magnetinduktiven Schwimmers, der Füllstand des Lösungsvorratsbehälters 7 erfaßt und basierend auf dem gemessenen Füllstand die Drehzahl der Lösungspumpe 8 und somit der Lösungsmassenstrom dem Prozeß angepaßt.

Claims (34)

  1. Verfahren zum Betrieb einer Absorptionswärmepumpe bei dem
    (a) in einem Kocher (1) eine ein Kältemittel enthaltende Lösung mittels eines Brenners (2) erwärmt wird, um Kältemittel als Kältemitteldampf auszutreiben;
    (b) der Kältemitteldampf in einem Kondensator (13) gegen ein Heizmittel kondensiert wird, um dem Heizmittel Wärme zuzuführen;
    (c) das Kältemittel von dem Kondensator einem Verdampfer (11), in welchem es gegen ein Medium verdampft wird, und anschließend mindestens einem Absorber (6) zugeführt wird;
    (d) an Kältemittel verarmte Lösung aus dem Kocher über einen Wärmetauscher (4) dem mindestens einen Absorber zuführt wird, wo sich die an Kältemittel verarmte Lösung mit Kältemittel, welches den Verdampfer durchlaufen hat, vereinigt;
    (e) an Kältemittel reiche Lösung von dem Absorber mittels einer Lösungspumpe (8) auf ein Hochdruckniveau gepumpt und erneut dem Kocher zugeführt wird; und
    (f) das in dem Kondensator (13) erwärmte Heizmittel einem Verbraucher zugeführt wird und das von dem Verbraucher abgekühlte Heizmittel zu dem Kondensator zurück geführt wird;
    dadurch gekennzeichnet, daß
    (g) die Außentemperatur und die Temperatur des Heizmittels gemessen werden und die Leistung des Brenners (2) in Abhängigkeit von den gemessenen Temperaturwerten eingestellt wird;
    (h) die Menge des dem Verdampfer (11) zugeführten Kältemittels geregelt wird (19);
    (i) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung geregelt wird; und
    (j) die Fördermenge der Lösungspumpe (8) geregelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das aus dem Kondensator (13) austretende Kältemittel in indirekten Wärmeaustausch mit aus dem Verdampfer (11) austretendem Kältemittel gebracht wird, bevor es dem Verdampfer (11) zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Temperatur (TRücklauf) des Heizmittels nach Durchlaufen des Verbrauchers gemessen wird (Rücklauftemperatur).
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Rücklauftemperatur (TRücklauf) wiederholt gemessen wird und
    (g1) der gemessene Wert der Rücklauftemperatur mit einem Sollwert verglichen wird; und
    (g2) die Brennerleistung bei Annäherung des gemessenen Werts der Rücklauftemperatur an den Sollwert der Rücklauftemperatur gedrosselt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Temperatur (TVorlauf) des dem Verbraucher von dem Kondensator zugeführten Heizmittels gemessen wird (Vorlauftemperatur).
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Vorlauftemperatur (TVorlauf) wiederholt gemessen wird und
    (g1) der gemessene Wert der Vorlauftemperatur mit einem Sollwert verglichen wird; und
    (g2) die Brennerleistung bei Annäherung des gemessenen Werts der Vorlauftemperatur zum Sollwert der Vorlauftemperatur gedrosselt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Rücklauftemperatur (TRücklauf) und die Vorlauftemperatur (TVorlauf) wiederholt gemessen werden und
    (g1) bei jeder Messung die Differenz aus den gemessenen Werten der Vorlauftemperatur und der Rücklauftemperatur gebildet wird; und
    (g2) die Brennerleistung gedrosselt wird, wenn die Differenz bei einer Messung kleiner als bei der vorhergehenden Messung ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Außentemperatur (TA) wiederholt gemessen und die Brennerleistung mit sinkender Außentemperatur erhöht wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    (h1) der Druck (pKKein) des in den Kondensator (13) eintretenden Kältemitteldampfes und die Temperatur (TVorlauf) des aus dem Kondensator austretenden Heizmittels gemessen werden; und
    (h2) die Menge des dem Verdampfer (11) zugeführten Kältemittels in Abhängigkeit von den gemessenen Druck- und Temperaturwerten (pKKein, TVorlauf) eingestellt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß
    (h21) der gemessene Druckwert (pKKein) in einen Temperaturwert (TKKein) umgerechnet wird und mittels des so errechneten Temperaturwerts (in Kelvin) und der Vorlauftemperatur (in Kelvin) entsprechend der nachstehenden Formel (I) A = T KKein - T Vorlauf - B wobei B einen Wert zwischen 0,5 und 10 K vorzugsweise zwischen 1 und 4 K hat,
    eine Stellgröße A berechnet wird; und
    (h22) die Menge des dem Verdampfer (11) zugeführten Kältemittels vergrößert wird, wenn A größer als Null ist; und
    (h23) die Menge des dem Verdampfer (11) zugeführten Kältemittels verkleinert wird, wenn A kleiner als Null ist.
  11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß
    (h1) die Temperatur (TKKaus) des aus dem Kondensator (13) austretenden Kältemittels und die Temperatur (TVorlauf) des aus dem Kondensator austretenden Heizmittels gemessen werden; und
    (h2) die Drosselstelle (12) in Abhängigkeit von den gemessenen Temperaturwerten (TKKaus, TVorlauf) eingestellt wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß
    (h21) die Differenz der gemessenen Temperaturwerte entsprechend der nachstehenden Formel (II) mit einem Sollwert D verglichen wird; C = (T Vorlauf - T KKaus ) - D um eine Stellgröße C zu erhalten, wobei D einen Wert zwischen 1 und 10 K, vorzugsweise zwischen 2 und 5 K hat; und
    (h22) die Menge des dem Verdampfer (11) zugeführten Kältemittels vergrößert wird, wenn C größer als Null ist; und
    (h23) die Menge des dem Verdampfer (11) zugeführten Kältemittels verkleinert wird, wenn C kleiner als Null ist.
  13. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß
    (h1) die Temperatur (TKKaus) des aus dem Kondensator austretenden Kältemittels und die Temperatur (THKein) des in den Kondensator (13) eintretenden Heizmittels gemessen werden; und
    (h2) die Drosselstelle (12) in Abhängigkeit von den gemessenen Temperaturwerten (TKKaus, THKein) eingestellt wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß
    (h21) die Differenz der gemessenen Temperatur (TKKaus) des aus dem Kondensator austretenden Kältemittels und der Temperatur (THKein) des in den Kondensator (13) eintretenden Heizmittels errechnet wird; und
    (h22) die Drosselstelle (12) in Abhängigkeit von der errechneten Differenz eingestellt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die genannten Mess- und Berechnungsvorgange wiederholt durchgeführt werden und die Öffnungsfläche der Drosselstelle (12) verkleinert wird, wenn die Temperaturdifferenz zunimmt, bzw. vergrößert wird, wenn die Temperaturdifferenz abnimmt.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    (i1) die Temperatur (TKVein) des dem Verdampfer (11) zugeführten Kältemittels sowie die Temperatur (TKVaus) des aus dem Verdampfer (11) austretenden Kältemittels gemessen werden; und
    (i2) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung in Abhängigkeit von den gemessenen Temperaturwerten (TKVein, TKVaus) eingestellt wird.
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß
    (i21) die Differenz der gemessenen Temperaturwerte (TKVein, TKVaus) entsprechend der nachstehenden Formel (III) mit einem Sollwert F verglichen wird: E = (T KVein - T KVaus ) - F um eine Stellgröße E zu erhalten; und
    (i22) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung vergrößert wird, wenn E größer als Null ist; und
    (i23) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung verkleinert wird, wenn E kleiner als Null ist.
  18. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß
    (i1) die Temperatur (TKVein) des dem Verdampfer (II) zugeführten Kältemittels sowie die Temperatur (TMVein) des dem Verdampfer (11) zugeführten Mediums gemessen werden, und
    (i2) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung in Abhängigkeit von den gemessenen Temperaturwerten (TKVein, TMVein) eingestellt wird.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß
    (i21) die Differenz der gemessenen Temperaturwerte (TKVein, TMVein) entsprechend der nachstehenden Formel (IV) mit einem Sollwert H verglichen wird: G = (T MVein - T KVein ) - H um eine Stellgröße G zu erhalten; und
    (i22) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung vergrößert wird, wenn G größer als Null ist; und
    (i23) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung verkleinert wird, wenn G kleiner als Null ist.
  20. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß
    (i1) der Druck (pKVaus) des aus dem Verdampfer (11) austretenden Kältemittels sowie die Temperatur (TKVaus) des aus dem Verdampfer (11) austretenden Kältemittels gemessen werden, und
    (i2) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung in Abhängigkeit von den gemessenen Druck- und Temperaturwerten (pKVaus, TKVaus) eingestellt wird.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß
    (i21) der gemessene Druckwert (pKVaus) in einen Temperaturwert TVerdamfung umgerechnet wird und mittels des so errechneten Temperaturwerts (in Kelvin) und der Temperatur (TKVaus) des aus dem Verdampfer (11) austretenden Kältemittels entsprechend der nachstehenden Formel (V) L = T Verdampfung - T KVaus - M wobei M vorzugsweise einen Wert zwischen 4 und 15 K hat,
    eine Stellgröße L berechnet wird; und
    (j22) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung vergrößert wird, wenn L kleiner als Null ist; und
    (j23) die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung verkleinert wird, wenn L größer als Null ist.
  22. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
    (j1) die von dem Absorber kommende, an Kältemittel reiche Lösung durch einen Lösungsvorratsbehälter (7) geleitet wird,
    (j2) der Füllstand in dem Lösungsvorratsbehälter gemessen wird, und
    (j3) die Fördermenge der Lösungspumpe (8) in Abhängigkeit von dem gemessenen Füllstand eingestellt wird.
  23. Absorptionswärmepumpe mit
    (a) einem Kocher (1) zur Aufnahme einer ein Kältemittel enthaltenden Lösung;
    (b) einem Brenner (2), um dem Kocher (1) zwecks Erzeugung von Kältemitteldampf Wärme zuzuführen;
    (c) einem Kondensator (13);
    (d) einer Leitungsanordnung (30) zum Überleiten von Kältemitteldampf von dem Kocher zu dem Kondensator;
    (e) einer Leitungsanordnung (32, 36) zum Überleiten eines in dem Kondensator mittels kondensierendem Kältemitteldampf erwärmten Heizmittels von dem Kondensator zu einem Verbraucher (34) sowie zum Rückführen von durch den Verbraucher abgekühltem Heizmittel zu dem Kondensator;
    (f) einem Verdampfer (11) zum Verdampfen des Kältemittels gegen ein Medium;
    (g) einer Drosselstelle (12) und sowie einer Leitungsanordnung (40) zum Überleiten von Kältemittel von dem Kondensator (13) zu der Drosselstelle (12) und von der Drosselstelle zu dem Verdampfer (11);
    (h) mindestens einem Absorber (6) sowie einer Leitungsanordnung zum Überleiten von Kältemittel von dem Verdampfer zu dem Absorber;
    (i) einer Leitungsanordnung (48, 38) zum Überleiten der in dem Kocher an Kältemittel verarmten Lösung zu dem mindestens einen Absorber; und
    (j) einer Lösungspumpe (8), um von dem Absorber abgeleitete, an Kältemittel reiche Lösung auf ein Hochdruckniveau aufzudrücken sowie einer Leitungsanordnung zum Überleiten der unter hohem Druck stehenden, an Kältemittel reichen Lösung zu dem Kocher;
    gekennzeichnet durch
    (k) eine erste Regeleinrichtung, die einen im Freien angeordneten Außenfühler (14) zum Messen der Außentemperatur, mindestens einen Heizmittelfühler (15, 16) zum Messen der Temperatur des Heizmittels, sowie einen ersten Regler (17) zum Regeln der Leistung des Brenners (2) in Abhängigkeit von den gemessenen Temperaturwerten umfaßt;
    (l) eine zweite Regeleinrichtung (16, 18, 19, 20, 21) zum Regeln der Menge des dem Verdampfer (11) zugeführten Kältemittels;
    (m) eine dritte Regeleinrichtung (22, 23, 24, 26, 28) zum Regeln der Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung; sowie
    (n) eine vierte Regeleinrichtung (27, 29) zum Regeln der Fördermenge der Lösungspumpe (8).
  24. Absorptionswärmepumpe nach Anspruch 23, gekennzeichnet durch einen Nachkühler (10), in welchem aus dem Kondensator (13) austretendes Kältemittel in indirekten Wärmeaustausch mit aus dem Verdampfer (11) austretendem Kältemittel gebracht wird, bevor es dem Verdampfer (11) zugeführt wird.
  25. Absorptionswärmepumpe nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß die erste Regeleinrichtung einen zwischen dem Verbraucher (34) und dem Kondensator (13) angeordneten Rücklauffühler (15) zum Messen der Temperatur (TRücklauf) des Heizmittels, nachdem dieses den Verbraucher durchlaufen hat, umfaßt.
  26. Absorptionswärmepumpe nach einem der Ansprüch 23 bis 25, dadurch gekennzeichnet, daß erste Regeleinrichtung einen zwischen dem Kondensator (13) und dem Verbraucher (34) angeordneten Vorlauffühler (34) zum Messen der Temperatur (TVorlauf) des dem Verbraucher von dem Kondensator zugeführten Heizmittels umfaßt.
  27. Absorptionswärmepumpe nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die zweite Regeleinrichtung einen Temperaturfühler (16) zum Messen der Temperatur (TVorlauf) des aus dem Kondensator (13) austretenden Heizmittels, einen Druckaufnehmer (18) zum Messen des Drucks (pKKein) des in den Kondensator (13) eintretenden Kältemitteldampfes, sowie einen Regler (19) umfaßt, der die Menge des dem Verdampfer (11) zugeführten Kältemittels in Abhängigkeit von den gemessenen Druck- und Temperaturwerten (pKKein, TVorlauf) einstellt.
  28. Absorptionswärmepumpe nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die zweite Regeleinrichtung einen ersten Temperaturfühler (16) zum Messen der Temperatur (TVorlauf) des aus dem Kondensator (13) austretenden Heizmittels, einen zweiten Temperaturfühler (20) zum Messen der Temperatur (TKKaus) des aus dem Kondensator austretenden Kältemittels, sowie einen Regler (19) umfaßt, der die Menge des dem Verdampfer (11) zugeführten Kältemittels in Abhängigkeit von den gemessenen Temperaturwerten (TVorlauf, TKKaus) einstellt.
  29. Absorptionswärmepumpe nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die zweite Regeleinrichtung einen ersten Temperaturfühler (20) zum Messen der Temperatur (TKKaus) des aus dem Kondensator (13) austretenden Kältemittels, einen zweiten Temperaturfühler (21) zum Messen der Temperatur (THKein) des in den Kondensator eintretenden Heizmittels, sowie einen Regler (19) umfaßt, der die Menge des dem Verdampfer (11) zugeführten Kältemittels in Abhängigkeit von den gemessenen Temperaturwerten (TKKaus, THKein) einstellt.
  30. Absorptionswärmepumpe nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die dritte Regeleinrichtung einen ersten Temperaturfühler (22) zum Messen der Temperatur (TKVein) des dem Verdampfer (11) zugeführten Kältemittels, einen zweiten Temperaturfühler (23) zum Messen der Temperatur (TKVaus) des aus dem Verdampfer austretenden Kältemittels, sowie einen Regler (26) umfaßt, der die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung in Abhängigkeit von den gemessenen Temperaturwerten (TKVein, TKVaus) einstellt.
  31. Absorptionswärmepumpe nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die dritte Regeleinrichtung einen ersten Temperaturfühler (22) zum Messen der Temperatur (TKVein) des dem Verdampfer (11) zugeführten Kältemittels, einen zweiten Temperaturfühler (24) zum Messen der Temperatur (TMVein) des dem Verdampfer zugeführten Mediums, sowie einen Regler (26) umfaßt, der die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung in Abhängigkeit von den gemessenen Temperaturwerten (TKVein, TMVein) einstellt.
  32. Absorptionswärmepumpe nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, daß die dritte Regeleinrichtung einen Druckaufnehmer (28) zum Messen des Drucks (pKVaus) des aus dem Verdampfer (11) austretenden Kältemittels, einen Temperaturfühler (24) zum Messen der Temperatur (TKVaus) des aus dem Verdampfer austretenden Kältemittels, sowie einen Regler (26) umfaßt, der die Menge der dem mindestens einen Absorber (6) zugeführten, an Kältemittel verarmten Lösung in Abhängigkeit von den gemessenen Druck- und Temperaturwerten einstellt.
  33. Absorptionswärmepumpe nach einem der Ansprüche 23 bis 26, dadurch gekennzeichnet, daß die vierte Regeleinrichtung
    einen Behälter (7) mit einer Pegelmeßanordnung (29) zum Ermitteln des Pegels einer in den Behälter eingebrachten Flüssigkeit,
    eine Leitungsanordnung zum Überleiten der von dem Absorber (6) abgeleiteten, an Kältemittel reichen Lösung zu dem Behälter (7); und
    einen Regler (27) zum Einstellen der Fördermenge der Lösungspumpe (8) in Abhängigkeit von dem gemessenen Flüssigkeitspegel.
  34. Absorptionswärmepumpe nach Anspruch 33, dadurch gekennzeichnet, daß die Pegelmeßanordnung (29) einen induktiven Schwimmer aufweist.
EP00104384A 1999-04-14 2000-03-02 Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe Expired - Lifetime EP1045214B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19916907 1999-04-14
DE19916907A DE19916907C2 (de) 1999-04-14 1999-04-14 Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe

Publications (3)

Publication Number Publication Date
EP1045214A2 true EP1045214A2 (de) 2000-10-18
EP1045214A3 EP1045214A3 (de) 2002-08-21
EP1045214B1 EP1045214B1 (de) 2006-05-24

Family

ID=7904576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00104384A Expired - Lifetime EP1045214B1 (de) 1999-04-14 2000-03-02 Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe

Country Status (4)

Country Link
US (1) US6332328B1 (de)
EP (1) EP1045214B1 (de)
AT (1) ATE327486T1 (de)
DE (2) DE19916907C2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136773A2 (de) * 2000-03-22 2001-09-26 Buderus Heiztechnik GmbH Verfahren zur Regelung einer Diffusionsabsorptionsanlage
DE10154032B4 (de) * 2001-11-02 2005-06-23 Bbt Thermotechnik Gmbh Diffusionsabsorptionsanlage
CN103486757A (zh) * 2013-04-03 2014-01-01 李华玉 分路循环第一类吸收式热泵
CN104929704A (zh) * 2014-05-28 2015-09-23 李华玉 联合循环供能系统
CN104963733A (zh) * 2014-05-28 2015-10-07 李华玉 联合循环供能系统
CN104989472A (zh) * 2014-05-28 2015-10-21 李华玉 联合循环供能系统
CN105019954A (zh) * 2014-05-28 2015-11-04 李华玉 联合循环供能系统
EP3933304A1 (de) 2020-07-02 2022-01-05 Andreas Bangheri Verfahren zum betreiben einer absorptionswärmepumpe

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10161181B4 (de) * 2001-12-13 2004-03-18 Buderus Heiztechnik Gmbh Verfahren zur Regelung einer Diffusionsabsorptionsanlage
US6748752B2 (en) * 2002-04-16 2004-06-15 Rocky Research Apparatus and method for weak liquor flow control in aqua-ammonia absorption cycles
US6735963B2 (en) 2002-04-16 2004-05-18 Rocky Research Aqua-ammonia absorption system with variable speed burner
CN103940142B (zh) * 2013-04-03 2016-08-17 李华玉 分路循环第一类吸收式热泵
WO2015048858A1 (en) * 2013-10-06 2015-04-09 Tranquility Group Pty Ltd System and apparatus for electronic control of an absorption refrigeration system
US9982931B2 (en) * 2015-04-28 2018-05-29 Rocky Research Systems and methods for controlling refrigeration cycles of sorption reactors based on recuperation time
GB2547456B (en) * 2016-02-18 2018-09-19 Chilltechnologies Ltd An absorption chiller
JP7019597B2 (ja) * 2016-05-11 2022-02-15 ストーン・マウンテン・テクノロジーズ,インコーポレーテッド 収着ヒートポンプ及び制御方法
US11162719B2 (en) 2016-07-13 2021-11-02 Stone Mountain Technologies, Inc. Electronic expansion valves having multiple orifice plates
EP3285025B1 (de) * 2016-08-18 2019-07-03 Andreas Bangheri Absorptionswärmepumpe und verfahren zum betreiben einer absorptionswärmepumpe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202432A2 (de) 1985-05-22 1986-11-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betrieb einer Wärmepumpenanlage und zur Durchführung dieses Verfahrens geeignete Wärmepumpenanlage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837174A (en) * 1973-03-16 1974-09-24 Sanyo Electric Co Control device for an absorption system hot and cold water supply apparatus
DE2854055A1 (de) * 1978-12-14 1980-07-03 Linde Ag Verfahren zum erhitzen eines waermetraegers mit einer absorptionswaermepumpe
FR2509443A1 (fr) * 1981-07-11 1983-01-14 Volkswagenwerk Ag Montage avec pompe a chaleur a fonctionnement bivalent en parallele comprenant un bruleur qui produit des fumees
DE3207435A1 (de) * 1982-02-06 1983-09-08 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Steuer- und regeleinrichtung fuer eine sorptionswaermepumpe
US4596122A (en) * 1982-09-30 1986-06-24 Joh. Vaillant Gmbh Sorption heat pump
JPS6454179A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Absorption water chiller and heater
DE4006742A1 (de) * 1990-03-03 1991-09-05 Messerschmitt Boelkow Blohm Heizungs- und stromerzeugungsanlage
JP2575970B2 (ja) * 1991-04-10 1997-01-29 株式会社日立製作所 吸収冷温水機及び個別分散型空調システム
CN1100974C (zh) * 1993-12-27 2003-02-05 达金工业株式会社 吸收制冷装置
JPH0960999A (ja) * 1995-08-22 1997-03-04 Tokyo Gas Co Ltd 二重効用吸収冷温水機
EP0762064A1 (de) * 1995-09-08 1997-03-12 Fritz Ing. Weider Durchsatzregelung für das Kältemittel einer Wärmepumpe und Verfahren
US5916251A (en) * 1997-10-29 1999-06-29 Gas Research Institute Steam flow regulation in an absorption chiller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202432A2 (de) 1985-05-22 1986-11-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betrieb einer Wärmepumpenanlage und zur Durchführung dieses Verfahrens geeignete Wärmepumpenanlage

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136773A3 (de) * 2000-03-22 2003-01-15 Buderus Heiztechnik GmbH Verfahren zur Regelung einer Diffusionsabsorptionsanlage
EP1136773A2 (de) * 2000-03-22 2001-09-26 Buderus Heiztechnik GmbH Verfahren zur Regelung einer Diffusionsabsorptionsanlage
DE10154032B4 (de) * 2001-11-02 2005-06-23 Bbt Thermotechnik Gmbh Diffusionsabsorptionsanlage
CN103486757B (zh) * 2013-04-03 2016-02-03 李华玉 分路循环第一类吸收式热泵
CN103486757A (zh) * 2013-04-03 2014-01-01 李华玉 分路循环第一类吸收式热泵
CN104929704A (zh) * 2014-05-28 2015-09-23 李华玉 联合循环供能系统
CN104989472A (zh) * 2014-05-28 2015-10-21 李华玉 联合循环供能系统
CN105019954A (zh) * 2014-05-28 2015-11-04 李华玉 联合循环供能系统
CN104963733A (zh) * 2014-05-28 2015-10-07 李华玉 联合循环供能系统
CN104989472B (zh) * 2014-05-28 2018-11-06 李华玉 联合循环供能系统
CN105019954B (zh) * 2014-05-28 2018-11-06 李华玉 联合循环供能系统
CN104929704B (zh) * 2014-05-28 2018-11-06 李华玉 联合循环供能系统
CN104963733B (zh) * 2014-05-28 2018-11-06 李华玉 联合循环供能系统
EP3933304A1 (de) 2020-07-02 2022-01-05 Andreas Bangheri Verfahren zum betreiben einer absorptionswärmepumpe
DE102020117462A1 (de) 2020-07-02 2022-01-05 Andreas Bangheri Verfahren zum Betreiben einer Absorptionswärmepumpe
DE102020117462B4 (de) 2020-07-02 2023-12-28 E-Sorp Innovation Gmbh Verfahren zum Betreiben einer Absorptionswärmepumpe

Also Published As

Publication number Publication date
DE19916907A1 (de) 2000-10-26
ATE327486T1 (de) 2006-06-15
DE50012799D1 (de) 2006-06-29
US6332328B1 (en) 2001-12-25
EP1045214A3 (de) 2002-08-21
EP1045214B1 (de) 2006-05-24
DE19916907C2 (de) 2002-12-05

Similar Documents

Publication Publication Date Title
DE19916907C2 (de) Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe
DE2748415C2 (de) Heizverfahren und bimodales Heizsystem zum Heizen von Gebäuden
CH627833A5 (de) Absorptionskaelteverfahren mittels kocherenergie, die einer absorptionskaelteanlage zugefuehrt wird.
CH656208A5 (de) Heizungsanlage mit einem heizkessel und einer waermepumpe.
DE1151261B (de) Vorrichtung bei einem Kuehlschrank zur Regelung der Temperatur einer Kuehl-kammer unabhaengig von den Temperaturen in den uebrigen Kuehlkammern
DE60311974T2 (de) Verfahren und vorrichtung zur durchsatzregelung der schwachen lösung in ammoniak/wasser-absorptionskreisläufen
DE10108768C2 (de) Absorptionskälteanlage mit Niedertemperaturnutzung
DE2846797A1 (de) Vorrichtung zur waermerueckgewinnung
EP0038990B1 (de) Verfahren zur Regelung einer Heizanlage mit einer Absorptions-Wärmepumpe
EP0866291B1 (de) Kompressionswärmepumpe oder Kompressionskältemaschine und Regelungsverfahren dafür
DE102020117462B4 (de) Verfahren zum Betreiben einer Absorptionswärmepumpe
EP1620684B1 (de) Verfahren zum regeln eines carnot-kreisprozesses sowie anlage zu seiner durchführung
DE2717050A1 (de) Kompressor-kaelteanlagen
CH695464A5 (de) Wärmepumpe.
CH627257A5 (en) Method and device for the automatic optimisation of the operating point of a heating device, in particular of a heat pump
DE3207243A1 (de) Verfahren zum regeln einer sorptionswaermepumpe
DE102019001642A1 (de) Heizungs-und/oder Warmwasserbereitungssystem
DE3140003A1 (de) Verfahren zum betreiben einer heizungsanlage
DE10005604B4 (de) Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe
DE102020123960B4 (de) Verfahren zum Betreiben einer Wärmepumpe und Wärmepumpe
DE102022122906A1 (de) Verfahren zum Betreiben eines Klimagerätes, Computerprogramm, Regel- und Steuergerät, Klimagerät und Verwendung einer Leistungsminderung einer Umwälzpumpe
DE102011014907B4 (de) Verfahren zur Regelung eines Solarkreislaufs
DE2948699A1 (de) Temperaturreglung bei einer absoptionswaermepumpenanlage
EP1050727A1 (de) Verfahren und Einrichtung zur Regelung eines thermodynamischen Kreisprozesses
WO2008014626A1 (de) Verfahren zur regelung eines brenners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELIOTHERM SOLARTECHNIK GES.M.B.H

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 25B 49/04 A, 7F 25B 30/04 B, 7F 25B 15/00 B

17P Request for examination filed

Effective date: 20030218

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELIOTHERM WAERMEPUMPENTECHNIK GES.M.B.H.

17Q First examination report despatched

Effective date: 20040601

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060524

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012799

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060904

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061024

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HELIOPLUS ENERGY SYSTEMS GMBH; LANGKAMPFEN (AT)

Free format text: FORMER OWNER: HELIOTHERM WAERMEPUMPENTECHNIK GES.M.B.H.; MITTERWEG 15; 6336 LANGKAMPFEN (AT)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLS Nl: assignments of ep-patents

Owner name: HELIOPLUS ENERGY SYSTEMS GMBH

Effective date: 20070207

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

BERE Be: lapsed

Owner name: HELIOTHERM WARMEPUMPENTECHNIK GES.M.B.H.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190322

Year of fee payment: 20

Ref country code: DE

Payment date: 20190331

Year of fee payment: 20

Ref country code: FR

Payment date: 20190322

Year of fee payment: 20

Ref country code: GB

Payment date: 20190322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190328

Year of fee payment: 20

Ref country code: NL

Payment date: 20190322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190329

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50012799

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 327486

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200301

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200301