EP1023588A1 - Procede d'impregnation et dispositif de controle de l'impregnation d'un materiau support - Google Patents

Procede d'impregnation et dispositif de controle de l'impregnation d'un materiau support

Info

Publication number
EP1023588A1
EP1023588A1 EP98958184A EP98958184A EP1023588A1 EP 1023588 A1 EP1023588 A1 EP 1023588A1 EP 98958184 A EP98958184 A EP 98958184A EP 98958184 A EP98958184 A EP 98958184A EP 1023588 A1 EP1023588 A1 EP 1023588A1
Authority
EP
European Patent Office
Prior art keywords
impregnation
carrier material
medium
impregnated
impregnation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98958184A
Other languages
German (de)
English (en)
Inventor
Dora Schattauer
Kai Velten
Aivars Zemitis
Franz-Josef Pfreundt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1023588A1 publication Critical patent/EP1023588A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties

Definitions

  • the invention relates to an impregnation process in which a carrier material is impregnated with an impregnation medium.
  • the invention also relates to a device for monitoring the impregnation of a carrier material with an impregnation medium.
  • the object of the invention is to provide an impregnation process. Another object of the invention is to provide a device for monitoring the impregnation of a carrier material.
  • this object is achieved by a soaking process in which a carrier material is impregnated with an impregnating medium so that the dielectric constant of the carrier material än ⁇ changed, one is dependent on the permittivity measured value measured and determines a saturation of the carrier material becomes.
  • the invention is based on the insight that by a ⁇ of the impregnation medium penetrate into the carrier material the dielectric constant of the carrier material is changed. By determining the dielectric constant, it can be inferred, for example, how far the impregnation medium has impregnated the carrier material. This makes it possible to monitor the impregnation process.
  • the electrical capacitance of an arrangement of electrical conductors in which the carrier material serves as a dielectric is preferably used as the measured variable. This configuration in the form of a capacitor enables simple determination of the dielectric constant by measuring an electrical capacitance.
  • the capacitance can be determined, for example, by applying a DC voltage, or also by determining a capacitive resistance.
  • a time course of the measured variable is preferably measured and a time course of the impregnation is determined therefrom. This makes it possible to display the time course of the quantities characterizing the impregnation process.
  • a functional relationship between a reference impregnation and the measured variable is further preferably determined and the impregnation is inferred from the functional relationship.
  • the determination of a reference impregnation as a function of the measured quantity represents one possibility of obtaining a value for the impregnation from the measured quantity.
  • the functional relationship is preferably determined in that • a degree of impregnation is defined as the ratio of the impregnated to the impregnated volume of the carrier material;
  • a reference impregnation with a spatial distribution in the carrier material of at least one impregnated dry area and at least one soaked wet area is assigned to the simulation using a flow model
  • a first dielectric constant is assigned to the at least one dry area and a second dielectric constant is assigned to the at least one wet area;
  • the impregnation medium penetrates into the carrier material to form a flow front. Dry areas and / or wet areas can be connected so that they each represent a continuous volume. The flow front can also lead to a complex spatial distribution of dry and wet areas. This results in a complex electrical field due to different dielectric constants of these areas.
  • ⁇ 0 is the dielectric constant of the vacuum
  • ⁇ r is the average dielectric constant that results from the dielectric constants of the dry and wet areas
  • is the potential
  • U is the voltage applied to the electrodes.
  • the spatial distribution of the reference moisture content is more preferably calculated for a porous carrier material using the Darcy law for a flow of a Newtonian impregnation medium or using a suitable modification of this Darcy law for a flow of a non-Newtonian impregnation medium.
  • the calculation of the spreading of flow fronts can be simulated for porous media with the help of the Darcy law, which is recognized as being a sufficiently good representation of the physical conditions.
  • a penetration depth of the impregnation medium into the carrier material is preferably obtained from the impregnation. More preferably, a " " course of the penetration depth is obtained and at least one of the following sizes of the carrier material is determined therefrom:
  • an impregnation and thus a penetration depth of the impregnation medium can be derived over time from the determination of the measured variable.
  • a material property such as the filtration coefficient or the flow resistance can be obtained.
  • a temporal course of the penetration depth and from this a viscosity of the impregnation medium is more preferably obtained.
  • a resin in particular an epoxy resin, is preferably used as the impregnation medium. Impregnations with resins and in particular with epoxy resins play e.g. in the manufacture of
  • Fibers of a fiber composite material to be produced are preferably used as the carrier material.
  • An electrical insulation material is preferably used as the carrier material.
  • VPI Vacuum Pressure Impregnation
  • Turbogenerators are often manufactured today by completely impregnating their stator. The stator is flooded with epoxy resin and impregnated with epoxy resin under pressure and at elevated temperature. After the epoxy resin has hardened, this results in a particularly durable and resistant stator cladding.
  • Impregnation errors are permanently impregnated areas.
  • the measurement of the impregnation with the aid of the measured variable makes it possible, for example, to give impregnation due to material properties. recognizable.
  • An indication of an impregnation error can be, in particular, that the usual end capacity, that is to say the capacity which is usually established at the end of the impregnation process, is not reached.
  • the object aimed at specifying a device is achieved by a device for monitoring the impregnation of a carrier material with an impregnating medium, a conductor arrangement being arranged such that the carrier material serves as a dielectric influencing the capacitance of the conductor arrangement and a measuring device for measuring the electrical Capacity is connected to the conductor arrangement.
  • the carrier material is preferably an insulation of a conductor rod of the stator of a turbogenerator, the conductor arrangement comprising an electrically conductive band which surrounds the insulation and the electrical conductor of the conductor rod.
  • the impregnation during a complete impregnation process of a stator of a turbogenerator can be checked particularly easily by this configuration. It is only necessary to measure the capacitance between the electrically conductive band and the electrical conductor of the conductor bar. The impregnation can be inferred from this capacitance measurement in accordance with the explanations above regarding the impregnation process.
  • 1 shows a schematic representation of a body to be impregnated
  • 2 shows a representation of the method steps for calculating the impregnation from the capacitance
  • FIG 3 shows a section of a conductor bar of the stator of a turbogenerator.
  • FIG. 1 A longitudinal section through a rectangular body 1A made of a carrier material 1 is shown schematically in FIG.
  • An electrical conductor arrangement 3 is arranged on the narrow sides IB, IC of the body 11. It comprises a first conductor 3B on the narrow side IB and a second conductor 3C on the narrow side IC.
  • the conductors 3B and 3C are connected to a measuring device 9 such that the capacitance of the conductor arrangement 3 can be determined via the measuring device 9.
  • the carrier material 1 is impregnated with an impregnating medium 2 from the narrow side IB.
  • the impregnation medium 2 penetrates the carrier material 1 over time from the narrow side IB to the narrow side IC.
  • a flow front 2A is formed.
  • the flow front 2A divides the carrier material 1 into a wet area 4 and a dry area 5.
  • the wet area 4 has the dielectric constant ⁇ F.
  • the drying area 5 has the dielectric constant ⁇ ⁇ .
  • the flow front 2A defines an average penetration depth E (t) of the impregnation medium 2 into the carrier material 1 at a specific time t.
  • FIG. 2 shows three process steps VI, V2, V3.
  • a functional relationship D (C) between a reference impregnation D R and the capacitance C is calculated.
  • Process parameters are used for this, for example: The pressure P under which the impregnating medium 2 is pressed into the carrier material 1, the prevailing temperature T, the viscosity V of the impregnating medium 2 and the filtration coefficient FK or the flow resistance FW of the carrier material 1, which leads to a permeability S of the carrier material 1.
  • the Darcy equation is used to determine which spatial distribution of soaked wet areas 4 and non-soaked dry areas 5 is to be expected for a given degree of soaking.
  • the Darcy equation is written as:
  • a second method step V2 the capacitance C - is measured with the aid of the measuring device 9 according to FIG. 1 as a function of the time t.
  • the shape of the flow fronts and thus the precise spatial distribution of wet areas 4 and dry areas 5 can be negligible.
  • a simulation with a flow model such as with the Darcy equation, is not necessary. From the capacity tat can then be directly deduced from a percentage of wet areas 4 and dry areas 5, that is, the moisture content D.
  • FIG. 3 shows a section of a conductor bar 12 of a stator (not shown) of a turbogenerator.
  • the conductor bar 12 consists of an electrical conductor 10, preferably of copper. It is surrounded by insulation 1, which in this case is the carrier material 1.
  • the insulation 1 is surrounded by an externally wound, not shown, glow protection tape.
  • a conductive tape 11 is wound over the glow protection tape.
  • the conductive band 11 and the conductor 10 are connected to a measuring device 9 for measuring the capacitance C.
  • Such a conductor bar 12 is inserted into grooves in a laminated core (not shown) and connected to other, correspondingly arranged conductor bars 12 to form an electrical winding. This entire arrangement forms the stator of a turbogenerator.
  • Impregnated with an epoxy resin in a full impregnation process.
  • the entire stator is placed in a pressure vessel.
  • the epoxy resin, which forms the impregnation medium 2 is then introduced into the carrier material 1, that is to say the insulation 1, at elevated temperature and high pressure.
  • a perfect and practically complete impregnation is essential for the operational safety and the service life of the generator.
  • the impregnation of the insulation 1 can be monitored by measuring the capacitance C with the aid of the measuring device 9. For example, Impregnation errors, i.e. impregnated areas, can be determined at the end of the impregnation process by not reaching an end capacity normally reached.
  • the invention can also be used advantageously in other areas.
  • the production of fiber composite materials often requires impregnation with a resin.
  • surveillance of the impregnation process in terms of quality assurance great advantages.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un procédé d'imprégnation selon lequel un matériau support (1) est imprégné par un milieu d'imprégnation (2). L'imprégnation du matériau support (1) est contrôlée par l'intermédiaire de la constante diélectrique (εr) du matériau support et, de préférence, par détermination d'une capacité (C). L'invention concerne également un dispositif pour le contrôle de l'imprégnation du matériau support (1) par le milieu d'imprégnation (2).
EP98958184A 1997-10-14 1998-10-01 Procede d'impregnation et dispositif de controle de l'impregnation d'un materiau support Withdrawn EP1023588A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19745404A DE19745404A1 (de) 1997-10-14 1997-10-14 Tränkverfahren und Vorrichtung zur Überwachung der Durchtränkung eines Trägermaterials
DE19745404 1997-10-14
PCT/DE1998/002925 WO1999019720A1 (fr) 1997-10-14 1998-10-01 Procede d'impregnation et dispositif de controle de l'impregnation d'un materiau support

Publications (1)

Publication Number Publication Date
EP1023588A1 true EP1023588A1 (fr) 2000-08-02

Family

ID=7845534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98958184A Withdrawn EP1023588A1 (fr) 1997-10-14 1998-10-01 Procede d'impregnation et dispositif de controle de l'impregnation d'un materiau support

Country Status (6)

Country Link
EP (1) EP1023588A1 (fr)
JP (1) JP2001520378A (fr)
KR (1) KR20010015760A (fr)
CN (1) CN1278916A (fr)
DE (1) DE19745404A1 (fr)
WO (1) WO1999019720A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820318B2 (ja) 2007-03-22 2011-11-24 株式会社日立製作所 樹脂成形品の設計支援装置、支援方法及び支援プログラム
DE102011052141B4 (de) * 2010-07-29 2013-08-22 Gottlob Thumm Maschinenbau Gmbh Verfahren zum Imprägnieren elektrischer Bauteile und Vorrichtung
DE102015109705A1 (de) * 2015-06-17 2016-12-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. ,Untersuchungsverfahren für Bauteile aus einem Faserverbundwerkstoff und Messanordnung an einem Bauteil aus einem Faserverbundwerkstoff
CN110873737B (zh) * 2018-09-03 2024-04-26 株式会社斯巴鲁 树脂含浸测定系统
CN111929212B (zh) * 2019-05-13 2023-08-15 姚远 非接触式纤维渗透率测量系统及其方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2609869A1 (de) * 1976-03-10 1977-09-15 Kurt Dipl Chem Dr Dannhaeuser Verfahren und schaltungsanordnungen zur ermittlung des beladezustandes und durchbruchs von adsorptionsbetten
DE3617598A1 (de) * 1986-05-24 1987-11-26 Joachim Sprenger Sensor zur erkennung oelgesaettigter filtereinsaetze in anlagen zur oel-wasser-trennung
US4856320A (en) * 1988-09-08 1989-08-15 Universite Du Quebec A Trois-Rivieres, Societe Quebecoise D'initiatives Petrolieres And Gaz Metropolitain Inc. Method and apparatus for measuring physical adsorption of gases based on dielectric measurements
US4907442A (en) * 1989-03-20 1990-03-13 Mobil Oil Corporation Method and system for determining fluid saturations within natural or simulated fractures
US4994751A (en) * 1989-08-14 1991-02-19 Jerry W. Cook System for assessing lachrymal fluid content of a sample pad
DE4446597C2 (de) * 1994-12-24 1998-12-10 Daimler Benz Aerospace Ag Vorrichtung zur Detektion von Flüssigkeiten
DE19536766A1 (de) * 1995-10-02 1997-04-03 Somos Gmbh Verfahren zur Bestimmung spezifischer Materialcharakteristiken

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9919720A1 *

Also Published As

Publication number Publication date
KR20010015760A (ko) 2001-02-26
DE19745404A1 (de) 1999-04-15
WO1999019720A1 (fr) 1999-04-22
CN1278916A (zh) 2001-01-03
JP2001520378A (ja) 2001-10-30

Similar Documents

Publication Publication Date Title
EP0951132B1 (fr) Barre d'enroulement pour machine électrique de haute tension et procédé pour la fabrication d'une telle barre
DE19844489A1 (de) Verfahren zum Bestimmen der elektrischen Leitfähigkeit von Flüssigkeiten
DE3783028T2 (de) Elektrischer widerstand und herstellungsverfahren.
WO2014095482A1 (fr) Procédé et dispositif pour déterminer une teneur en humidité et pour sécher une isolation
DE2527443C2 (de) Mineralisoliertes elektrisches Heizkabel und Verfahren zu seiner Herstellung
EP0126100B1 (fr) Procede et dispositif pour determiner si l'on a atteint ou depasse une valeur-limite exprimee en pourcentage d'une partie de liquide contenue dans un melange liquide et ayant une temperature d'evaporation inferieure
DE69926787T2 (de) Verfahren zur reduzierung der teilentladung im roebelstabfüllstoff einer hochspannungsstatorwicklung
DE3033343A1 (de) Sonde zum messen der pegelhoehe von leitenden materialien in einem behaelter
WO1999019720A1 (fr) Procede d'impregnation et dispositif de controle de l'impregnation d'un materiau support
DE102012016686A1 (de) Verfahren und Vorrichtung zur Messung von dielektrischen Kenngrößen der Isolation von Hochspannungsgeräten
DE4237079C2 (de) Elektrische Maschine
DE19852775B4 (de) Verfahren zur Sortierprüfung von Varistoren
DE10004146A1 (de) Einrichtung zur Messung der Fließfront in Verstärkungsstrukturen
DE102008006056A1 (de) Verfahren zur verbesserten Herstellung der Isolierung eines Leiterelementes für eine elektrische Maschine
DE102011052141B4 (de) Verfahren zum Imprägnieren elektrischer Bauteile und Vorrichtung
US6510358B1 (en) Impregnation process and device for monitoring the impregnation of a carrier material
DE69721363T2 (de) Verfahren und Vorrichtung zur Kontrolle der Schweissbarkeit von Sandwichblechen
DE4019869A1 (de) Verfahren und vorrichtung zum messen der viskositaet von harzen
DE2911703A1 (de) Nachrichtenkabel mit kunststoffisolierten adern
DE3045462A1 (de) Verfahren zum herstellen einer koronaabschirmung fuer die staenderwicklung einer elektrischen maschine
DE2350913B2 (de) Elektrisches Isotiermaterial
DE424025C (de) Verfahren zur Pruefung der Dichtigkeit des Bleimantels elektrischer Kabel
DE4208953A1 (de) Verfahren zum bestimmen der elektrischen anisotropie einer kernprobe aus einer unterirdischen formation
EP0795225B2 (fr) Procede de production d'une barre pour enroulements haute tension pour moteur electrique rotatif, munie de dispositifs anti-effluves
WO2015155270A1 (fr) Procédé et dispositif de détermination du taux d'humidité de l'isolation d'un transformateur de courant et de séchage de l'isolation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040107