EP1032952B1 - Systeme d'alimentation en gaz de couverture et de demarrage pour generateur de puissance a pile a combustible oxyde solide - Google Patents
Systeme d'alimentation en gaz de couverture et de demarrage pour generateur de puissance a pile a combustible oxyde solide Download PDFInfo
- Publication number
- EP1032952B1 EP1032952B1 EP98963763A EP98963763A EP1032952B1 EP 1032952 B1 EP1032952 B1 EP 1032952B1 EP 98963763 A EP98963763 A EP 98963763A EP 98963763 A EP98963763 A EP 98963763A EP 1032952 B1 EP1032952 B1 EP 1032952B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- burner
- oxygen
- fuel cell
- solid oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to solid oxide fuel cell power generators, and more particularly relates to a cover and startup gas supply system for the operation of such generators.
- Solid Oxide Fuel Cell (SOFC) power generation systems capable of operating on coal derived and hydrocarbon fuels (e.g., natural gas, diesel, etc.) are being developed for stationary and mobile land based applications.
- SOFC prototype demonstration units ranging in sizes from 3 kWe to 25 kWe, have been fabricated and field tested using hydrogen and water gas mixtures and natural gas as fuels.
- SOFC power generation systems offer lower stack pollution levels in the exhaust gas stream due to the electrochemical oxidation of fuels at relatively lower cell operating temperatures, which reduces NO x emissions, and due to the use of clean sulfur free fuels, which reduces SO x emissions. Such systems also provide higher power conversion efficiency (kWeH/MBTU of fuel) in comparison with other types of power generation systems. SOFC systems may also be of modular construction, making the systems ideal for various power generation applications.
- the long term successful operation of SOFC generators depends primarily on maintaining structural and chemical stability of fuel cell components during steady state conditions, as well as transient operating conditions such as cold startups and emergency shut downs.
- nickel-containing cell fuel components such as electrodes and contact members (e.g., nickel felt contacts for cell to cell and cell to bus bar connections) are exposed to a fuel gas atmosphere in which nickel remains thermodynamically stable as nickel metal.
- the oxygen pressure of the fuel gas is lower than the Ni/NiO equilibrium oxygen pressure.
- the SOFC air electrode typically made of doped lanthanum manganite, similarly remains chemically and structurally stable in the surrounding air atmosphere during steady state conditions.
- non explosive N 2 -H 2 gas mixtures (typically a N 2 -3%H 2 gas mixture) known as "NH mix" cover gases are conventionally used in SOFCs to preserve and maintain the chemical stability of the nickel fuel electrode and nickel felt connections.
- NH mix non explosive N 2 -H 2 gas mixture
- hydrogen-rich gas streams have been used in SOFC's during startup current loading prior to switching to the primary fuel, such as natural gas.
- On-site gas storage of both NH mix and H 2 gases has been required for conventional systems.
- storage of gas cylinders in the proximity of SOFC generators requires a large amount of space and, in the case of H 2 , elaborate safety measures for the prevention of explosion.
- a system for on site generation of non explosive N 2 -H 2 cover gas and H 2 -rich startup gas would be highly advantageous during the startup and cool down of SOFC power generation systems. Such a system would represent a major improvement over on site storage of N 2 , H 2 or N 2 -H 2 blend gas cylinders.
- the present invention has been developed in view of the foregoing.
- the present invention provides an apparatus and method for generating non-explosive cover gas during heat up and cool down operations of a SOFC.
- the system mixes combusted hydrocarbon fuel constituents (H 2 , CO, CO 2 , H 2 O, N 2 , etc.) with hydrogen which is preferably stored in solid metal hydrides to obtain a non-explosive gas mixture.
- the gas mixture remains reducing to the SOFC fuel electrode and nickel felt contacts during heat-up and cool down conditions, at temperatures typically ranging from room temperature to about 1,000°C.
- hydrogen-rich fuel gas known as startup gas is generated by mixing substoichiometric hydrocarbon combustion products with hydrogen, stored in the metal hydrides.
- An object of the present invention is to provide a system for supplying startup gas and cover gas in a solid oxide fuel cell power generation system.
- the system includes a burner, a supply of hydrocarbon fuel and oxygen-containing gas to the burner, a heat exchanger or other device for cooling combustion gas exiting the burner, a storage tank for delivering at least a portion of the cooled combustion gas to the solid oxide fuel cell, and a hydrogen storage unit for adding hydrogen gas to the combustion gas prior to delivery to the solid oxide fuel cell.
- Another object of the present invention is to provide a method of supplying startup gas and cover gas in a solid oxide fuel cell power generation system.
- the method includes the steps of supplying hydrocarbon fuel and oxygen-containing gas to a burner, cooling the combustion gas exiting the burner, delivering at least a portion of the cooled combustion gas to the solid oxide fuel cell, and adding hydrogen gas to the combustion gas prior to delivery to the solid oxide fuel cell.
- a controlled amount of hydrocarbon fuel such as desulfurized compressed natural gas or diesel fuel
- a mixture of oxygen-containing gas such as air
- Fig. 1 schematically illustrates a cover gas generation system in accordance with an embodiment of the present invention.
- a hydrocarbon fuel such as natural gas is supplied to a burner by a conventional mass flow controller.
- Oxygen-containing gas such as air is supplied by a compressor to an oxygen-sensor feedback valve which is used to supply a desired amount of the oxygen-containing gas to the burner.
- the burner is of any suitable conventional design known to those skilled in the art.
- the air/combustion product mixture and the fuel ratio entering the burner is preferably monitored and controlled by an oxygen sensor feed back valve.
- the oxygen sensor feed back valve determines the amount of the air stream entering the burner based on the oxygen potential of the combustion products formed/required in the burner.
- the air/fuel ratio is preferably maintained near stoichiometric (approximately 0.99) to achieve a preferred level of about 3 percent hydrogen in the gas mix.
- the valve reduces the amount of air entering the burner to achieve a hydrogen-rich stream for startup loading of the generator.
- the air/fuel ratio is preferably from about 0.4 to about 0.6.
- Combustion gas exiting the burner travels through a heat exchanger and is preferably stored in a compressed gas storage tank.
- a small storage tank is preferably used so that gas trim can be maintained during the burner startup or other emergency conditions.
- a portion of the heat exchanger exhaust is recirculated by means of a pump to the burner.
- a fraction of the cold exhaust gas stream is thus recirculated and mixed with the incoming oxygen-containing gas stream entering the burner for the combustion of the fuel.
- Addition of the cold combustion gas stream to the oxygen-containing gas stream entering the burner has two important functions. First, addition of combustion products to the burner/combustor prevents carbon deposition in the burners even under near stoichiometric operation conditions by increasing the availability of H 2 O, CO 2 etc. in the gas stream. Second, addition of combustion products to the burner feed stream reduces the combustion temperature in the burner, resulting in prolonged burner life.
- the cooled combustion gas is fed from the storage tank to a conventional solid oxide fuel cell generator.
- stored hydrogen is selectively added to the cooled combustion gas prior to delivery of the gas to the solid oxide fuel cell.
- Hydrogen from, for example, a metal hydride storage system can be mixed with the combusted gas stream to maintain the desired hydrogen concentration in the final gas stream entering the gas storage container or SOFC generator.
- Hydrogen content of the gas stream is adjusted to obtain a non-explosive gas chemistry which still remains reducing to Ni/NiO in the cover gas mode. In the presence of such a gas stream, nickel from the fuel electrode and cell connectors remains unoxidized during cell heat-up and cool down.
- the preferred metal hydride system advantageously stores hydrogen in the solid state, remains compact and can be charged and discharged repeatedly with hydrogen.
- the hydrogen storage capacity of the metal hydrides remains very high, requiring only a small volume on the order of about 0.135 to 0.27 m 3 (5 to 10 cubic feet) for a 20 to 100 kWe SOFC system.
- the product gas stream exiting the burner flows through a heat exchanger as shown in Figs. 1 and 3, or through a reformer/desulfurizer unit and an optional heat exchanger as shown in Fig. 2, for further cooling of the gas stream.
- natural gas is preferably used as the hydrocarbon fuel.
- a logistic fuel such as diesel fuel is the preferred hydrocarbon fuel for operation of the SOFC power generation system.
- the heat exchanger preheats the compressed auxiliary air stream prior to its entry in the SOFC generator where the reformer preheating is achieved prior to the startup of the generator.
- the cooled gas stream exiting the heat exchanger and/or the reformer units may be mixed with a desired amount of hydrogen gas to obtain a non-explosive cover gas chemistry suitable for use in the SOFC.
- a hydrogen storage system is used for trim purposes in which the gas composition is adjusted, and is also useful if operation of the burner in the substoichiometric mode remains unreliable due to carbon deposition, insufficient cooling or the like.
- the hydrogen is stored in solid form using reversible metal hydride alloys. While metal hydride storage is preferred in accordance with the present invention, cryogenic storage systems may also be used wherein the hydrogen is liquified. Metal hydride alloys are capable of absorbing large quantities of hydrogen at room temperature, and releasing the hydrogen at relatively low pressure. Suitable metal hydrides include alloys of Ti, Zr, Fe, Mn, Ni, Ca, La, mischmetal, cerium-free mischmetal, Al, Mg, Cu and Li.
- Particularly suitable metal hydrides include TiFe, Ti(Fe 0.9 Mn 0.1 ), Ti(Fe 0.8 Ni 0.2 ), Zr (Ni 0.95 M 0.05 ), CaNi 5 , (Ca 0.7 M 0.3 )Ni 5 , (Ca 0.2 M 0.8 )Ni 5 , MNi 5 , LaNi 5 , (CFM)Ni 5 , LaNi 4.7 , Al 0.3 , MNi 4.5 Al 0.5 , MNi 4.15 Fe 0.85 , LaNi 4.25 Al 0.75 , Mg 2 Ni and Mg 2 Cu, wherein M is mischmetal and CFM is cerium-free mischmetal.
- the alloys are typically provided in granular form and may be sized to -10 mesh or less. Hydrogen is stored in the alloy as a solid metal.
- the metal hydride system can be recharged with hydrogen numerous times. Such metal hydride hydrogen storage systems are compact and safe during operation, unlike other means of gas storage systems such as tank storage.
- Compressed gas may be stored in a small tank (not shown) for emergency situations. Even after condensation of the water vapor in the storage tank, the gas chemistry remains non-explosive.
- a bypass loop is preferably provided across the reformer to obtain direct access to the SOFC generator during the generator cool down mode.
- Fig. 2 schematically illustrates a system similar to the system of Fig. 1, but which is particularly suitable for use with diesel fuel.
- the diesel fuel is desulfurized and reformed prior to introduction into the SOFC generator.
- the desulfurizer/reformer shown in Fig. 2 preferably comprises a hydrodesulfurizer including a Co-Mo catalyst and a ZnO reactive metal bed for hydrotreating and reacting gaseous H 2 S.
- Organic sulfur present in the diesel fuel is converted to H 2 S in the presence of the Co-Mo catalyst.
- the gaseous H 2 S subsequently reacts with ZnO to form solid ZnS according to reaction: H 2 S + ZnO ⁇ ZnS + H 2 O.
- the metal oxide bed may be changed periodically.
- the metal sulfide e.g., ZnS
- ZnS may be discarded or used for further chemical processing.
- the metal sulfide may be regenerated by removing the sulfur and recovering the metal oxide.
- the hydrodesulfurizer is used to substantially reduce the sulfur content of the diesel fuel to an acceptable level for introduction into the reformer section.
- the sulfur content of the diesel fuel may be reduced to a level of less than about 1 part per million by weight, and preferably to less than about 0.2 part per million.
- the reformer section preferably operates at high pressure to reform the organic constituents of the desulfurized diesel fuel into a reformed fuel comprising lower molecular weight hydrocarbons, hydrogen and carbon monoxide.
- the lower molecular weight hydrocarbons include C 1 -C 2 hydrocarbons, predominantly methane.
- Standard steam reforming processes take place in the reformer unit for the production and generation of CH 4 , H 2 , CO, etc.
- the steam to carbon ratio is preferably controlled in the reformer to prevent carbon deposition and catalyst breakdown.
- FIG. 3 Another variation of the system shown in Fig. 1 is schematically illustrated in Fig. 3.
- oxygen deficient air is used for combusting hydrocarbons in order to further lower the burner and combustion product temperatures due to the dilution effect produced by excess N 2 gas in the gas stream.
- the oxygen content of the air stream is preferably lowered by an oxygen separator, such as a conventional pressure swing absorption (PSA) oxygen removal system.
- PSA pressure swing absorption
- a 0.135 to 0.27 m 2 (5 to 10 cubic foot) PSA unit may provide air streams with 15 to 17 percent oxygen for the combustion of hydrocarbons.
- Fig. 4 illustrates the operation of a solid oxide fuel cell using startup gas and cover gas in accordance with an embodiment of the present invention.
- the temperature of the solid oxide fuel cell is increased at a constant rate from a cold start. Once a temperature of about 350°C is reached, hydrogen cover gas flow is started at a flow rate of about 20 SLPM.
- the hydrogen cover gas flow is increased and current is drawn from the cell.
- a temperature of about 800°C a stream of natural gas is added, the current is ramped up, and the flow of hydrogen cover gas is ramped down.
- steady current and natural gas flows are maintained, with no supply of the hydrogen cover gas.
- a single system is preferably used to provide both non-explosive cover gas and hydrogen-rich startup gas.
- a regenerative hydrogen storage system is provided which is compact and is safer than hydrogen gas storage systems.
- Combustion product recirculation provides extended burner life and reduced carbon buildup.
- Various types of hydrocarbon fuels such as natural gas and diesel fuel may be used.
- a separate steam generation system is not required for startup operations.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Claims (20)
- Système pour fournir du gaz de démarrage gaz de et du gaz de couverture dans un système de production d'électricité à pile à combustible à oxyde solide comportant :un brûleur ;des moyens destinés à fournir du combustible hydrocarboné au brûleur ;des moyens destinés à fournir du gaz contenant de l'oxygène au brûleur ;des moyens destinés à refroidir un gaz de combustion sortant du brûleur ;des moyens destinés à fournir au moins une partie du gaz de combustion refroidi à une pile à combustible à oxyde solide ; etdes moyens destinés à ajouter de l'hydrogène gazeux de combustion avant l'envoi à la pile à combustible à oxyde solide.
- Système suivant la revendication 1, dans lequel les moyens destinés à refroidir le gaz de combustion sortant du brûleur comportent un échangeur de chaleur.
- Système suivant la revendication 1, dans lequel les moyens destinés à refroidir le gaz de combustion sortant du brûleur comportent une unité de reformage et de désulfuration.
- Système suivant la revendication 1, comportant en outre des moyens destinés à séparer au moins une partie de l'oxygène du gaz contenant de l'oxygène avant l'envoi au brûleur.
- Système suivant la revendication 1, comportant en outre des moyens destinés à détecter la quantité d'oxygène contenue dans le gaz contenant de l'oxygène fourni au brûleur.
- Système suivant la revendication 5, comportant en outre des moyens destinés à ajuster la quantité de gaz contenant de l'oxygène fournie au brûleur sur la base de la quantité d'oxygène détectée.
- Système suivant la revendication 1, comportant en outre des moyens destinés à retourner une partie du gaz de combustion refroidi au brûleur.
- Système suivant la revendication 1, dans lequel les moyens destinés à fournir au moins une partie du gaz de combustion refroidi à la pile à combustible à oxyde solide comportent un réservoir de stockage de gaz.
- Système suivant la revendication 1, dans lequel les moyens destinés à ajouter de l'hydrogène gazeux de combustion avant l'envoi à la pile à combustible à oxyde solide comportent des moyens destinés à stocker de l'hydrogène sous forme solide.
- Système suivant la revendication 9, dans lequel les moyens destinés à stocker l'hydrogène sous forme solide comportent un hydrure métallique.
- Procédé pour fournir du gaz de démarrage et du gaz de couverture dans un système de production d'électricité à pile à combustible à oxyde solide, le procédé comportant les étapes qui consistent à :fournir du combustible hydrocarboné et du gaz contenant de l'oxygène à un brûleur ;refroidir le gaz de combustion sortant du brûleur ;envoyer au moins une partie du gaz de combustion refroidi à une pile à combustible à oxyde solide ; etajouter de l'hydrogène gazeux de combustion avant l'envoi à la pile à combustible à oxyde solide.
- Procédé suivant la revendication 11, dans lequel le gaz de combustion sortant du brûleur est refroidi par un échangeur de chaleur.
- Procédé suivant la revendication 11, dans lequel le gaz de combustion sortant du brûleur est refroidi par une unité de reformage et de désulfuration.
- Procédé suivant la revendication 11, comportant en outre l'étape qui consiste à séparer au moins une partie de l'oxygène provenant du gaz contenant de l'oxygène avant l'envoi au brûleur.
- Procédé suivant la revendication 11, comportant en outre l'étape qui consiste à détecter la quantité d'oxygène contenu dans le gaz contenant de l'oxygène fournie au brûleur.
- Procédé suivant la revendication 15, comportant en outre l'étape qui consiste à ajuster la quantité de gaz contenant de l'oxygène fournie au brûleur sur la base de la quantité détectée d'oxygène.
- Procédé suivant la revendication 11, comportant en outre l'étape qui consiste à retourner une partie du gaz de combustion refroidi au brûleur.
- Procédé suivant la revendication 11, dans lequel le gaz de combustion refroidi est envoyé à la pile à combustible à oxyde solide par un réservoir de stockage de gaz.
- Procédé suivant la revendication 11, dans lequel l'hydrogène gazeux est stocké sous forme solide.
- Procédé suivant la revendication 19, dans lequel l'hydrogène est stocké sous la forme d'un hydrure métallique.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US974861 | 1997-11-20 | ||
US08/974,861 US5928805A (en) | 1997-11-20 | 1997-11-20 | Cover and startup gas supply system for solid oxide fuel cell generator |
PCT/US1998/024736 WO1999027598A1 (fr) | 1997-11-20 | 1998-11-19 | Systeme d'alimentation en gaz de couverture et de demarrage pour generateur de puissance a pile a combustible oxyde solide |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1032952A1 EP1032952A1 (fr) | 2000-09-06 |
EP1032952B1 true EP1032952B1 (fr) | 2002-07-17 |
Family
ID=25522476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98963763A Expired - Lifetime EP1032952B1 (fr) | 1997-11-20 | 1998-11-19 | Systeme d'alimentation en gaz de couverture et de demarrage pour generateur de puissance a pile a combustible oxyde solide |
Country Status (6)
Country | Link |
---|---|
US (1) | US5928805A (fr) |
EP (1) | EP1032952B1 (fr) |
JP (1) | JP2001524739A (fr) |
CA (1) | CA2311136A1 (fr) |
DE (1) | DE69806632D1 (fr) |
WO (1) | WO1999027598A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006031717A1 (de) * | 2006-07-08 | 2008-01-10 | Bayerische Motoren Werke Ag | Verfahren zum zumindest kurzzeitigen Stillsetzen einer Festoxid-Brennstoffzelle |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6210821B1 (en) * | 1998-12-28 | 2001-04-03 | International Fuel Cells Co, Llc | System for implementing operation and start-up of a vehicle which is powered by electricity from a fuel cell power plant |
JP4809965B2 (ja) * | 2000-01-28 | 2011-11-09 | 本田技研工業株式会社 | 水素を燃料とする機器への水素供給システムおよび電気自動車 |
DE10019770B4 (de) * | 2000-04-20 | 2006-12-07 | Nucellsys Gmbh | Verfahren zur Verbesserung des Anspringverhaltens von mobilen Brennstoffzellensystemen |
JP4843147B2 (ja) * | 2000-05-30 | 2011-12-21 | 本田技研工業株式会社 | 燃料電池暖機システム |
JP4575551B2 (ja) | 2000-05-30 | 2010-11-04 | 本田技研工業株式会社 | 燃料電池用ガス供給装置 |
DE10044786A1 (de) * | 2000-09-11 | 2002-04-04 | Emitec Emissionstechnologie | Brennstoffzellenanlage und Verfahren zum Betreiben einer Brennstoffzellenanlage |
US20020071976A1 (en) * | 2000-11-03 | 2002-06-13 | Edlund David J. | Sulfur-absorbent bed and fuel processing assembly incorporating the same |
US6774637B2 (en) * | 2000-11-30 | 2004-08-10 | Plug Power, Inc. | Method of qualifying at least a portion of a fuel cell system and an apparatus employing same |
US20020114984A1 (en) * | 2001-02-21 | 2002-08-22 | Edlund David J. | Fuel cell system with stored hydrogen |
US6596426B2 (en) * | 2001-04-05 | 2003-07-22 | Utc Fuel Cells, Llc | Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures |
US6620535B2 (en) * | 2001-05-09 | 2003-09-16 | Delphi Technologies, Inc. | Strategies for preventing anode oxidation |
DE10157737A1 (de) * | 2001-11-24 | 2003-06-05 | Bosch Gmbh Robert | Brennstoffzellenanlage |
FR2834586B1 (fr) * | 2002-01-04 | 2004-07-23 | Peugeot Citroen Automobiles Sa | Dispositif de generation d'electricite du type pile a combustible et vehicule comportant un tel dispositif |
GB2412784B (en) * | 2002-01-18 | 2006-08-23 | Intelligent Energy Ltd | Fuel cell oxygen removal and pre-conditioning system |
US7108933B2 (en) * | 2002-02-28 | 2006-09-19 | Intel Corporation | Thermally efficient hydrogen storage system |
US7282285B2 (en) * | 2002-04-05 | 2007-10-16 | Utc Fuel Cells, Llc | Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures |
US6967064B2 (en) * | 2002-06-24 | 2005-11-22 | Delphi Technologies, Inc. | Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly |
US7226679B2 (en) * | 2002-07-31 | 2007-06-05 | Siemens Power Generation, Inc. | Fuel cell system with degradation protected anode |
DE10254842A1 (de) * | 2002-11-25 | 2004-06-03 | Robert Bosch Gmbh | Brennstoffzellenanlage |
CA2457609A1 (fr) * | 2004-02-13 | 2005-08-13 | Alberta Research Council Inc. | Chauffage de piles a combustible d'oxyde solide empilees |
US7364812B2 (en) * | 2004-03-19 | 2008-04-29 | Pittsburgh Electric Engines, Inc. | Multi-function solid oxide fuel cell bundle and method of making the same |
CA2503655C (fr) * | 2004-04-06 | 2013-08-06 | Universite De Sherbrooke | Procede de piegeage du carbone et de reformage a sec et catalyseurs pour celui-ci |
US20070253886A1 (en) * | 2004-04-06 | 2007-11-01 | Universite De Sherbrooke | Carbon sequestration and dry reforming process and catalysts to produce same |
US7181329B2 (en) * | 2004-12-14 | 2007-02-20 | General Electric Company | High temperature protection of fuel cell system combustor and other components via water or water vapor injection |
FR2880993A1 (fr) * | 2005-01-20 | 2006-07-21 | Renault Sas | Installation de production d'electricite comportant une pile a combustible dont l'anode est alimentee successivement par deux sources de carburant |
WO2006090685A1 (fr) * | 2005-02-22 | 2006-08-31 | Mitsubishi Materials Corporation | Pile a combustible de type a oxyde solide et son procede de fonctionnement |
JP2010517226A (ja) * | 2007-01-22 | 2010-05-20 | ロールス−ロイス・フューエル・セル・システムズ(ユーエス)インコーポレーテッド | 多段燃焼器及び燃料電池システムを始動するための方法 |
US8053128B2 (en) * | 2008-04-10 | 2011-11-08 | Delphi Technologies, Inc. | Apparatus for solid-oxide fuel cell shutdown having a timing circuit and a reservoir |
JP5008613B2 (ja) * | 2008-06-30 | 2012-08-22 | アイシン精機株式会社 | 燃料電池システム |
FI120949B (fi) * | 2008-07-10 | 2010-05-14 | Waertsilae Finland Oy | Menetelmä ja järjestely polttokennojärjestelmän esilämmityksen tehostamiseksi |
US20100092806A1 (en) * | 2008-10-14 | 2010-04-15 | Honeywell International Inc. | Miniature powered antenna for wireless communications and related system and method |
US8503949B2 (en) * | 2008-10-17 | 2013-08-06 | Honeywell International Inc. | Miniature fiber radio transceiver and related method |
US8668752B2 (en) | 2009-09-04 | 2014-03-11 | Rolls-Royce Fuel Cell Systems (Us) Inc. | Apparatus for generating a gas which may be used for startup and shutdown of a fuel cell |
US9140220B2 (en) | 2011-06-30 | 2015-09-22 | Lg Fuel Cell Systems Inc. | Engine systems and methods of operating an engine |
US9118048B2 (en) | 2009-09-04 | 2015-08-25 | Lg Fuel Cell Systems Inc. | Engine systems and methods of operating an engine |
US9874158B2 (en) | 2009-09-04 | 2018-01-23 | Lg Fuel Cell Systems, Inc | Engine systems and methods of operating an engine |
US8597841B2 (en) * | 2009-09-04 | 2013-12-03 | Lg Fuel Cell Systems Inc. | Method for generating a gas which may be used for startup and shutdown of a fuel cell |
US9083020B2 (en) | 2009-09-04 | 2015-07-14 | Lg Fuel Cell Systems Inc. | Reducing gas generators and methods for generating reducing gas |
US9178235B2 (en) | 2009-09-04 | 2015-11-03 | Lg Fuel Cell Systems, Inc. | Reducing gas generators and methods for generating a reducing gas |
EP2336083A1 (fr) * | 2009-12-17 | 2011-06-22 | Topsøe Fuel Cell A/S | Générateur de gaz et procédés pour la conversion de carburant en gaz désoxygéné et/ou gaz enrichi en hydrogène |
US9281527B2 (en) | 2011-06-15 | 2016-03-08 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US9147888B2 (en) | 2011-06-15 | 2015-09-29 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US9531013B2 (en) | 2011-06-15 | 2016-12-27 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
US9525181B2 (en) | 2011-06-15 | 2016-12-20 | Lg Fuel Cell Systems Inc. | Fuel cell system with interconnect |
JP5869137B2 (ja) | 2011-10-14 | 2016-02-24 | サウジ アラビアン オイル カンパニー | 補助電源ユニット用途における水素化脱硫ユニットおよび固体酸化物形燃料電池システムの組み合わせへの送達のための非触媒水素発生プロセス |
US20140234735A1 (en) | 2013-02-18 | 2014-08-21 | Gong Zhang | High temperature fuel cell/electrolyzer system with energy storage media and auxiliaries outside the fuel cell power generator |
CN105359321A (zh) | 2013-03-15 | 2016-02-24 | Lg燃料电池系统股份有限公司 | 用于捕获铬而配置的燃料电池系统 |
US20140322619A1 (en) * | 2013-04-29 | 2014-10-30 | Ballard Power Systems Inc. | Fuel cell system |
CA2956069A1 (fr) | 2014-07-21 | 2016-01-28 | Lg Fuel Cell Systems, Inc. | Composition pour electrode de pile a combustible |
US10115973B2 (en) | 2015-10-28 | 2018-10-30 | Lg Fuel Cell Systems Inc. | Composition of a nickelate composite cathode for a fuel cell |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1585403A (fr) * | 1968-04-19 | 1970-01-23 | ||
US4395468A (en) * | 1980-12-22 | 1983-07-26 | Westinghouse Electric Corp. | Fuel cell generator |
JPS62268066A (ja) * | 1986-05-15 | 1987-11-20 | Mitsubishi Heavy Ind Ltd | 燃料電池の起動方法 |
US4702971A (en) * | 1986-05-28 | 1987-10-27 | Westinghouse Electric Corp. | Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells |
JPS63259971A (ja) * | 1987-04-17 | 1988-10-27 | Fuji Electric Co Ltd | 燃料電池設備 |
JPH0293207A (ja) * | 1988-09-30 | 1990-04-04 | Hitachi Ltd | 温風暖房装置 |
EP0377151A1 (fr) * | 1989-01-04 | 1990-07-11 | Asea Brown Boveri Ag | Procédé pour la régulation automatique de la température et de la puissance d'un ou de plusieurs éléments à combustible à haute température alimentés par des hydrocarbures |
US5143800A (en) * | 1990-07-25 | 1992-09-01 | Westinghouse Electric Corp. | Electrochemical cell apparatus having combusted exhaust gas heat exchange and valving to control the reformable feed fuel composition |
JPH04324253A (ja) * | 1991-04-25 | 1992-11-13 | Chubu Electric Power Co Inc | 燃料電池 |
US5306574A (en) * | 1992-10-07 | 1994-04-26 | Westinghouse Electric Corp. | Method of low temperature operation of an electrochemical cell array |
US5413879A (en) * | 1994-02-08 | 1995-05-09 | Westinghouse Electric Corporation | Integrated gas turbine solid oxide fuel cell system |
GB9403198D0 (en) * | 1994-02-19 | 1994-04-13 | Rolls Royce Plc | A solid oxide fuel cell stack |
DE19514469A1 (de) * | 1995-04-19 | 1996-08-01 | Siemens Ag | Verfahren zum Betreiben einer Brennstoffzellenanlage und Brennstoffzellenanlage zum Durchführen des Verfahrens |
US5541014A (en) * | 1995-10-23 | 1996-07-30 | The United States Of America As Represented By The United States Department Of Energy | Indirect-fired gas turbine dual fuel cell power cycle |
JPH09293525A (ja) * | 1996-04-30 | 1997-11-11 | Mitsubishi Heavy Ind Ltd | 固体電解質型燃料電池発電システム |
US5851689A (en) * | 1997-01-23 | 1998-12-22 | Bechtel Corporation | Method for operating a fuel cell assembly |
-
1997
- 1997-11-20 US US08/974,861 patent/US5928805A/en not_active Expired - Lifetime
-
1998
- 1998-11-19 CA CA002311136A patent/CA2311136A1/fr not_active Abandoned
- 1998-11-19 DE DE69806632T patent/DE69806632D1/de not_active Expired - Lifetime
- 1998-11-19 JP JP2000522639A patent/JP2001524739A/ja active Pending
- 1998-11-19 EP EP98963763A patent/EP1032952B1/fr not_active Expired - Lifetime
- 1998-11-19 WO PCT/US1998/024736 patent/WO1999027598A1/fr active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006031717A1 (de) * | 2006-07-08 | 2008-01-10 | Bayerische Motoren Werke Ag | Verfahren zum zumindest kurzzeitigen Stillsetzen einer Festoxid-Brennstoffzelle |
Also Published As
Publication number | Publication date |
---|---|
EP1032952A1 (fr) | 2000-09-06 |
CA2311136A1 (fr) | 1999-06-03 |
WO1999027598A1 (fr) | 1999-06-03 |
US5928805A (en) | 1999-07-27 |
DE69806632D1 (de) | 2002-08-22 |
JP2001524739A (ja) | 2001-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1032952B1 (fr) | Systeme d'alimentation en gaz de couverture et de demarrage pour generateur de puissance a pile a combustible oxyde solide | |
US5686196A (en) | System for operating solid oxide fuel cell generator on diesel fuel | |
Dicks | Hydrogen generation from natural gas for the fuel cell systems of tomorrow | |
KR101939687B1 (ko) | 수소 생성을 위한 개질기-전해조-정제기(rep) 어셈블리, 이를 통합한 시스템들 및 수소를 생성하는 방법 | |
US8123826B2 (en) | Process for the conversion of oil-based liquid fuels to a fuel mixture suitable for use in solid oxide fuel cell applications | |
US6162556A (en) | Method for operating a high-temperature fuel cell installation, and a high-temperature fuel cell installation | |
US4657828A (en) | Fuel cell system | |
US20040150366A1 (en) | Turbocharged Fuel Cell Systems For Producing Electric Power | |
US7160342B2 (en) | Fuel reformer system | |
US20060143983A1 (en) | Apparatus for producing hydrogen gas and fuel cell system using the same | |
US8841039B2 (en) | Indirect internal reforming solid oxide fuel cell system | |
KR102271156B1 (ko) | 선박 | |
JP2002227730A (ja) | ガスエンジン | |
Leites et al. | SchIBZ-design of different diesel based fuel cell systems for seagoing vessels and their evaluation | |
US20090123796A1 (en) | Hydrogen and power generation system and method of activating hydrogen generation mode thereof | |
US20050037245A1 (en) | Method for hydrogen and electricity production using steam-iron process and solid oxide fuel cells | |
Han et al. | Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle | |
JP2001085039A (ja) | 燃料電池システム | |
JP2022076978A (ja) | 燃料電池から排出されるオフガスを処理するためのシステムおよび方法。 | |
KR20170015823A (ko) | 선박 | |
JP2006310128A (ja) | カバーガスの供給システム及びその供給方法 | |
KR102190938B1 (ko) | 선박 | |
JP2001106513A (ja) | 燃料改質装置 | |
JP2005108509A (ja) | 燃料電池発電システム | |
JP3240783B2 (ja) | 内部改質燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000519 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20011019 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20020717 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020717 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69806632 Country of ref document: DE Date of ref document: 20020822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021119 |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030422 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |