EP1035391B1 - Procédé et installation de purification et de séparation d'air par voie cryogénique sans pré-refroidissement - Google Patents

Procédé et installation de purification et de séparation d'air par voie cryogénique sans pré-refroidissement Download PDF

Info

Publication number
EP1035391B1
EP1035391B1 EP00400236A EP00400236A EP1035391B1 EP 1035391 B1 EP1035391 B1 EP 1035391B1 EP 00400236 A EP00400236 A EP 00400236A EP 00400236 A EP00400236 A EP 00400236A EP 1035391 B1 EP1035391 B1 EP 1035391B1
Authority
EP
European Patent Office
Prior art keywords
air
adsorption
temperature
process according
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00400236A
Other languages
German (de)
English (en)
Other versions
EP1035391A1 (fr
Inventor
Georges Kraus
Patrick Le Bot
Alain Guillard
Philippe Fraysse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9543110&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1035391(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1035391A1 publication Critical patent/EP1035391A1/fr
Application granted granted Critical
Publication of EP1035391B1 publication Critical patent/EP1035391B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/416Further details for adsorption processes and devices involving cryogenic temperature treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to air separation methods atmospheric by cryogenic distillation improved with elimination of impurities by adsorption, prior to said distillation.
  • atmospheric air contains compounds or impurities to be removed before any cryogenic separation of the air, that is to say prior to the introduction of air into the exchangers thermal of the cold box of an air separation unit.
  • This air pre-treatment is usually called air cleaning or "header" purification because carried out upstream of the separation unit cryogenic.
  • air pretreatment is carried out, as the case may be, by TSA (Temperature Swing Adsorption) or PSA process (Pressure Swing Adsorption).
  • TSA Temporal Swing Adsorption
  • PSA Pressure Swing Adsorption
  • a PSA process cycle includes, substantially the same steps a), b) and e), but differs from a process TSA by an absence of heating of the waste gas (es) during the regeneration step (step c)), therefore the absence of step d) and, in generally a shorter cycle time than in the TSA process.
  • the air pre-treatment devices include at least two adsorbers, operating in parallel, i.e. alternately, one of the adsorbers being in the production phase, while the other is in the regeneration phase.
  • TSA or PSA air purification processes are in particular described in documents US-A-3,738,084, US-A-5,531,808, US-A-5,587,003 and US-A-4,233,038.
  • the efficiency of air prepurification is clearly favored for low temperatures, i.e. temperatures close to 5 ° C, or even more for clearly temperatures lower.
  • the air freed from all or part of its harmful impurities, in particular of the CO 2 and H 2 O type is then conventionally cooled to cryogenic temperature, i.e. in general to a temperature below about -120 ° C, before being conveyed to the cryogenic distillation unit and introduced into one or more distillation columns for the purpose of '' be separated to recover nitrogen, oxygen and / or argon.
  • cryogenic temperature i.e. in general to a temperature below about -120 ° C
  • This step of pre-cooling the air increases notably the overall investment, complicates the process, can pose reliability problems and therefore leads to an additional cost of the installation, being given that it is then necessary to provide means for pre-cooling, such as heat exchangers or the like, i.e. a refrigeration unit.
  • the aim of the present invention is to alleviate the problems and disadvantages mentioned above by proposing an air separation method cryogenic not requiring pre-cooling of the air by a refrigeration unit, before its introduction into the adsorber (s) the header purification unit, i.e. a process of air separation by cryogenic route simplified compared to existing processes.
  • the air is subjected to a pre-cooling step by the refrigeration system 2 before its purification by adsorption in the adsorbers 3a or 3b, operating in parallel.
  • FIG. 2 represents, on the other hand, a diagram of an installation of air separation by cryogenic means according to the present invention, which is similar to that of FIG. 1, except that, in this case, the refrigeration system 2 has been removed.
  • the air is sent directly, after compression and possibly adjustment (in 7) of its temperature to a temperature of at least + 15 ° C, preferably from +25 to + 50 ° C, in at minus one of the adsorbers 3a and 3b to be pretreated there before being cooled at cryogenic temperature and separated by cryogenic distillation as previously.
  • the inventors have demonstrated, as shown in the table below, that in order to achieve effective adsorption of the impurities contained in the air, in the absence of the pre-cooling step by refrigeration system 2 before adsorption, it is necessary to significantly increase the air adsorption pressure, that is to say to purify the air in the adsorbers 3a and 3b at a pressure of at least 11.4.10 5 Pa, preferably at least 15.10 5 Pa and up to 40.10 5 Pa.
  • This increase in pressure makes it possible, on the one hand, to reduce the water vapor content of the air flow and, on the other hand, promote adsorption impurities in the air by increasing their partial pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Cleaning In General (AREA)

Description

La présente invention concerne des procédés de séparation d'air atmosphérique par distillation cryogénique améliorés avec élimination des impuretés par adsorption, préalablement à ladite distillation.
Il est connu que l'air atmosphérique contient des composés ou impuretés devant être éliminées avant toute séparation cryogénique de l'air, c'est-à-dire préalablement à l'introduction de l'air dans les échangeurs thermiques de la boíte froide d'une unité de séparation d'air.
En particulier, on peut citer les composés de type dioxyde de carbone (CO2) et/ou vapeur d'eau (H2O), mais aussi d'autres impuretés.
En effet, en l'absence d'un tel prétraitement de l'air, il se produirait inévitablement une condensation et une solidification en glace de ces impuretés, en particulier CO2 et/ou vapeur d'eau, lors du refroidissement de l'air à température cryogénique, ce qui peut engendrer des problèmes de colmatage de l'équipement ou unité de séparation cryogénique, notamment les échangeurs thermiques, des colonnes de distillation... et par, là-même, une détérioration de celui-ci.
Pour éviter ces problèmes, il est d'usage de prétraiter l'air devant être séparé par voie cryogénique préalablement à cette séparation cryogénique.
Ce prétraitement de l'air est habituellement appelé épuration ou purification "en-tête" car réalisé en amont de l'unité de séparation cryogénique.
Actuellement, le prétraitement de l'air est effectué, selon le cas, par procédé TSA (Température Swing Adsorption) ou par procédé PSA (Pressure Swing Adsorption).
Classiquement, un cycle de procédé TSA comporte les étapes suivantes :
  • a) purification de l'air par adsorption des impuretés à pression super atmosphérique,
  • b) dépressurisation de l'adsorbeur jusqu'à la pression atmosphérique ou en-dessous de la pression atmosphérique,
  • c) régénération complète de l'adsorbant à pression atmosphérique avec un gaz chaud, notamment par les gaz résiduaires ou gaz déchets, typiquement de l'azote impur provenant d'une unité de séparation d'air et réchauffé au moyen d'un ou plusieurs échangeurs thermiques,
  • d) refroidissement de l'adsorbant, notamment en continuant à y introduire ledit gaz résiduaire issu de l'unité de séparation d'air, mais non réchauffé,
  • e) repressurisation de l'adsorbeur avec de l'air purifié issu, par exemple, d'un autre adsorbeur se trouvant en phase de production.
  • Par ailleurs, un cycle de procédé PSA comporte, quant à lui, sensiblement les mêmes étapes a), b) et e), mais se distingue d'un procédé TSA par une absence de réchauffement du ou des gaz résiduaires lors de l'étape de régénération (étape c)), donc l'absence de l'étape d) et, en général, un temps de cycle plus court qu'en procédé TSA.
    Préférentiellement, les dispositifs de prétraitement de l'air comprennent au moins deux adsorbeurs, fonctionnant en parallèle, c'est-à-dire de manière alternée, l'un des adsorbeurs étant en phase de production, pendant que l'autre est en phase de régénération.
    De tels procédés TSA ou PSA de purification d'air sont notamment décrit dans les documents US-A-3,738,084, US-A-5,531,808, US-A-5,587,003 et US-A-4,233,038.
    Or, il est connu que, lorsqu'on utilise des particules d'adsorbant pour pré-purifier de l'air avant de le séparer par distillation cryogénique, il est habituellement effectué un ajustage (refroidissement à l'eau) de la température de l'air comprimé depuis une température habituellement d'au moins 80°C, voire davantage, jusqu'à la température ambiante, puis ensuite de pré-refroidir l'air avant son introduction dans le ou les adsorbeurs ; ceci étant réalisé habituellement par un groupe frigorifique amenant l'air depuis la température ambiante jusqu'à une température inférieure à la température ambiante.
    Ceci est d'ailleurs clairement expliqué par le document Industrial Gases & Cryogenics Today, IOMA Broadcaster, Air Purification for cryogenic air separation units, Jan.-Feb. 1984, p. 15 et suivantes ou par le document EP-A-438282.
    En effet, il est particulièrement recommandé de pré-refroidir l'air avant de le soumettre à une étape de séparation par adsorption car, comme connu de l'homme du métier, plus la température d'adsorption est basse, plus l'efficacité de l'adsorption des impuretés augmente.
    En d'autres termes, l'efficacité de la prépurification d'air est nettement favorisée pour les températures basses, c'est-à-dire les températures proches de 5°C, voire davantage encore pour des températures nettement plus basses.
    Ensuite, après son passage dans la zone de purification, c'est-à-dire dans le ou les adsorbeurs, l'air débarrassé de toutes ou partie de ses impuretés néfastes, notamment de type CO2 et H2O, est ensuite classiquement refroidi à température cryogénique, c'est-à-dire, en général à une température inférieure à environ -120 °C, avant d'être acheminé vers l'unité de distillation cryogénique et introduit dans une ou plusieurs colonnes de distillation en vue d'y être séparé pour récupérer de l'azote, de l'oxygène et/ou de l'argon.
    Or, le fait de devoir mettre en oeuvre une étape de pré-refroidissement de l'air préalablement son introduction dans le ou les adsorbeurs présente plusieurs inconvénients néfastes à l'intérêt industriel du procédé global.
    En effet, cette étape de pré-refroidissement de l'air augmente notablement l'investissement global, complique le procédé, peut poser des problèmes de fiabilité et conduit donc à un surcoût de l'installation, étant donné qu'il est alors nécessaire de prévoir des moyens de pré-refroidissement, tels des échangeurs thermiques ou analogues, c'est-à-dire un groupe frigorifique.
    On peut citer les documents US-A-4,249,915, EP-A-733393, EP-A-718576, EP-A-718576, US-A-5,463,869 et JP-A-54103778 décrivant divers procédés de traitement de l'air avant séparation cryogénique de celui-ci en vue de produire de l'azote et de l'oxygène.
    De là, le but de la présente invention est de pallier les problèmes et inconvénients susmentionnés en proposant un procédé de séparation d'air par voie cryogénique ne nécessitant pas de pré-refroidissement de l'air par un groupe frigorifique, avant son introduction dans le ou les adsorbeurs de l'unité d'épuration en-tête, c'est-à-dire un procédé de séparation d'air par voie cryogénique simplifié par rapport aux procédés existant actuellement.
    La présente invention concerne alors un procédé de séparation cryogénique d'air contenant des impuretés, dans lequel on procède selon les étapes de :
  • (a) compression d'air à séparer à une pression d'au moins 21.105 Pa,
  • (b) introduction de l'air à une pression d'au moins 21.105 Pa, dans l'un ou l'autre des deux récipients d'adsorption fonctionnant en parallèle et contenant chacun des particules d'au moins un adsorbant,
  • (c) adsorption d'au moins une partie des impuretés contenues dans l'air sur lesdites particules d'adsorbant, à une pression d'au moins 21.105 Pa, à un débit d'adsorption compris entre 250 Nm3/h et 106 Nm3/h, et selon un cycle de type Temperature Swing Adsorption (TSA) et
  • (d) refroidissement de l'air purifié à l'étape (c) jusqu'à une température cryogénique inférieure à -120°C,
  • (e) distillation cryogénique de l'air refroidi à l'étape (d),
  • dans lequel la température de l'air à l'étape (b) et/ou à l'étape (c) est supérieure ou égale à +15°C, dans lequel l'air comprimé n'est pas soumis à un pré-refroidissement subséquemment à l'étape (a) et préalablement à l'étape (b), et comportant, en outre, une étape cyclique de régénération de l'adsorbant par balayage avec un gaz de régénération ayant une température de régénération comprise entre 40°C et 350°C, et à un débit de régénération allant de 5 à 70% du débit d'adsorption.
    Selon le cas, le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
    • après distillation cryogénique, on récupère au moins un composé choisi parmi l'azote, l'oxygène, l'argon ou leurs mélanges. Le ou les composés ainsi produits peuvent être de pureté variable et, de préférence, on récupère au moins l'un de ces composés sous forme liquide pour valoriser l'énergie apportée par l'augmentation de la pression de l'air.
    • à l'étape (c), l'adsorption est opérée à une pression de 21.105 Pa à 40.105 Pa, avantageusement de 22.105 Pa à 38.105 Pa.
    • à l'étape (a), la compression est opérée à une pression de 21.105 Pa à 40.105 Pa, avantageusement de 22.105 Pa à 38.105 Pa.
    • à l'étape (b), l'air introduit dans le récipient d'adsorption est à une température d'adsorption d'au moins +21 °C, de préférence de +25°C à +65°C, avantageusement de +30°C à +50°C. Lorsque l'air en sortie de compression est à une température trop élevée, par exemple +80°C, on lui fait subir un refroidissement pour l'amener dans une plage de température du procédé selon l'invention mais, de toute façon, à une température d'au moins +15°C. En d'autres termes, optionnellement, le procédé de l'invention peut comprendre une étape complémentaire d'ajustage de la température de l'air, subséquente à l'étape (a) et préalable à l'étape (b), mais sans pour autant constituer une étape de pré-refroidissement classique par un groupe frigorifique. Avantageusement, cette étape complémentaire d'ajustage de la température de l'air consiste simplement à diminuer la température de l'air par échange thermique au moyen d'un ou plusieurs échangeurs de chaleur, de préférence des échangeurs dans lesquels .circule de l'eau.
    • à l'étape (c), les impuretés adsorbées sont choisies dans le groupe formé par le dioxyde de carbone, la vapeur d'eau, les oxydes d'azote, les oxydes de soufre et les hydrocarbures.
    • l'adsorbant est choisi parmi les zéolites, les alumines, les gels de silice et leurs mélanges.
    • la distillation cryogénique de l'étape (e) est opérée à une pression de 105 Pa à 30.105 Pa, de préférence de l'ordre de 1,3.105 Pa à 20.105 Pa.
    • il comporte une étape de régénération de l'adsorbant à une température de régénération comprise entre 100°C et 280°C. De manière connue en soi, l'adsorbant subit cycliquement une régénération par chauffage à la température de régénération par balayage des particules d'adsorbant avec un gaz choisi parmi l'azote ou un mélange d'azote et d'oxygène.
    • la pression de régénération est comprise entre 1.105 Pa et 30.105 Pa.
    • les particules d'adsorbant sont choisies parmi les particules de zéolite de type faujasite, X, LSX, A, mordénite ou leurs mélanges, de préférence les particules de zéolite sont de type X ou LSX ayant un rapport Si/Al ≤1.15, de préférence d'environ 1.
    • les particules d'adsorbant sont choisies parmi les particules d'alumine activée et d'alumine imprégnée.
    • au moins un adsorbeur contient au moins un lit ou au moins une couche de particules de zéolite et au moins un lit ou au moins une couche de particules d'alumine, de préférence au moins un lit ou au moins une couche de particules d'alumine est situé en amont d'au moins un lit ou au moins une couche de particules de zéolite par rapport au sens de circulation de l'air.
    L'invention va maintenant être mieux comprise à l'aide de l'exemple comparatif suivant et des figures annexées, donnés à titre illustratif mais non limitatif.
    Exemple comparatif
    Afin de montrer l'efficacité du procédé selon la présente invention, des essais comparatifs ont été réalisés en mettant en oeuvre, d'une part, un procédé de séparation d'air selon l'art antérieur avec ou sans pré-refroidissement avant élimination des impuretés par adsorption et, d'autre part, un procédé de séparation d'air selon la présente invention.
    Le procédé selon l'art antérieur a été mis en oeuvre au moyen d'une installation connue telle que représentée sur la figure 1, alors que le procédé selon l'invention a été mis en oeuvre avec une installation conforme à la présente invention, telle que schématisée sur la figure 2.
    Plus précisément, la figure 1 schématise une installation de séparation d'air par voie cryogénique selon laquelle l'air atmosphérique contenant des impuretés, en particulier de type CO2 et/ou vapeur d'eau, est successivement :
    • comprimé par un compresseur 1, par exemple du type à refroidissement à eau,
    • légèrement ajusté en température par un échangeur thermique 7 à circulation d'eau,
    • pré-refroidi par un groupe frigorifique ou système de réfrigération 2 jusqu'à une température de l'ordre de +5°C, voire même inférieure à +5°C,
    • introduit dans l'un ou l'autre des adsorbeurs 3a et 3b pour y être purifié par adsorption desdites impuretés sur un ou plusieurs lits d'adsorbant, par exemple une adsorbant de type zéolite,
    • refroidi à une température cryogénique, par exemple à -170°C, dans une boíte froide 4 contenant un ou plusieurs échangeurs thermiques,
    • puis séparé par distillation cryogénique dans une ou plusieurs colonnes 5 de distillation cryogénique en vue de produire de l'azote et/ou de l'oxygène notamment sous forme liquide et/ou gazeuse.
    En d'autres termes, selon ce procédé de l'art antérieur, l'air est soumis à une étape de pré-refroidissement par le système de réfrigération 2 avant sa purification par adsorption dans les adsorbeurs 3a ou 3b, fonctionnant en parallèle.
    La figure 2 représente, par contre, un schéma d'une installation de séparation d'air par voie cryogénique selon la présente invention, laquelle est analogue à celle de la figure 1, à l'exception du fait que, dans ce cas, le système de réfrigération 2 a été supprimé.
    En d'autres termes, selon la figure 2, l'air est directement envoyé, après compression et éventuellement ajustage (en 7) de sa température à une température d'au moins +15°C, de préférence de +25 à +50°C, dans au moins l'un des adsorbeurs 3a et 3b pour y être prétraité avant d'être refroidi à température cryogénique et séparé par distillation cryogénique comme précédemment.
    Une conséquence de la suppression de l'étape de pré-refroidissement (en 2) avant adsorption (fig. 2) est une température d'adsorption nettement plus élevée que dans l'art antérieur (fig. 1), donc plus défavorable à l'adsorption.
    Pour compenser, cette diminution des performances d'adsorption, selon la présente invention, on procède aussi, d'une part, à une augmentation de la pression d'adsorption et, d'autre part, éventuellement à une augmentation de la quantité d'adsorbant utilisé.
    En effet, les inventeurs ont mis en évidence, comme montré dans le tableau ci-après, que pour aboutir à une adsorption efficace des impuretés contenues dans l'air, en l'absence de l'étape de pré-refroidissement par système de réfrigération 2 avant adsorption, il est nécessaire d'augmenter notablement la pression d'adsorption de l'air, c'est-à-dire de purifier l'air dans les adsorbeurs 3a et 3b a une pression d'au moins 11,4.105 Pa, de préférence d'au moins 15.105 Pa et pouvant atteindre 40.105 Pa.
    Cette augmentation de pression permet, d'une part, de réduire la teneur en vapeur d'eau du flux d'air et, d'autre part, de favoriser l'adsorption des impuretés contenues dans l'air en augmentant leur pression partielle.
    Les conditions expérimentales et les résultats apparaissent dans le tableau ci-après.
    Essais Avec pré-refroidissement Sans pré-refroidissement Sans pré-refroidissement
    Débit d'adsorption (Nm 3 /h) 50 000 50 000 50 000
    Température d'adsorption 10°C 35°C 35°C
    Pression d'adsorption 6.10 5 Pa (art antérieur) 6.10 5 Pa (art antérieur) 30.10 5 Pa (invention)
    Débit de régénération (Nm 3 /h) 10 000 24 000 10 000
    Température de régénération 150°C 150°C 150°C
    Pression de régénération 1,1.10 5 Pa 1,1.10 5 Pa 1,1.10 5 Pa
    Temps de cycle (minutes) 150 250 200
    Masse d'adsorbant 8 900 kg 51 000 kg 13 500 kg
    Il apparaít clairement au vu du tableau précédent que les essais selon l'invention (colonne de droite), basés sur une absence de pré-refroidissement par système de réfrigération et une augmentation de la pression d'adsorption, conduisent à des résultats tout-à-fait satisfaisants du point de vue industriel, c'est-à-dire des résultats sensiblement équivalents à ceux obtenus par mise en oeuvre d'une étape supplémentaire de pré-refroidissement (colonne de gauche) avec un groupe frigorifique (après éventuellement une étape d'ajustage de la température par échange thermique avec de l'eau ou un autre fluide de refroidissement) et, dans tous les cas bien meilleurs que ceux obtenus par mise oeuvre d'un procédé sans pré-refroidissement et sans augmentation de la pression d'adsorption (colonne du milieu) qui nécessite l'utilisation d'une très forte quantité d'adsorbant.

    Claims (10)

    1. Procédé de séparation cryogénique d'air contenant des impuretés, dans lequel on procède selon les étapes de :
      (a) compression d'air à séparer à une pression d'au moins 21.105 Pa,
      (b) introduction de l'air à une pression d'au moins 21.105 Pa, dans l'un ou l'autre des deux récipients d'adsorption fonctionnant en parallèle et contenant chacun des particules d'au moins un adsorbant,
      (c) adsorption d'au moins une partie des impuretés contenues dans l'air sur lesdites particules d'adsorbant, à une pression d'au moins 21.105 Pa, à un débit d'adsorption compris entre 250 Nm3/h et 106 Nm3/h, et selon un cycle de type Temperature Swing Adsorption (TSA), et
      (d) refroidissement de l'air purifié à l'étape (c) jusqu'à une température cryogénique inférieure à -120°C,
      (e) distillation cryogénique de l'air refroidi à l'étape (d),
         dans lequel la température de l'air à l'étape (b) et/ou à l'étape (c) est supérieure ou égale à +15°C,
         dans lequel l'air comprimé n'est pas soumis à un pré-refroidissement subséquemment à l'étape (a) et préalablement à l'étape (b), et
         comportant, en outre, une étape cyclique de régénération de l'adsorbant par balayage avec un gaz de régénération ayant une température de régénération comprise entre 40°C et 350°C, et à un débit de régénération allant de 5 à 70% du débit d'adsorption.
    2. Procédé selon la revendication 1, caractérisé en ce qu'à l'étape (c), l'adsorption est opérée à une pression de 21.105 Pa à 40.105 Pa
    3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'à l'étape (c), l'adsorption est opérée à une pression de 22.105 Pa à 38.105 Pa.
    4. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'à l'étape (a), l'air est comprimé à une pression d'au moins 21.105 Pa à 40.105 Pa, préférentiellement de 22.105 Pa à 38.105 Pa.
    5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à l'étape (b), l'air introduit dans le récipient d'adsorption est à une température d'adsorption d'au moins +21 °C, de préférence de +25°C à +65°C, préférentiellement de +30°C à +50°C.
    6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'à l'étape (c), les impuretés adsorbées sont choisies dans le groupe formé par le dioxyde de carbone, la vapeur d'eau, les oxydes d'azote, les oxydes de soufre et les hydrocarbures.
    7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce l'adsorbant est choisi parmi les zéolites, les alumines, les gels de silice et leurs mélanges.
    8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte, subséquemment à l'étape (a) et préalablement à l'étape (b), une étape complémentaire d'ajustage de la température de l'air à une valeur d'au moins +15°C, de préférence comprise entre +30°C et +50°C.
    9. Procédé selon la revendication 8, caractérisé en ce que l'ajustage de température est réalisé au moyen d'au moins un échangeur à eau.
    10. Procédé selon la revendication 1, caractérisé en ce que le gaz de régénération est choisi parmi l'azote ou un mélange d'azote et d'oxygène.
    EP00400236A 1999-03-12 2000-01-31 Procédé et installation de purification et de séparation d'air par voie cryogénique sans pré-refroidissement Revoked EP1035391B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9903064 1999-03-12
    FR9903064A FR2790823B1 (fr) 1999-03-12 1999-03-12 Procede et installation de purification et de separation d'air par voie cryogenique sans pre-refroidissement

    Publications (2)

    Publication Number Publication Date
    EP1035391A1 EP1035391A1 (fr) 2000-09-13
    EP1035391B1 true EP1035391B1 (fr) 2004-03-24

    Family

    ID=9543110

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00400236A Revoked EP1035391B1 (fr) 1999-03-12 2000-01-31 Procédé et installation de purification et de séparation d'air par voie cryogénique sans pré-refroidissement

    Country Status (8)

    Country Link
    US (1) US6240745B1 (fr)
    EP (1) EP1035391B1 (fr)
    JP (1) JP2000271425A (fr)
    AT (1) ATE262667T1 (fr)
    CA (1) CA2298125A1 (fr)
    DE (1) DE60009186T2 (fr)
    ES (1) ES2216831T3 (fr)
    FR (1) FR2790823B1 (fr)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2830463B1 (fr) 2001-10-09 2004-08-06 Air Liquide Procede et appareil de traitement d'un gaz par adsorption, notamment d'epuration d'air atmospherique avant separation par distillation
    FR2896861B1 (fr) * 2006-01-31 2008-07-18 Air Liquide Procede de regulation d'un ensemble d'appareils de separation d'air par distillation cryogenique et ensemble d'appareils de separation d'air operant selon ledit procede
    FR2918579B1 (fr) * 2007-07-13 2010-01-01 Air Liquide Procede de purification d'un gaz contenant du co2 par integration d'unite de purification par adsorption
    DE102010020283A1 (de) * 2010-05-12 2011-11-17 Linde Aktiengesellschaft Adsorptionsverfahren
    EP3449997A1 (fr) * 2017-08-28 2019-03-06 Casale Sa Processus d'adsorption à oscillation de température
    CN109173620A (zh) * 2018-08-17 2019-01-11 邯郸钢铁集团有限责任公司 一种可以降低能耗的压缩空气干燥器
    US20220040673A1 (en) * 2018-09-25 2022-02-10 Sekisui Chemical Co., Ltd. Method for reusing zeolite adsorbent and regenerated adsorbent

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS54103778A (en) * 1978-02-03 1979-08-15 Hitachi Ltd Air separator pretreatment and apparatus therefor
    US4249915A (en) * 1979-05-30 1981-02-10 Air Products And Chemicals, Inc. Removal of water and carbon dioxide from air
    EP0175791B1 (fr) * 1984-03-29 1988-11-09 Daidousanso Co., Ltd. Installation de production d'azote gazeux de grande purete
    US5463869A (en) * 1994-08-12 1995-11-07 Air Products And Chemicals, Inc. Integrated adsorption/cryogenic distillation process for the separation of an air feed
    FR2728663B1 (fr) * 1994-12-23 1997-01-24 Air Liquide Procede de separation d'un melange gazeux par distillation cryogenique
    US5587003A (en) * 1995-03-21 1996-12-24 The Boc Group, Inc. Removal of carbon dioxide from gas streams
    JP3416391B2 (ja) * 1995-05-25 2003-06-16 日本酸素株式会社 空気液化分離装置の前処理方法及び装置
    US5701763A (en) * 1997-01-07 1997-12-30 Praxair Technology, Inc. Cryogenic hybrid system for producing low purity oxygen and high purity nitrogen
    US5802872A (en) * 1997-07-30 1998-09-08 Praxair Technology, Inc. Cryogenic air separation with combined prepurifier and regenerators

    Also Published As

    Publication number Publication date
    FR2790823A1 (fr) 2000-09-15
    ES2216831T3 (es) 2004-11-01
    US6240745B1 (en) 2001-06-05
    ATE262667T1 (de) 2004-04-15
    DE60009186D1 (de) 2004-04-29
    JP2000271425A (ja) 2000-10-03
    CA2298125A1 (fr) 2000-09-12
    DE60009186T2 (de) 2005-02-24
    FR2790823B1 (fr) 2001-06-15
    EP1035391A1 (fr) 2000-09-13

    Similar Documents

    Publication Publication Date Title
    EP1312406B1 (fr) Procédé de purification de gaz de synthèse
    EP0930089B1 (fr) Procédé de purification par adsorption de l'air avant distillation cryogenique
    EP1084743B1 (fr) Utilisation d'une alumine activée pour éliminer le CO2 d'un gaz
    EP0922482B1 (fr) Procédé de purification d'air par adsorption sur alumine calcinée des impuretés CO2 et H2O
    EP0995477B1 (fr) Procédé de purification d'un flux gazeux en ses impuretes N2O
    JP3983310B2 (ja) ガス流から二酸化炭素を除去する方法
    EP0840708B1 (fr) Procede pour la purification de melanges gazeux a base d'hydroge ne utilisant une zeolite x echangee au lithium
    US4726815A (en) Process for adsorbing and separating carbon dioxide from gas mixture
    CN1907849A (zh) 从合成气获得产品的方法和装置
    EP0662595B1 (fr) Procédé et dispositif pour la préparation d'azote liquide de haute pureté
    EP1035391B1 (fr) Procédé et installation de purification et de séparation d'air par voie cryogénique sans pré-refroidissement
    EP2712419B1 (fr) Procede de separation d'air par distillation cryogenique
    US4380457A (en) Separation of air
    EP0982063B1 (fr) Procédé PSA utilisant une zéolite faujasite contenant des cations métalliques en tant qu'adsorbant
    EP1090670B1 (fr) Procédé de traitement d'un gaz par adsorption à température modulée
    EP0678322A1 (fr) Procédé de redémarrage d'un récipient de purification d'hydrogène par adsorption
    EP0982064B1 (fr) Procédé PSA utilisant un adsorbant aggloméré constitué d'une phase zéolitique et d'un liant
    FR2739304A1 (fr) Procede et dispositif d'epuration d'air comprime, procede et installation de distillation d'air les utilisant
    FR2777477A1 (fr) Procede de purification de gaz par adsorption avec pressions et temperatures controlees
    JP2621975B2 (ja) 低沸点物質精製方法
    FR2776940A1 (fr) Installation psa avec capacite tampon
    FR2873307A3 (fr) Preparation de zeolithes riches en aluminium pour l'adsorption des gaz
    JPH09165205A (ja) 高純度酸素の製造方法
    FR2784604A1 (fr) Procede de regeneration incomplete de particules d'adsorbant
    JPH0141085B2 (fr)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: KRAUS, GEORGES

    Inventor name: FRAYSSE, PHILIPPE

    Inventor name: LE BOT, PATRICK

    Inventor name: GUILLARD, ALAIN

    17P Request for examination filed

    Effective date: 20010313

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    17Q First examination report despatched

    Effective date: 20021023

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040324

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040324

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040324

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60009186

    Country of ref document: DE

    Date of ref document: 20040429

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040624

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040624

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040624

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040709

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2216831

    Country of ref document: ES

    Kind code of ref document: T3

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20050113

    Year of fee payment: 6

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050131

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    26 Opposition filed

    Opponent name: PRAXAIR TECHNOLOGY, INC.

    Effective date: 20041221

    Opponent name: LINDE AKTIENGESELLSCHAFT

    Effective date: 20041221

    Opponent name: AIR PRODUCTS AND CHEMICALS, INC.

    Effective date: 20041223

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: LINDE AKTIENGESELLSCHAFT

    Opponent name: AIR PRODUCTS AND CHEMICALS, INC.

    Opponent name: PRAXAIR TECHNOLOGY, INC.

    PLAX Notice of opposition and request to file observation + time limit sent

    Free format text: ORIGINAL CODE: EPIDOSNOBS2

    PLBB Reply of patent proprietor to notice(s) of opposition received

    Free format text: ORIGINAL CODE: EPIDOSNOBS3

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20051208

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20051213

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20051214

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20051215

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060120

    Year of fee payment: 7

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE

    Effective date: 20070425

    RDAF Communication despatched that patent is revoked

    Free format text: ORIGINAL CODE: EPIDOSNREV1

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070801

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE

    Effective date: 20070627

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070131

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070801

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070930

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    27W Patent revoked

    Effective date: 20070802

    BERE Be: lapsed

    Owner name: S.A. L'*AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040824

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070201