EP1040339A1 - Dispositif d'analyse non destructive de plantes et vehicule comportant un tel dispositif embarque - Google Patents

Dispositif d'analyse non destructive de plantes et vehicule comportant un tel dispositif embarque

Info

Publication number
EP1040339A1
EP1040339A1 EP98962535A EP98962535A EP1040339A1 EP 1040339 A1 EP1040339 A1 EP 1040339A1 EP 98962535 A EP98962535 A EP 98962535A EP 98962535 A EP98962535 A EP 98962535A EP 1040339 A1 EP1040339 A1 EP 1040339A1
Authority
EP
European Patent Office
Prior art keywords
unit
fluorescence
images
plants
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98962535A
Other languages
German (de)
English (en)
Inventor
Alfredo Lucia
Francine Heisel
Alphonse Martz
Joseph-Albert Miehe
Jean-Pierre Oberlin
Malgorzata Sowinska
Martin Zurn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communaute Europeenne
Original Assignee
Communaute Europeenne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communaute Europeenne filed Critical Communaute Europeenne
Publication of EP1040339A1 publication Critical patent/EP1040339A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths

Definitions

  • Device for non-destructive analysis of plants and vehicle comprising such an on-board device,
  • the present invention relates to the field of the study of vegetation, more particularly plants, in the forestry and agricultural field, and relates to a device for the non-destructive analysis of plants, as well as a vehicle for analysis comprising such an on-board device.
  • a device for the non-destructive analysis of plants as well as a vehicle for analysis comprising such an on-board device.
  • the principle of fluorescence measurement is known, which consists in optically acquiring the image of the fluorescence of the vegetation, in particular of the leaves, induced by a brief light excitation, coming from a laser beam projected on the latter. .
  • Multi-Color Fluorescence Imaging ", JONAS JOHANSSON & al., A device for remote measurement by laser fluorescence and for collecting images produced by fluorescence at different wavelengths.
  • fluorescence is measured globally that is the area of interest in the image by the interposition of a spectrophotometer which scans the different wavelengths successively and a second channel allows the acquisition of two simultaneous images at two different frequencies.
  • the aforementioned known devices do not provide enough information to allow precise analysis and establishment of a diagnosis after a single measurement session, and none of these known devices is suitable for carrying out, with the same device. , a global measurement in situ and a measurement on a particular sampled element.
  • the subject of the invention is a device for the non-destructive analysis of plants, and more generally of plants, by measuring the fluorescence induced under laser excitation, comprising a unit for emitting a laser excitation beam.
  • the transmitting unit provides at least two wavelengths of laser excitation and in that the measurement and image taking unit comprises means for forming, from the same fluorescence beam emitted by the plant (s), simultaneously or successively, at least two secondary beams, each having its own wavelength and each constituting a fluorescence image at the level of a matrix sensor, on the entire surface of the latter (successive acquisition of images) or on a part of the latter's surface, distinct for each secondary beam (simultaneous acquisition of images).
  • the subject of the invention is also a vehicle for in situ analysis of plants and, more generally of plants, characterized in that it comprises at least one analysis device as mentioned above, mounted in an orientable and tiltable manner. on a telescopic stem.
  • FIG. 1 is a schematic view of an analysis device according to the invention
  • Figure 2 is a schematic view of the synchronization loop forming part of the device shown in Figure 1
  • Figure 3 is a schematic view showing the various components of the device according to the invention
  • FIGS. 4A and 4B are views in side elevation of an analysis vehicle according to the invention, with the analysis device respectively in an external analysis position and in an analysis position of a sample at l vehicle interior also forming part of the invention
  • FIGS. 5 to 11 represent images obtained by means of the analysis device according to the invention by fluorescence induced in parts of plants
  • FIGS. 12 to 14 represent examples of flowcharts of algorithms for executing certain functions of the analysis device according to the invention.
  • the device for the non-destructive analysis of plants, and more generally plants, by measuring the fluorescence induced under laser excitation comprises a unit 3 for emitting a beam d laser excitation 6 calibrated, a unit 4 for measuring and taking images of the fluorescence emitted by the irradiated plant (s) 2 and a digital processing, storage and editing or display unit of images collected, associated with a computer unit for controlling and managing the operation of the device 1.
  • the emission unit 3 supplies at least two wavelengths of laser excitation and the measurement and image taking unit 4 comprises means 7, 8, 9 for forming, at from the same fluorescence beam 6 ′ emitted by the plant (s) 2, simultaneously or successively, at least two secondary beams, each having its own wavelength and each constituting a fluorescence image at the level of a matrix sensor 10, over the entire surface of the latter (successive acquisition of images) or over a part of the surface of the latter, distinct for each secondary beam (simultaneous acquisition of images).
  • the means 8 of FIG. 1 comprises several interference filters (at least two and preferably four) mounted on a disc-shaped filter holder whose motorized rotation movement, controlled by the 'control and management computer unit, brings said filters into the light path of the fluorescence beam 6'.
  • the means 8 comprises elements for dividing the fluorescence beam 6 'into at least two, preferably four, secondary beams of distinct wavelengths each of which is directed to an area of the matrix sensor 10 which is specially assigned to it.
  • each treated by one of the interference filters 8 and the images collected by the aforementioned unit 4 are, for example, taken at four different wavelengths which correspond to the maxima of blue fluorescence.
  • green at 440 nm and 520 nm (F440 and F520) and chlorophyll fluorescence at 690 nm and 740 nm (F690 and F740) the beam 6 of the excitation laser advantageously emitting in the ultraviolet preferably from 380 nm to 390 nm, and in the green, preferably from 560 nm to 600 nm.
  • the excitation in the green will allow, on the one hand, a greater depth of penetration and, on the other hand, a more direct excitation of the chlorophyll, while the blue excitation will not only provide information on the blue fluorescence and green but also on the efficiency of energy transfer to chloroplasts.
  • the durations of the opening sequences of the assembly 9 [light shutter / intensifier] forming part of the unit 4 for measuring and taking images and the durations of the laser pulses of the emission unit 3 are correlated with each other and that the operations of the matrix sensor 10, of the laser device 3 ′ of the emission unit 3 and of the assembly 9 shutter / light intensifier are synchronized with each other via a corresponding loop control circuit.
  • This arrangement makes it possible to overcome the electromagnetic disturbances usually induced at the level of optical matrix sensors 10 of CCD type (charge coupled circuit) by the switching edges of the voltage pulses controlling the light intensifier tube adjacent to said sensors.
  • the opening time of the shutter / light intensifier assembly can advantageously be around 30 nanoseconds for a width at half-height of the laser pulses of 10 nanoseconds.
  • the synchronization or loop control circuit consists, firstly, by a burst signal generator 11, triggered by the CCD camera forming the matrix sensor 10 and controlled by the computer control and management unit, on the other hand, by an adjustable delay line 12 ensuring the transmission of said burst signals, in particular towards the trigger input of the laser device 3 'and, finally, a module 13 triggering of the assembly 9 [shutter / intensifier of light], receiving the burst signals transmitted by the delay line 12 with a time offset determined with respect to the laser device 3 ', said offset being a function of the distance between the device 1 and the plant (s) or area of vegetation to be analyzed, possibly measured using a range finder.
  • the triggering of the burst signal generator 11 is advantageously operated by the signal delivered by the CCIR composite video output of the CCD camera forming a matrix sensor 512 x 512 pixels, for example, divided into four image zones of 256 x 256 pixels, authorizing the accumulation, digitization and memorization of the fluorescence induced at the level of the vegetation to be analyzed at four different wavelengths, under the same conditions of excitation and illumination.
  • the fluorescence images intended to be used are obtained by summing a plurality of temporary images, each of which results from the subtraction of two raw fluorescence images obtained during two consecutive opening phases of the 'set 9, a first with laser excitation and a second without laser excitation.
  • the first raw fluorescence image is obtained by the fluorescent emission resulting from laser excitation and from excitation by sunlight and the second raw fluorescence image is obtained by the fluorescent emission resulting from the only excitation. by sunlight, each intermediate temporary image constituting a fluorescence image resulting solely from excitation by the laser.
  • FIGS. 12 to 14 illustrate certain procedures for configuring and initializing the analysis device according to the invention, all of these procedures being able to be executed by the operator at the level of the computer unit by means of screen, keyboard, "mouse” or similar interfaces.
  • the various executable software may, for example, be accessible by a selection program or "main menu" allowing access, by validation, to various options corresponding in particular to the possibilities of choice of the type of acquisition, of configuration of the acquisition , review and display of previous acquisitions, orientation and pointing of the analysis and launching of a parameterized acquisition.
  • FIG. 12 of the appended drawings illustrates the possibilities and the configuration sequence in the case of a single acquisition without archiving
  • FIG. 13 illustrates the possibilities and the configuration sequence in the case of multiple acquisitions or in sequences with archiving
  • figure 14 illustrates the configuration sequence for physical initialization and adjustment of the analysis device 1.
  • the present invention also relates to a vehicle for in situ analysis of plants and, more generally of plants, characterized in that it comprises at least one analysis device as described above, mounted in an orientable and tiltable manner. on a telescopic bracket 15 (FIGS. 4A and
  • the installation of the analysis device 1 on a vehicle 14 makes it mobile and transportable.
  • the interior space of this laboratory vehicle 14 is advantageously divided into two compartments, one of which is reserved for the operator and the associated digital processing, storage and editing and / or visualization unit. to the computer control and management unit, the other of which is fitted out for the storage of measurement equipment (interior measurements and transport).
  • a mobile generator also transported by the vehicle
  • stabilization jacks 16 can ensure the stalling of the vehicle 14 during the measurement operations.
  • the different elements making up the emission unit 3 (laser device 3 ', beam enlarger 3 ") and the measurement and image taking unit 4 (objective 7, possible beam splitter, interference filters 8, together 9 [shutter / light intensifier], CCD camera 10) are preferably small and able to withstand strong accelerations without damage.
  • said components of the transmission unit 3 and of the measurement and image-taking unit 4 are mounted on a support platform or orientable nacelle 17, forming two parallel structural assemblies in lines located in an air-conditioned enclosure 18.
  • the latter is provided on its front face with an entry window and is provided with a connection cord to the vehicle 14 for the circulation of fluids and electrical energy towards the nacelle 17, the pumping of the laser by optical fiber and the transfer in return of the positioning information and digital images collected by the CCD camera 10.
  • the size of the laser excitation beam 6 can be increased by a beam enlarger 3 "provided, for example, to cover a circle with a diameter of 0.30 m at a distance of 30 meters.
  • the CCD 10 camera and the device Image intensifiers are oriented so as to reproduce an image of fluorescence of identical surface, confused with the irradiated zone. ''
  • An optical range finder can supplement the aforementioned equipment so as to be able to accurately measure the distance between the vegetation and the equipment of the measuring head (instrumentation). It is from this information that the optical adjustments are made as well as the electronic delay adjustment.
  • the vehicle 14 is provided with a hatch and the nacelle 17 carried by the bracket 15 is movable and orientable so that the analysis device 1 can be moved between a position in situ analysis of plants 2 arranged around the vehicle 14 and a position for analyzing a sample of plant 2 taken from the surrounding medium and placed in a sample holder inside the vehicle 14.
  • the preferred laser excitation wavelengths are, on the one hand, between 380 nm and 390 nm and, on the other hand, between 560 nm and 600 nm, the inventors used to carry out their analyzes of the lengths 355 nm and 532 nm excitation waves (material available).
  • the right leaf is healthy and the left leaf is contaminated with a pathogen (in this case red spider - invisible to the naked eye).
  • a pathogen in this case red spider - invisible to the naked eye.
  • FIG. 6 represents fluorescence images obtained from a sheet of Digitalis Purpurea, subjected to a treatment with herbicide (DCMU: 3 - (3,4 Dichlorophenyl - 1,1 - dimethylurea) by root.
  • DCMU 3 - (3,4 Dichlorophenyl - 1,1 - dimethylurea
  • the four images of this figure were collected at a wavelength of 690 nm under laser excitation at 355 nm and at different time intervals after watering the plant with a dilute DCMU solution (10 ' ⁇ M).
  • FIG. 7 represents images obtained by making the pixel-to-pixel ratio of two fluorescence images from maize leaves, respectively, in good health (references), deficient in iron and deficient in zinc.
  • FIG. 8 represents images of fluorescence obtained from vine leaves, respectively healthy, deficient in potassium, deficient in magnesium and affected by calcareous chlorosis. These images were collected at 690 nm, under laser excitation at
  • potassium deficiency can be characterized by the appearance of very irregular fluorescence spots and of different intensities and that magnesium deficiency can be characterized by a greater fluorescence at the center of the leaf and rapidly decreasing in intensity towards the edge thereof.
  • FIG. 9 represents fluorescence images obtained from tobacco leaves, respectively, in good health and exhibiting water stress. These images were collected at 740 nm, under laser excitation at 355 nm. J
  • FIG. 11 represents fluorescence images obtained from a tobacco leaf subjected to a herbicide treatment (DCMU: 3 - (3,4 Dichlorophenyl - 1,1 - dimethylurea) by surface spraying. The three images of this figure were collected at 690 nm, under laser excitation of 355 nm.
  • DCMU herbicide treatment
  • Images a, b and c respectively represent a healthy leaf before treatment, the same leaf treated by spraying on its left half on the rear face and analyzed 10 minutes, then 30 minutes, after application of the herbicide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

La présente invention a pour objet un dispositif d'analyse non destructive de plantes et un véhicule comportant un tel dispositif embarqué. Dispositif comprenant une unité (3) d'émission d'un faisceau d'excitation laser calibré (6), une unité (4) de mesure et de prise d'images de la fluorescence émise par la ou les plante(s) (2) irradiée(s) et une unité de traitement numérique, de stockage et d'édition ou de visualisation des images recueillies, associée à une unité informatique de commande et de gestion du fonctionnement du dispositif, caractérisé en ce que l'unité d'émission (3) fournit au moins deux longueurs d'ondes d'excitation laser et en ce que l'unité (4) de mesure et de prise d'images comporte des moyens (7, 8, 9) pour former, à partir d'un même faisceau de fluorescence (6') émis par la ou les plante(s) (2), simultanément ou successivement, au moins deux faisceaux secondaires, ayant chacun une longueur d'onde propre et constituant chacun une image de fluorescence au niveau d'un capteur matriciel (10), sur la totalité de la surface de ce dernier ou sur une partie de la surface de ce dernier, distincte pour chaque faisceau secondaire.

Description

Dispositif d'analyse non destructive de plantes et véhicule comportant un tel dispositif embarqué ,
La présente invention concerne le domaine de l'étude de la végétation, plus particulièrement des plantes, dans le domaine forestier et de l'agriculture, et a pour objet un dispositif d'analyse non destructive de plantes, ainsi qu'un véhicule d'analyse comportant un tel dispositif embarqué. En vue d'optimiser l'exploitation des surfaces agricoles et forestières, il est primordial de pouvoir déterminer les facteurs limitatifs de la croissance des plantes et de détecter le plus tôt possible l'apparition de facteurs nuisibles.
Ainsi, en vue d'étudier et de quantifier l'influence de carences, de stress hydriques ou de maladies d'origine parasitaire sur la végétation, divers types d'analyses sont actuellement connus et généralement effectués en laboratoire après prélèvement d'échantillons sur les plantes à étudier.
Toutefois, ces analyses hors limites ne permettent pas de prendre en compte l'environnement de la plante concernée, nécessitent des prélèvements et des conditionnements complexes et fastidieux, n'autorisent l'étude que de certaines parties de plante (pour des plantes de grande taille) ou de certaines plantes périphériques d'un champ, peuvent aboutir à la destruction de la plante concernée et ne fournissent pas de résultats immédiats in situ susceptibles d'orienter, sur place, les analyses ultérieures par la sélection de certaines plantes ou parties de plantes, en fonction des résultats antérieurs. Le besoin d'une analyse non destructive, effectuée à distance et opérée sur les plantes telles qu'elles se présentent dans leurs milieux naturels (alimentation exposition au vent et au soleil, orientation et analogues), se fait sentir depuis de nombreuses années.
Par ailleurs, on connaît le principe de la mesure par fluorescence qui consiste à acquérir de façon optique l'image de la fluorescence de la végétation, notamment des feuilles, induite par une excitation lumineuse brève, provenant d'un faisceau laser projeté sur cette dernière.
Il existe déjà à ce jour quelques dispositifs qui permettent d'effectuer des mesures pour extraire des informations par la méthode de la fluorescence induite dans la végétation.
Ainsi, on connaît par exemple :
- par le document "Plant Efficiency Analyser" de HANSATECH, le principe général de la mesure par fluorescence sur des plantes, ainsi que les résultats qui peuvent en être retirés. De plus, ce document présente un appareil permettant de mesurer sur une feuille l'émission lumineuse produite suite à l'excitation par des diodes électroluminescentes, la mesure s'effectuant sur une petite surface par une photodiode ;
- par le document J. Plant Physiol., Vol. 148, pages 632 à 637, 1996, "Remote Fluorescence Measurements of Végétation Spectrally Resolved and by
Multi-Colour Fluorescence Imaging", JONAS JOHANSSON & al., un dispositif de mesure à distance par fluorescence laser et de recueil d'images produites par fluorescence à différentes longueurs d'onde. Dans ce document, la fluorescence est mesurée de façon globale quelle que soit la zone d'intérêt dans l'image par l'interposition d'un spectrophotomètre qui balaye les différentes longueurs d'ondes successivement et une seconde voie permet l'acquisition de deux images simultanées à deux fréquences différentes.
- par le document Aust. J. Plant Physiol., 1994, 22, pages 277 à 284, "Quantitative Mapping of Leaf Photosynthesis using Chlorophyll Fluorescence Imaging", Bernard Genty et al., on connaît un dispositif de mesure par fluorescence de la photosynthèse d'une feuille, après prélèvement et en dehors de son environnement, par un dispositif de mesure en laboratoire, le système décrit n'étant pas adapté pour une mesure globale in situ.
Toutefois, les dispositifs connus précités ne fournissent pas suffisamment d'informations pour permettre une analyse précise et l'établissement d'un diagnostic après une unique séance de mesure, et aucun de ces dispositifs connus n'est adapté pour effectuer, avec le même dispositif, une mesure globale in situ et une mesure sur un élément particulier échantillonné.
De plus, aucun de ces dispositifs ne permet de s'affranchir totalement de la luminosité parasite, ni des parasites générés par son mode de commande.
Enfin, aucun de ces dispositifs connus ne propose un dispositif de structure simple et aisément transportable pour des mesures in situ.
L'invention a notamment pour but de pallier un ou plusieurs des inconvénients des dispositifs connus précités. A cet effet, l'invention a pour objet un dispositif d'analyse non destructive de plantes, et plus généralement de végétaux, par mesure de la fluorescence induite sous excitation laser, comprenant une unité d'émission d'un faisceau d'excitation laser calibré, une unité de mesure et de prise d'images de la fluorescence émise par la ou les plante(s) irradiée(s) et une unité de traitement numérique, de stockage et d'édition ou de visualisation des images recueillies, associée à une unité informatique de commande et de gestion du fonctionnement du dispositif, dispositif caractérisé en ce que l'unité d'émission fournit au moins deux longueurs d'ondes d'excitation laser et en ce que l'unité de mesure et de prise d'images comporte des moyens pour former, à partir d'un même faisceau de fluorescence émis par la ou les plante(s), simultanément ou successivement, au moins deux faisceaux secondaires, ayant chacun une longueur d'onde propre et constituant chacun une image de fluorescence au niveau d'un capteur matriciel, sur la totalité de la surface de ce dernier (acquisition successive d'images) ou sur une partie de la surface de ce dernier, distincte pour chaque faisceau secondaire (acquisition simultanée d'images).
L'invention a également pour objet un véhicule d'analyse in situ de plantes et, plus généralement de végétaux, caractérisé en ce qu'il comporte au moins un dispositif d'analyse tel que mentionné ci-dessus, monté de manière orientable et inclinable sur une potence télescopique.
L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à un mode de réalisation préféré, donné à titre d'exemple non limitatif, et expliqué avec référence aux dessins schématiques annexés, dans lesquels : la figure 1 est une vue schématique d'un dispositif d'analyse selon l'invention ; la figure 2 est une vue schématique de la boucle de synchronisation faisant partie du dispositif représenté à la figure 1 ; la figure 3 est une vue schématique montrant les différents éléments constitutifs du dispositif selon l'invention ; les figures 4A et 4B sont des vues en élévation latérale d'un véhicule d'analyse selon l'invention, avec le dispositif d'analyse respectivement dans une position d'analyse externe et dans une position d'analyse d'un échantillon à l'intérieur du véhicule faisant également partie de l'invention ; les figures 5 à 11 représentent des images obtenues au moyen du dispositif d'analyse selon l'invention par fluorescence induite dans des parties de plantes, et, les figures 12 à 14 représentent des exemples d'organigrammes d'algorithmes d'exécution de certaines fonctions du dispositif d'analyse selon l'invention.
Comme le montrent les figures 1 et 3 des dessins annexés, le dispositif d'analyse non destructive de plantes, et plus généralement de végétaux, par mesure de la fluorescence induite sous excitation laser, comprend une unité d'émission 3 d'un faisceau d'excitation laser 6 calibré, une unité 4 de mesure et de prise d'images de la fluorescence émise par la ou les plante(s) 2 irradiée(s) et une unité de traitement numérique, de stockage et d'édition ou de visualisation des images recueillies, associée à une unité informatique de commande et de gestion du fonctionnement du dispositif 1. '
Conformément à l'invention, l'unité d'émission 3 fournit au moins deux longueurs d'ondes d'excitation laser et l'unité 4 de mesure et de prise d'images comporte des moyens 7, 8, 9 pour former, à partir d'un même faisceau de fluorescence 6' émis par la ou les plante(s) 2, simultanément ou successivement, au moins deux faisceaux secondaires, ayant chacun une longueur d'onde propre et constituant chacun une image de fluorescence au niveau d'un capteur matriciel 10, sur la totalité de la surface de ce dernier (acquisition successive d'images) ou sur une partie de la surface de ce dernier, distincte pour chaque faisceau secondaire (acquisition simultanée d'images).
Les multiples informations fournies par cette acquisition parallèle ou successive d'images dans des conditions extérieures identiques, mais en mettant en oeuvre des paramètres d'irradiation laser et de traitement du faisceau optique en retour différents pour chaque image, permettent, par comparaison avec des données ou des images de référence (recueillies lors de tests d'étalonnage et de calibrage préalables) ou par comparaisons mutuelles entre elles (par exemple : rapport des intensités aux différentes longueurs d'ondes en provenance de la végétation), d'analyser l'état de la végétation étudiée et de diagnostiquer, d'évaluer et de quantifier l'état de stress, les carences, les invasions parasitaires ou autres éventuelles déficiences de ladite végétation.
Selon un premier mode de réalisation de l'invention, le moyen 8 de la figure 1 comprend plusieurs filtres interférentiels (au moins deux et préférentiellement quatre) montés sur un porte-filtre en forme de disque dont le mouvement en rotation motorisé, contrôlé par l'unité informatique de commande et de gestion, amène lesdits filtres dans le trajet lumineux du faisceau de fluorescence 6'.
Selon un second mode de réalisation de l'invention, adapté à une acquisition simultanée d'images, le moyen 8 comprend des éléments pour diviser le faisceau de fluorescence 6' en au moins deux, préférentiellement quatre, faisceaux secondaires de longueurs d'onde distinctes dont chacun est dirigé vers une zone du capteur matriciel 10 qui lui est spécialement affectée.
Ces faisceaux secondaires sont donc, simultanément ou successivement, traités chacun par un des filtres interférentiels 8 et les images recueillies par l'unité 4 précitée sont, par exemple, prises à quatre longueurs d'onde différentes qui correspondent aux maxima de la fluorescence bleue-verte à 440 nm et 520 nm (F440 et F520) et de la fluorescence chlorophyllienne à 690 nm et 740 nm (F690 et F740), le faisceau 6 du laser d'excitation émettant avantageusement dans l'ultraviolet préférentiellement de 380 nm à 390 nm, et dans le vert, préférentiellement de 560 nm à 600 nm.
L'excitation dans le vert permettra, d'une part, une plus grande profondeur de pénétration et, d'autre part, une excitation plus directe de la chlorophylle, alors que l'excitation bleue fournira non seulement des informations sur la fluorescence bleue et verte mais également sur l'efficacité de transfert de l'énergie vers les chloroplastes.
En vue d'améliorer le rapport signal fluorescent efficace / bruit de lumière ambiante, il est prévu que les durées des séquences d'ouverture de l'ensemble 9 [obturateur / intensificateur de lumière] faisant partie de l'unité 4 de mesure et de prise d'images et les durées des impulsions laser de l'unité 3 d'émission soient corrélées entre elles et que les fonctionnements du capteur matriciel 10, du dispositif laser 3' de l'unité d'émission 3 et de l'ensemble 9 obturateur / intensificateur de lumière soient synchronisés entre eux par l'intermédiaire d'un circuit d'asservissement en boucle correspondant.
Cette disposition permet de s'affranchir des perturbations électromagnétiques induites habituellement au niveau des capteurs matriciels optiques 10 de type à CCD (circuit à couplage de charges) par les fronts de commutation des impulsions de tension commandant le tube intensificateur de lumière adjacent auxdits capteurs.
A titre d'exemple, le temps d'ouverture de l'ensemble obturateur / intensificateur de lumière peut être avantageusement d'environ 30 nanosecondes pour une largeur à mi-hauteur des impulsions laser de 10 nanosecondes. Comme le montre la figure 2 des dessins annexés, le circuit de synchronisation ou d'asservissement en boucle est constitué, d'une part, par un générateur de signaux en salves 11 , déclenché par la caméra à CCD formant le capteur matriciel 10 et contrôlé par l'unité informatique de commande et de gestion, d'autre part, par une ligne à retard 12 réglable assurant la transmission desdits signaux en salves, notamment vers l'entrée de déclenchement du dispositif laser 3' et, enfin, un module 13 de déclenchement de l'ensemble 9 [obturateur / intensificateur de lumière], recevant les signaux en salves transmis par la ligne à retard 12 avec un décalage temporel déterminé par rapport au dispositif laser 3', ledit décalage étant fonction de la distance entre le dispositif 1 et la ou les plante(s) ou zone de végétation à analyser, éventuellement mesurée à l'aide d'un télémètre. Le déclenchement du générateur de signaux en salves 11 est avantageusement opéré par le signal délivré par la sortie vidéo composite CCIR dé la caméra à CCD formant un capteur matriciel 512 x 512 pixels, par exemple, divisé en quatre zones images de 256 x 256 pixels, autorisant l'accumulation, la numérisation et la mémorisation de la fluorescence induite au niveau de la végétation à analyser à quatre longueurs d'onde différentes, dans les mêmes conditions d'excitation et d'illumination.
Afin d'éliminer l'effet de mouvement de la végétation ou des plantes à analyser et de s'affranchir des conséquences des fluctuations de la lumière ambiante entre la période d'acquisition (sous excitation laser) et la période de soustraction de la lumière ambiante due à l'exposition solaire, les images de fluorescence destinées à être exploitées sont obtenues par sommation d'une pluralité d'images temporaires dont chacune résulte de la soustraction de deux images de fluorescences brutes obtenues lors de deux phases d'ouverture consécutives de l'ensemble 9, une première avec excitation laser et une seconde sans excitation laser.
Ainsi, la première image de fluorescence brute est obtenue, par l'émission fluorescente résultant d'une excitation laser et de l'excitation par la lumière solaire et la seconde image de fluorescence brute est obtenue par l'émission fluorescente résultant de la seule excitation par la lumière solaire, chaque image temporaire intermédiaire constituant une image de fluorescence résultant uniquement de l'excitation par le laser.
Les figures 12 à 14 illustrent certaines procédures de paramétrage et d'initialisation du dispositif d'analyse selon l'invention, l'ensemble de ces procédures pouvant être exécutées par l'opérateur au niveau de l'unité informatique par l'intermédiaire d'interfaces du type écran, clavier, "souris" ou analogue.
Les différents logiciels exécutables pourront, par exemple, être accessibles par un programme de sélection ou "menu principal" permettant d'accéder, par validation, à diverses options correspondant notamment aux possibilités de choix du type d'acquisition, de paramétrage de l'acquisition, de relecture et de visualisation d'acquisitions antérieures, d'orientation et de pointage du dispositif d'analyse et de lancement d'une acquisition paramétrée.
A titre d'exemples, la figure 12 des dessins annexés illustre les possibilités et la séquence de paramétrage dans le cas d'une acquisition simple sans archivage, la figure 13 illustre les possibilités et la séquence de paramétrage dans le cas d'acquisitions multiples ou en séquences avec archivage et la figure 14 illustre la séquence de paramétrage pour l'initialisation physique et le réglage du dispositif d'analyse 1. •
La présente invention a également pour objet un véhicule d'analyse in situ de plantes et, plus généralement de végétaux, caractérisé en ce qu'il comporte au moins un dispositif d'analyse tel que décrit ci-dessus, monté de manière orientable et inclinable sur une potence télescopique 15 (figures 4A et
4B).
L'implantation du dispositif d'analyse 1 sur un véhicule 14 le rend mobile et transportable. L'espace intérieur de ce véhicule laboratoire 14 est avantageusement divisé en deux compartiments, dont l'un est réservé à l'opérateur et à l'unité de traitement numérique, de stockage et d'édition et/ou de visualisation d'images associée à l'unité informatique de commande et de gestion et dont l'autre est aménagé pour le rangement de l'équipement de mesure (mesures intérieures et transport). Un groupe électrogène mobile, également transporté par le véhicule
14, est disposé à même le sol pendant les mesures et assure les besoins en énergie électrique de l'ensemble du dispositif d'analyse 1.
En outre, des vérins de stabilisation 16 pourront assurer le calage du véhicule 14 pendant les opérations de mesure. Les différents éléments composant l'unité d'émission 3 (dispositif laser 3', agrandisseur de faisceau 3") et l'unité de mesure et de prise d'images 4 (objectif 7, éventuel diviseur de faisceau, filtres interférentiels 8, ensemble 9 [obturateur / intensificateur de lumière], caméra à CCD 10) sont préférentiellement de faible taille et aptes à résister sans dommage à de fortes accélérations.
De plus, lesdites composantes de l'unité d'émission 3 et de l'unité 4 de mesure et de prise d'images sont montées sur une plate-forme support ou nacelle 17 orientable, en formant deux ensembles structurels parallèles en lignes situés dans une enceinte climatisée 18. Cette dernière est pourvue sur sa face avant d'une fenêtre d'entrée et est munie d'un cordon de raccordement au véhicule 14 pour la circulation de fluides et d'énergie électrique vers la nacelle 17, le pompage du laser par fibre optique et le transfert en retour des informations de positionnement et des images numériques recueillies par la caméra CCD 10. La taille du faisceau d'excitation laser 6 peut être augmentée par un agrandisseur de faisceau 3" prévu, par exemple, pour couvrir un cercle de diamètre 0,30 m à une distance de 30 mètres. La caméra CCD 10 ainsi que le dispositif intensificateur d'images sont orientés de façon à reprendre une image de fluorescence de surface identique, confondue avec la zone irradiée. '
Un télémètre optique peut compléter l'équipement précité de façon à pouvoir mesurer précisément la distance entre la végétation et les équipements de la tête de mesure (instrumentation). C'est à partir de ces informations que s'effectuent les réglages optiques ainsi que le réglage du retard électronique
(synchronisation) qui permet d'ouvrir l'obturateur de l'intensificateur de brillance.
Comme le montrent les figures 4A et 4B des dessins annexés, le véhicule 14 est muni d'une trappe et la nacelle 17 portée par la potence 15 est deplaçable et orientable de telle manière que le dispositif d'analyse 1 puisse être déplacé entre une position d'analyse in situ de plantes 2 disposées autour du véhicule 14 et une position d'analyse d'un échantillon de plante 2 prélevé dans le milieu environnant et placé dans un porte-échantillon à l'intérieur du véhicule 14.
A titre d'illustration des possibilités du dispositif d'analyse 1 selon l'invention, on décrira ci-après différents résultats d'analyse de divers types de parties de plantes 2 à l'appui des images des figures 5 à 11.
Bien que les longueurs d'ondes d'excitation laser préférentielles soient comprises, d'une part, entre 380 nm et 390 nm et, d'autre part, entre 560 nm et 600 nm, les inventeurs ont utilisé pour réaliser leurs analyses des longueurs d'ondes d'excitation de 355 nm et de 532 nm (matériel disponible).
L'homme du métier comprendra donc qu'en utilisant les longueurs d'ondes préférentielles indiquées les résultats obtenus seront meilleurs que ceux apparaissant sur les figures 5 à 11.
La figure 5 représente des images de fluorescence obtenues à partir de feuilles de haricots verts avec une excitation laser à 355 nm et recueillies à quatre longueurs d'onde d'émission caractéristiques pour les plantes (F440 = 440 nm, F520 = 520 nm, F690 = 690 nm, F 740 = 740 nm).
Sur chaque image, la feuille de droite est saine et la feuille de gauche est contaminée par un agent pathogène (dans ce cas araignée rouge - invisible à l'oeil nu).
On constate que sur les images F440 et F520 la feuille contaminée présente un motif de fluorescence caractéristique (petites taches blanches) et une fluorescence plus intense que celle de la feuille en bonne santé. Par contre, la fluorescence chlorophyllienne (F690 et F740) de cette même feuille est nettement plus faible et moins caractérisante. La figure 6 représente des images de fluorescence obtenues à partir d'une feuille de Digitalis Purpurea, soumise à un traitement par herbicide (DCMU : 3 - (3,4 Dichlorophényl - 1,1 - diméthylurea) par voie racinaire.
Les quatre images de cette figure ont été recueillies à une longueur d'onde de 690 nm sous une excitation laser à 355 nm et à différents intervalles de temps après arrosage de la plante avec une solution de DCMU diluée (10'^M).
On observe très nettement sur ces images, les différents stades de la diffusion par les nervures de la solution de DCMU sur toute la surface de la feuille en fonction du temps écoulé. La figure 7 représente des images obtenues en faisant le rapport pixel à pixel de deux images de fluorescence à partir de feuilles de maïs, respectivement, en bonne santé (références), carencée en fer et carencée en zinc.
Ces images ont été obtenues aux longueurs d'onde indiquées et sous excitation laser à 355 nm. On remarque sur la feuille de mais carencée en fer des striures parallèles à la nervure centrale et sur la feuille carencée en zinc des taches larges sans striures apparentes, alors que l'image rapport de la feuille saine ne présente aucune hétérogénéité apparente.
On notera également qu'à l'oeil nu des striures sont apparentes sur les feuilles saines et carencees et ne permettent pas, par conséquent, de caractériser ces dernières.
La figure 8 représente des images de fluorescence obtenues à partir de feuilles de vignes, respectivement saine, carencée en potassium, carencée en magnésium et atteinte d'une chlorose calcaire. Ces images ont été recueillies à 690 nm, sous une excitation laser à
532 nm.
D ressort d'une observation de ces images que la carence en potassium peut être caractérisée par l'apparition de taches de fluorescence très irrégulières et de différentes intensités et que la carence en magnésium peut être caractérisée par une fluorescence plus importante au niveau du centre de la feuille et diminuant rapidement en intensité vers le bord de cette dernière.
On note également que dans le cas de chlorose calcaire les nervures sont très fluorescentes par rapport au reste de la feuille.
La figure 9 représente des images de fluorescence obtenues à partir de feuilles de tabac, respectivement, en bonne santé et présentant un stress hydrique. Ces images ont été recueillies à 740 nm, sous une excitation laser à 355 nm. J
Ces images montrent nettement une fluorescence plus importante au niveau du bord de la feuille stressée, constituant un symptôme précoce d'assèchement de la feuille, alors qu'aucune différence n'est visible entré les deux feuilles concernées à l'oeil nu.
La figure 10 représente des images de fluorescence obtenues à partir de feuilles de pommier avec une excitation laser à 355 nm et recueillies à quatre longueurs d'onde d'émission caractéristiques pour les plantes (F440 = 440 nm, F520 = 520 nm, F690 = 690 nm, F 740 = 740 nm).
Sur chaque image, la feuille de gauche a été exposée au soleil pendant sa croissance et la feuille de droite a été exposée au Nord pendant sa croissance.
On constate que sur les images F690 et F740 les bords de la feuille exposée au soleil ou au Sud sont plus fluorescents que ceux de la feuille exposée au Nord, ce qui indique un stress hydrique et une maturité plus avancée.
La figure 11 représente des images de fluorescence obtenues à partir d'une feuille de tabac soumise à un traitement par herbicide (DCMU : 3 - (3,4 Dichlorophényl - 1,1 - diméthylurea) par pulvérisation en surface. Les trois images de cette figure ont été recueillies à 690 nm, sous une excitation laser de 355 nm.
Les images a, b et c représentent respectivement une feuille saine avant traitement, la même feuille traitée par pulvérisation sur sa moitié gauche en face arrière et analysée 10 minutes, puis 30 minutes, après application de l'herbicide.
On note, à l'observation de ces images, une augmentation importante de la fluorescence chlorophyllienne dans la partie de la feuille traitée (pas de (changement visible à l'oeil nu), indiquant un blocage de l'appareil photosynthétique de la feuille dans cette partie. Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés aux dessins annexés. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Claims

R E V E N D I C A T I O N S
1. Dispositif d'analyse non destructive de plantes, et plus généralement de végétaux, par mesure de la fluorescence induite sous "excitation laser, comprenant une unité d'émission d'un faisceau d'excitation laser calibré, une unité de mesure et de prise d'images de la fluorescence émise par la ou les plante(s) irradiée(s) et une unité de traitement numérique, de stockage et d'édition ou de visualisation des images recueillies, associée à une unité informatique de commande et de gestion du fonctionnement du dispositif, caractérisé en ce que l'unité d'émission (3) fournit au moins deux longueurs d'ondes d'excitation laser et en ce que l'unité (4) de mesure et de prise d'images comporte des moyens (7, 8, 9) pour former, à partir d'un même faisceau de fluorescence (6') émis par la ou les plante(s) (2), simultanément ou successivement, au moins deux faisceaux secondaires, ayant chacun une longueur d'onde propre et constituant chacun une image de fluorescence au niveau d'un capteur matriciel (10), sur la totalité de la surface de ce dernier ou sur une partie de la surface de ce dernier, distincte pour chaque faisceau secondaire.
2. Dispositif selon la revendication 1, caractérisé en ce que le moyen (8) comprend plusieurs filtres interférentiels montés sur un porte-filtre en forme de disque dont le mouvement en rotation motorisé, contrôlé par l'unité informatique de commande et de gestion, amène lesdits filtres dans le trajet lumineux du faisceau de fluorescence (6').
3. Dispositif selon la revendication 1, caractérisé en ce que le moyen (8) comprend des éléments pour diviser le faisceau de fluorescence (6') en au moins deux, préférentiellement quatre, faisceaux secondaires de longueurs d'onde distinctes dont chacun est dirigé vers une zone du capteur matriciel (10) qui lui est spécialement affectée.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les durées des séquences d'ouverture de l'ensemble (9) obturateur / intensificateur de lumière faisant partie de l'unité (4) de mesure et de prise d'images et les durées des impulsions laser de l'unité (3) d'émission sont correlées entre elles et en ce que les fonctionnements du capteur matriciel (10), du dispositif laser (3') de l'unité d'émission (3) et de l'ensemble (9) obturateur / intensificateur de lumière sont synchronisés entre eux par l'intermédiaire d'un circuit d'asservissement en boucle correspondant.
5. Dispositif selon la revendication 4, caractérisé en ce que le circuit de synchronisation ou d'asservissement en boucle est constitué, d'une part par un générateur de signaux en salves (1 1), déclenché par la caméra à CCD formant le capteur matriciel (10) et contrôlé par l'unité informatique de commande et de gestion, d'autre part, par une ligne à retard (12) réglable assurant la transmission desdits signaux en salves, notamment vers l'entrée de déclenchement du dispositif laser (3') et, enfin, un module (13) de déclenchement de l'ensemble (9) obturateur / intensificateur de lumière, recevant les signaux en salves transmis par la ligne à retard (12) avec un décalage temporel déterminé par rapport au dispositif laser (3'), ledit décalage étant fonction de la distance entre le dispositif (1) et la ou les plante(s) ou zone de végétation à analyser, éventuellement mesurée à l'aide d'un télémètre.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les images de fluorescence destinées à être exploitées sont obtenues par sommation d'une pluralité d'images temporaires dont chacune résulte de la soustraction de deux images de fluorescences brutes obtenues lors de deux phases d'ouverture consécutives de l'ensemble (9) obturateur / intensificateur de lumière, une première avec excitation laser et une seconde sans excitation laser.
7. Véhicule d'analyse in situ de plantes et, plus généralement de végétaux, caractérisé en ce qu'il comporte au moins un dispositif d'analyse selon l'une quelconque des revendications 1 à 6, monté de manière orientable et inclinable sur une potence télescopique (15).
8. Véhicule selon la revendication 7, caractérisé en ce que les composantes de l'unité d'émission (3) et de l'unité (4) de mesure et de prise d'images sont montées sur une plate-forme support ou nacelle (17) orientable, en formant deux ensembles structurels parallèles situés dans une enceinte climatisée (18).
9. Véhicule selon l'une quelconque des revendications 7 et 8, caractérisé en ce que le dispositif d'analyse (1) peut être déplacé entre une position d'analyse in situ de plantes (2) disposées autour du véhicule (14) et une position d'analyse d'un échantillon de plante (2) prélevé dans le milieu environnant et placé dans un porte-échantillon à l'intérieur du véhicule (14). REVENDICATIONS MODIFIEES
[reçues par le Bureau international le 31 mai 1999 (31.05.99); revendication 1 modifiée; autres revendications inchangées ( 2 pages )]
1. Dispositif d'analyse non destructive de plantes, et plus généralement de végétaux, par mesure de la fluorescence induite sous excitation laser, comprenant une unité d'émission d'un faisceau d'excitation laser calibré, une unité de mesure et de prise d'images de la fluorescence émise par la ou les plante(s) irradiée(s) et une unité de traitement numérique, de stockage et d'édition ou de visualisation des images recueillies, associée à une unité informatique de commande et de gestion du fonctionnement du dispositif, caractérisé en ce que l'unité d'émission (3) fournit au moins deux longueurs d'ondes d'excitation laser, notamment dans l'ultraviolet et le vert, et en ce que l'unité (4) de mesure et de prise d'images comporte des moyens (7, 8, 9) pour former, à partir d'un même faisceau de fluorescence (6') émis par la ou les plante(s) (2), simultanément ou successivement, au moins deux faisceaux secondaires, ayant chacun une longueur d'onde propre et constituant chacun une image de fluorescence au niveau d'un capteur matriciel ( 10), sur la totalité de la surface de ce dernier ou sur une partie de la surface de ce dernier, distincte pour chaque faisceau secondaire.
2. Dispositif selon la revendication 1, caractérisé en ce que le moyen (8) comprend plusieurs filtres interférentiels montés sur un porte-filtre en forme de disque dont le mouvement en rotation motorisé, contrôlé par l'unité informatique de commande et de gestion, amène lesdits filtres dans le trajet lumineux du faisceau de fluorescence (6').
3. Dispositif selon la revendication 1, caractérisé en ce que le moyen (8) comprend des éléments pour diviser le faisceau de fluorescence (6') en au moins deux, préférentiellement quatre, faisceaux secondaires de longueurs d'onde distinctes dont chacun est dirigé vers une zone du capteur matriciel ( 10) qui lui est spécialement affectée.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les durées des séquences d'ouverture de l'ensemble (9) obturateur / intensificateur de lumière faisant partie de l'unité (4) de mesure et de prise d'images et les durées des impulsions laser de l'unité (3) d'émission sont correlées entre elles et en ce que les fonctionnements du capteur matriciel ( 10), du dispositif laser (3') de l'unité d'émission (3) et de l'ensemble (9) obturateur / intensificateur de lumière sont synchronisés entre eux par l'intermédiaire d'un circuit d'asservissement en boucle correspondant.
5. Dispositif selon la revendication 4, caractérisé en ce que le circuit de synchronisation ou d'asservissement en boucle est constitué, d'une part par un générateur de signaux en salves ( 1 1 ), déclenché par la caméra à CCD formant le capteur matriciel ( 10) et contrôlé par l'unité informatique de commande et de gestion, d'autre part, par une ligne à retard ( 12) réglable assurant la transmission desdits signaux en salves, notamment vers l'entrée de déclenchement du dispositif laser (3') et, enfin, un module ( 13) de déclenchement de l'ensemble (9) obturateur / intensificateur de lumière, recevant les signaux en salves transmis par la ligne à retard (12) avec un décalage temporel déterminé par rapport au dispositif laser (3'), ledit décalage étant fonction de la distance entre le dispositif ( 1 ) et la ou les plante(s) ou zone de végétation à analyser, éventuellement mesurée à l'aide d'un télémètre.
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les images de fluorescence destinées à être exploitées sont obtenues par sommation d'une pluralité d'images temporaires dont chacune résulte de la soustraction de deux images de fluorescences brutes obtenues lors de deux phases d'ouverture consécutives de l'ensemble (9) obturateur / intensificateur de lumière, une première avec excitation laser et une seconde sans excitation laser.
7. Véhicule d'analyse in situ de plantes et, plus généralement de végétaux, caractérisé en ce qu'il comporte au moins un dispositif d'analyse selon l'une quelconque des revendications 1 à 6, monté de manière orientable et inclinable sur une potence télescopique ( 15).
8. Véhicule selon la revendication 7, caractérisé en ce que les composantes de l'unité d'émission (3) et de l'unité (4) de mesure et de prise d'images sont montées sur une plate-forme support ou nacelle ( 17) orientable, en formant deux ensembles structurels parallèles situés dans une enceinte climatisée ( 18).
9. Véhicule selon l'une quelconque des revendications 7 et 8, caractérisé en ce que le dispositif d'analyse ( 1 ) peut être déplacé entre une position d'analyse in situ de plantes (2) disposées autour du véhicule ( 14) et une position d'analyse d'un échantillon de plante (2) prélevé dans le milieu environnant et placé dans un porte-échantillon à l'intérieur du véhicule ( 14).
EP98962535A 1997-12-22 1998-12-21 Dispositif d'analyse non destructive de plantes et vehicule comportant un tel dispositif embarque Withdrawn EP1040339A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
LU90186A LU90186B1 (fr) 1997-12-22 1997-12-22 Dispositif d'analyse non destructive de plantes et véhicule comportant un tel dispositif embarqué
LU90186 1997-12-22
PCT/FR1998/002811 WO1999032876A1 (fr) 1997-12-22 1998-12-21 Dispositif d'analyse non destructive de plantes et vehicule comportant un tel dispositif embarque

Publications (1)

Publication Number Publication Date
EP1040339A1 true EP1040339A1 (fr) 2000-10-04

Family

ID=19731726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98962535A Withdrawn EP1040339A1 (fr) 1997-12-22 1998-12-21 Dispositif d'analyse non destructive de plantes et vehicule comportant un tel dispositif embarque

Country Status (7)

Country Link
US (1) US6573512B1 (fr)
EP (1) EP1040339A1 (fr)
JP (1) JP2001527213A (fr)
CA (1) CA2315357A1 (fr)
LU (1) LU90186B1 (fr)
NO (1) NO20002263L (fr)
WO (1) WO1999032876A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795568B1 (en) * 1998-07-17 2004-09-21 Torsana Laser Technologies A/S Method and an apparatus for severing or damaging unwanted plants
KR100414641B1 (ko) * 2000-04-07 2004-01-13 동부한농화학 주식회사 형질전환식물체의 생체분석방법 및 그를 이용한 시스템
US6649417B2 (en) 2000-08-21 2003-11-18 Ut-Battelle, Llc Tissue-based standoff biosensors for detecting chemical warfare agents
US6569384B2 (en) 2000-08-21 2003-05-27 Ut-Battelle, Llc Tissue-based water quality biosensors for detecting chemical warfare agents
JP4220374B2 (ja) * 2001-09-12 2009-02-04 アプライズ テクノロジーズ,インコーポレーテッド マルチチャネル蛍光センサ
US7112806B2 (en) * 2001-09-27 2006-09-26 Robert Lussier Bio-imaging and information system for scanning, detecting, diagnosing and optimizing plant health
US7258836B2 (en) 2003-10-20 2007-08-21 Ut-Battelle, Llc Freeze resistant buoy system
US7591979B2 (en) 2003-10-20 2009-09-22 Ut-Battelle, Llc Enhanced monitor system for water protection
DE102005013043A1 (de) * 2005-03-18 2006-09-28 Siemens Ag Mobiler Fluoreszenz-Scanner für molekulare Signaturen
JP4904505B2 (ja) * 2005-03-29 2012-03-28 国立大学法人東京海洋大学 植物プランクトンの分布計測方法及びその装置
EP1912059A1 (fr) * 2006-10-11 2008-04-16 Basf Se Dispositif mobile pour la détection de fluorescence et son utilisation
US10226036B2 (en) * 2007-07-27 2019-03-12 David L. Guice Method and apparatus for controlling weeds with solar energy
US8481974B1 (en) * 2011-09-15 2013-07-09 Sandia Corporation Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency
WO2014017940A1 (fr) 2012-07-26 2014-01-30 Universidade De Coimbra Système et procédé d'évaluation in vivo et/ou in situ d'états physiologiques de tissus végétaux à l'aide de techniques d'impédance
KR20140030775A (ko) * 2012-09-03 2014-03-12 한국전자통신연구원 테라헤르츠 파를 이용한 비파괴 작물 생육 진단 장치 및 방법
US9609858B2 (en) 2013-09-13 2017-04-04 Palo Alto Research Center Incorporated Unwanted plant removal system having variable optics
US11178823B2 (en) 2014-04-07 2021-11-23 Premier Citrus Apz, Llc Systems and methods for using light energy to facilitate penetration of substances in plants
US10241097B2 (en) 2015-07-30 2019-03-26 Ecoation Innovative Solutions Inc. Multi-sensor platform for crop health monitoring
RU2646937C1 (ru) * 2016-12-21 2018-03-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Дистанционный способ обнаружения стрессовых состояний растений
CN107064089B (zh) * 2017-04-13 2023-04-18 浙江大学 一种基于物联网的辣椒苗疫病早期监测装置和方法
US11631475B2 (en) 2020-05-26 2023-04-18 Ecoation Innovative Solutions Inc. Real-time projections and estimated distributions of agricultural pests, diseases, and biocontrol agents
US11666004B2 (en) 2020-10-02 2023-06-06 Ecoation Innovative Solutions Inc. System and method for testing plant genotype and phenotype expressions under varying growing and environmental conditions
US11925151B2 (en) 2020-11-13 2024-03-12 Ecoation Innovative Solutions Inc. Stereo-spatial-temporal crop condition measurements for plant growth and health optimization
US11555690B2 (en) 2020-11-13 2023-01-17 Ecoation Innovative Solutions Inc. Generation of stereo-spatio-temporal crop condition measurements based on human observations and height measurements

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE439545B (sv) * 1978-11-01 1985-06-17 Forenede Bryggerier As Sett for styrning av en separationsprocess utford pa fron eller kernor
DE3317003A1 (de) 1983-05-10 1984-11-15 Wegmann & Co GmbH, 3500 Kassel An einem fahrzeug, insbesondere kraftfahrzeug, angeordnete beobachtungseinrichtung
SE455646B (sv) * 1984-10-22 1988-07-25 Radians Innova Ab Fluorescensanordning
US4650336A (en) * 1985-09-20 1987-03-17 Advanced Genetic Sciences, Inc. Measurement of variable fluorescence of plants
SE8602011D0 (sv) * 1986-04-30 1986-04-30 Roland Wass Anordning for metning av fotosynteseffektivitet hos vexter
JPH01112952A (ja) * 1987-10-26 1989-05-01 Satoru Matsubara 糸引納豆入り氷食品
JP2749069B2 (ja) * 1988-04-26 1998-05-13 オリンパス光学工業株式会社 蛍光顕微鏡装置
IT1236230B (it) * 1989-12-22 1993-01-25 Consiglio Nazionale Ricerche Strumento per la misura a due canali della fluorescenza della clorofilla
FI900134A (fi) * 1990-01-10 1991-07-11 Laennen Tehtaat Oy Foerfarande foer identifiering av plantor.
US5130545A (en) 1991-04-05 1992-07-14 Lussier Robert R Video imaging plant management system
US5682244A (en) * 1994-03-25 1997-10-28 Barlow; Clyde H. Automated optical detection of tissue perfusion by microspheres
US5784157A (en) * 1995-11-21 1998-07-21 The Research Foundation Of State University Of New York Method and apparatus for identifying fluorophores
US5981958A (en) * 1996-01-16 1999-11-09 Li; Ning Method and apparatus for detecting pathological and physiological change in plants
US5960104A (en) * 1996-08-16 1999-09-28 Virginia Polytechnic & State University Defect detection system for lumber
US5822068A (en) * 1997-03-10 1998-10-13 Board Of Trustees Operating Michigan State University Non-destructive method and apparatus for detection of fruit and vegetable quality

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9932876A1 *

Also Published As

Publication number Publication date
WO1999032876A1 (fr) 1999-07-01
JP2001527213A (ja) 2001-12-25
NO20002263L (no) 2000-08-22
NO20002263D0 (no) 2000-04-28
LU90186B1 (fr) 1999-06-24
US6573512B1 (en) 2003-06-03
CA2315357A1 (fr) 1999-07-01

Similar Documents

Publication Publication Date Title
EP1040339A1 (fr) Dispositif d'analyse non destructive de plantes et vehicule comportant un tel dispositif embarque
US5130545A (en) Video imaging plant management system
US20200323432A1 (en) Multispectral Detection and Presentation of an Object's Characteristics
EP2149041B1 (fr) Procede et systeme pour caracteriser un tissu biologique
FR3054037A1 (fr) Dispositif d’observation d’un echantillon
EP1633243B1 (fr) Procede et dispositif d'acquisition et de traitement d'images d'un objet tel qu'une dent
EP0811400A1 (fr) Méthode et système de détection d'incendie
FR3031035B1 (fr) Dispositif d'imagerie et procede d'imagerie
EP2179270B1 (fr) Procede et systeme pour caracteriser un tissu biologique pigmente
CA3119232C (fr) Appareil et procede pour observer une scene comportant une cible
Edner et al. Remote monitoring of vegetation using a fluorescence lidar system in spectrally resolving and multi-spectral imaging modes
FR2967493A1 (fr) Dispositif et procede de radiometrie pour determiner les caracteristiques physico-chimiques d'un echantillon.
GB2323237A (en) Interline charge coupled device
Belzile et al. An operational fluorescence system for crop assessment
CN107478586A (zh) 一种可集成化便携式农药残留浓度检测装置及方法
JP2023180758A (ja) 照明装置、撮像システム、及び評価方法
Baburaj et al. Development of Laser-Induced Multispectral Fluorescence Imaging System For Studying Coral Bleaching
EP4266990A1 (fr) Dispositif multifonctionnel et procédés d'imagerie d'irrégularités de surface/volume
Geoffray et al. Long quadrilinear CCD sensors equipped with long linear filters: Characteristics and performances for the multispectral channel of Earth observing systems
FR3117219A1 (fr) Procédé d’acquisition d’une séquence de parties d’images et système d’acquisition associé
Hueber et al. Laser-induced optronic countermeasure against charge-coupled devices and optronic counter-countermeasure in the visible region and infrared region
CN111551517A (zh) 一种蔬菜农药残留检测装置及方法
EP1089090A1 (fr) Procédé d'imagerie laser active
WO2016203163A1 (fr) Système et procédé de collection pour spectroscopie optique
Jockers Near-infrared observations of the encounter of Comet Shoemaker-Levy 9 with Jupiter with the ESO-German 2.2 m telescope on La Silla, Chile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMUNAUTE EUROPEENNE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030820