EP1016165A1 - Cable rayonnant - Google Patents

Cable rayonnant

Info

Publication number
EP1016165A1
EP1016165A1 EP98954558A EP98954558A EP1016165A1 EP 1016165 A1 EP1016165 A1 EP 1016165A1 EP 98954558 A EP98954558 A EP 98954558A EP 98954558 A EP98954558 A EP 98954558A EP 1016165 A1 EP1016165 A1 EP 1016165A1
Authority
EP
European Patent Office
Prior art keywords
wires
cable
conductive wires
cable according
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98954558A
Other languages
German (de)
English (en)
Other versions
EP1016165B1 (fr
Inventor
Thierry Linossier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagem SA
Original Assignee
Sagem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem SA filed Critical Sagem SA
Publication of EP1016165A1 publication Critical patent/EP1016165A1/fr
Application granted granted Critical
Publication of EP1016165B1 publication Critical patent/EP1016165B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/203Leaky coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/18Applying discontinuous insulation, e.g. discs, beads
    • H01B13/20Applying discontinuous insulation, e.g. discs, beads for concentric or coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave

Definitions

  • Radio coverage of large buildings often requires the installation of dedicated equipment. This coverage is carried out using antennas placed inside the buildings.
  • radiating cables arranged in the corridors would be technically advantageous, but it often entails prohibitive costs.
  • the radiating cables currently installed in tunnels are coaxial cables with patterns of periodic slits. They are expensive, bulky, rigid and difficult to install.
  • Japanese patent application JP-60038902 discloses a radiating cable comprising two first insulated conductive wires having first ends connected to one of the terminals of an oscillator and two second insulated conductive wires having first ends connected to the other oscillator terminal.
  • the first wires and the second wires respectively constitute two pairs of wires twisted independently in a retaining sheath.
  • the pairs In order to obtain a sufficiently low radiation frequency, the pairs have different helix pitches between them. This difference in pitch is obtained by twisting the two pairs of wires separately.
  • the objective of the present invention is to provide a radiating cable for covering buildings suitable for operating in a high frequency band up to approximately 3 MHz, more flexible, smaller and less expensive than the cables known for tunnel applications. .
  • the performance of the radiating cable of the invention is significantly reduced, in particular with regard to the linear loss, the propagation speed and the reflection loss.
  • a high frequency radiating cable comprising first insulated conductive wires having first ends connected to each other, and second insulated conductive wires having first ends connected to each other, the first wires being equal in number to the second wires , and an external retaining sheath containing the first and second wires, is characterized in that the first and second wires are twisted together around a longitudinal axis of the cable, and of the second ends of the first insulated conducting wires and of the second ends of the second insulated conductor wires are connected respectively to the terminals of a load substantially equal to the characteristic impedance of the cable, or to the input terminals of an amplifier means.
  • the output of the amplifier means is for example connected to one end of another radiating cable, or to an antenna.
  • the wires are thus in an even number, equal to or greater than 4 in the cable of the invention.
  • the cable comprises a quarter of conductive wires joined in pairs and substantially symmetrical with respect to the longitudinal axis of the cable.
  • the radiating cable of the invention comprises six conductive wires which are circularly distributed equally, at the rate of three first wires on one side of a longitudinal diametral plane of the cable and three second wires on the other side of the plane diametral, or else at the rate of a first wire joined between two second wires and vice versa of a second wire joined between two first wires along a circle in cross section.
  • connection of the second ends of the first and second conductive wires to a suitable load that is to say substantially equal to the characteristic impedance of the cable, or to the input terminals of an amplifier means whose output can be connected to another radiating cable or to an antenna, ensures a better performance of the cable compared to the cable defined in application JP-60038902.
  • the wires are twisted together in an external holding sheath, i.e. all the wires have the same helix pitch.
  • a cable of the invention with two first wires and two second wires has a constant characteristic impedance along the cable and is more flexible and above all is easier to manufacture and therefore less expensive.
  • the wires are twisted together at the same time as being placed under the holding sheath, or a set of envelopes including the holding sheath, in a single continuous operation.
  • the first ends of the first insulated conductive wires and the first ends of the second insulated conductive wires are respectively connected to the external and internal conductors of a coaxial power cable which provides the link between the radiating cable and a fixed transmitter / receiver station, for example a base station of a cellular radiotelephony network.
  • a fixed transmitter / receiver station for example a base station of a cellular radiotelephony network.
  • This connection can also be ensured by a power cable in twisted pairs or the radiating cable can be directly connected to the fixed transmitter / receiver system.
  • the first ends of a pair of conductive wires isolated from the radiating cable and the first ends of the other pair of conductive wires isolated from the radiating cable are then connected respectively to two conductors of the power cable or to two terminals of the transmitter system / fixed receiver.
  • the invention positively implements the harmful effects of the radiation of a conventional cable with two pairs of wires which generate crosstalk, and accentuates these effects mainly due to the imbalance of the pairs of wires.
  • a twist of wires is sometimes a succession of direct propellers, sometimes a succession of retrograde propellers.
  • the direction of the propellers changes every 8 to 12 propeller steps.
  • a twisting section of direct helical wires is separated by a twisting section of retrograde helical wires by a section of cable in which the wires are substantially parallel to the axis of the cable.
  • the first conductive wires are arranged alternately with the second conductive wires around a longitudinal axis of the cable, or the set of first conductive wires is substantially symmetrical with the set of second conductive wires with respect to a longitudinal axis of the cable.
  • the helix pitch of the twisted wires can be between 10 and 50 times approximately the external diameter of the insulated conducting wires.
  • the radiation can be increased by causing imbalances between the various elements of the cable. These imbalances can be created by differences in dimensions between the different conductive wires or differences in linear capacities between the different conductive wires. These differences in linear capacitances can result either from different thicknesses of insulating sheaths of the insulated conductive wires, or by insulating materials with different dielectric constants of insulating sheaths of the insulated conductive wires. More generally, at least one of the first conductive wires and at least one of the second conductive wires can differ from one another by at least one of the following three parameters: diameter of conductive core of the wires, thickness of insulating sheath of the wires, and dielectric constant of the insulating sheaths.
  • the insulated conductive wires can have conductive cores embedded in a cylindrical dielectric sheath.
  • each of the insulated conductive wires may comprise an electrically conductive core composed of a central part made of a first conductive material, and of a coating surrounding the central part, said coating being in a second conductive material having an electrical conductivity greater than that of the central part.
  • the first conductive material can be aluminum or low alloy aluminum and the second conductive material can be copper or silver, or copper or low alloy silver.
  • a dielectric tape can surround all of the insulated conductive wires and be surrounded by an external support sheath so as to avoid any sticking between the sheaths of the insulated conductive wires and the external support sheath.
  • This dielectric tape may be made of a material giving the cable better fire resistance; for example the dielectric tape is a mineral tape made of mica or glass silk.
  • a metallic strip or one or more metallic wires can be wound helically around the insulated conductive wires and extend between the dielectric tape and the external support sheath, so as to improve the maintenance of a constant characteristic impedance along the cable.
  • the metallic strip already removed can be replaced by a metallic screen with openings.
  • the external retaining sheath can be made of polyethylene, polyvinyl chloride, elastomer or halogen-free flame retardant material depending on the desired environmental properties for the cable.
  • FIG. 1 is a longitudinal schematic perspective view of a radiating cable of the invention, connected to a cable head;
  • FIG. 2 is a schematic cross-sectional view of the radiating cable according to the invention
  • FIG. 3 is a longitudinal perspective view of a transition with conductive wires parallel to the axis of a cable according to a second embodiment of the invention, situated between direct helices of the wires and retrograde helices of the wires according to a variant of a second embodiment of the invention;
  • Figure 4 is a cross-sectional view of a cable of the invention with a dielectric tape
  • Figure 5 is a longitudinal perspective view of one end of a cable of the invention with a dielectric tape and a metal strip at a distance.
  • a radiating cable CR comprises four insulated conducting wires identical FI to F4 arranged as in a twisted star quarter.
  • Each wire includes a massive conductive core
  • each insulated conductor wire has a central portion of diameter less than a millimeter, made of low or low alloy aluminum, and a coating of thickness of a few tens of micrometres of copper, or low or low alloy silver, surrounding the central part, in order to increase the electrical conductivity at the periphery of the conductive core and thus reduce losses in the cable.
  • the GF insulating sheath is for example made of polyethylene, polypropylene, polyvinyl chloride, silicone or fluorinated, solid, cellular or double layer materials.
  • An external retaining sheath G surrounds the insulated conductive wires FI to F4 and keeps them together without being embedded in the retaining sheath G.
  • the retaining sheath G is thin and is made of thermoplastic material, crosslinked or not, or elastomer and can be transparent so as to distinguish the different colors of the individual sheaths GF from the conductive wires FI to F4.
  • the wires FI to F4 are substantially regularly twisted around the longitudinal axis XX of the cable so that in cross section the wires FI to F4 are arranged at the vertices of a square.
  • the wires F1 to F4 are numbered in the ascending order of the numbers 1 to 4 by turning in a clockwise direction so that the first wires FI and F3 are diagonally opposite and the second wires F2 and F4 are diagonally opposite.
  • the cable comprises N first wires and N second wires, which are twisted together with a predetermined helical pitch PH and simultaneously sheathed with the holding sheath G and which are, seen in cross section, circularly distributed around the longitudinal axis XX of the cable, each first wire being joined longitudinally to two second wires and vice versa, N being an integer equal to or greater than two.
  • first ends Eli and E13 of first wires of the radiating cable CR such as the diagonal wires FI and F3 constituting a first pair of wires, have their conductive cores CF which are connected together and at a first end of an external tubular conductor CE of a coaxial supply cable CX, and of the first ends E12 and E14 of second wires of the radiating cable CR, such as the other two wires diagonally F2 and F4 constituting a second pair of wires, have their CF conductors connected to each other and to a first end of an internal conductor CI of the coaxial cable CX.
  • These two sets of 2-to-1 connections are made in a first particular connector CN1 which minimizes any mismatch of impedance between the radiating cable CR and the coaxial cable CX.
  • the other end of the coaxial cable CX is connected to a cable head TC to transmit through the radiating cable CR radio communication signals in the downward direction from one or more base stations included in the cable head to mobile radiotelephone terminals and for receiving radiocommunication signals in the uplink direction from the mobile terminals to the base stations via the radiating cable CR.
  • At least one coaxial cable CX is connected to the first ends of radiating cables to quarter CR of the invention arranged on the ceiling of central corridors on the floors of a building and is fixed in a vertical duct of the building up to a second end on the roof of the building where three base stations are installed for FRANCE TELECOM / GSM cellular radiotelephony networks for the band from 890 to 947.5 MHz, SFR / GSM for the band from 902.5 to 960 MHz and BOUYGUES TELECOM / DCS for the band from 1710 to 1880 MHz, as well as transceivers for emergency and paging services at frequencies below 470 MHz or access points for a local data transmission network without wire in the 2.4 GHz to 2.4835 GHz band.
  • Each quadrant radiating cable radiates in the respective floor of the building within a radius of about 20 meters around the cable.
  • second ends E21 and E23 of the first wires FI and F3 of the radiating cable CR have their conductors CF connected to each other and to a first terminal Bl of a load CH, and of the second ends E22 and E24 of the second wires F2 and F4 have their conductors CF connected to each other and to a second terminal B2 of the load CH.
  • each of the external and internal conductors thereof is replaced by two respective wires of the fourth twisted in the radiating cable CR of the invention.
  • first and second pairs of wires F1-F3 and F2-F4 connected to each other at their first and second ends are replaced by other first and second pairs of wires F1-F2 and F3-F4, or F1-F4 and F2-F3, the wires of each of these pairs being located in cross section at the ends of one side of the square at the vertices of which are arranged the insulated conductive wires FI to F4 according to FIG. 2.
  • N first wires are arranged at the vertices of a regular polygon with 2N vertices situated on one side of a diameter of the cable, and N second wires are arranged at the vertices of the polygon situated from the other side of the cable diameter, with N> 2.
  • ⁇ CR 7., o pair .
  • the linear inductance L CR of the radiating cable CR is equal to the linear inductance L pair of two pairs of conductive wires placed in parallel:
  • ⁇ CR Lpaire'2.
  • the linear loss ⁇ of the radiating cable is:
  • R is the linear resistance of the radiating cable and therefore R / 4 that of each conductive wire FI to F4.
  • the linear loss ⁇ is chosen as a function of the diameter of the conductor CF of the wires and is all the smaller the higher the diameter of the conductor.
  • the diameter of the individual sheaths GF and the diameter of the conductive cores CF are to be dimensioned in order to have a radiating cable of characteristic impedance 50 ⁇ and of correct linear loss.
  • the pairs of wires must not be too “balanced”, that is to say symmetrical, so as to favor the radiation of the cable.
  • the wiring pitch that is that is to say the pitch of the helices PH of the wires, is between 10 and 50 times approximately the diameter of the sheath GF so as not to overly mechanically constrain the wires and maintain the flexibility of the radiating cable CR.
  • a radiating cable CR comprises a twisted quarter with a pitch of propeller PH of approximately 50 mm, or approximately 2000 steps for a maximum length of cable of approximately 100 m.
  • Each of the four wires FI to F4 has a conductive core CF made of solid annealed copper with a diameter of 1.5 mm and an insulating sheath GF made of solid or cellular polyethylene with an external diameter of 2.8 mm.
  • the external retaining sheath G is made of halogen-free flame retardant material defining the external diameter of the cable of 9.5 mm.
  • the linear loss of the cable is 8.5 dB / 100 m at 150 MHz, 15 dB / 100 m at 450 MHz, 21 dB / 100 m at 900 MHz, and from 30 dB / 100 m at 1800 MHz.
  • the coupling losses at 2 m between 150 MHz and 1800 MHz are 70 to 80 dB.
  • the length of the cable is of the order of approximately 80 m for useful frequencies reaching 2 GHz and approximately 120 m for useful frequencies limited to 1 GHz.
  • each solid conductive core CF with a strand of small copper conductive wires, for example a strand of 7 or 19 thin wires.
  • the radiation is all the higher as the symmetry of the wires FI to F4 in the cable is unbalanced; and the more unbalanced the cable, the more unacceptable the impedance mismatches for the signal transmission.
  • the radiation is increased without penalizing the transmission too much by periodically unbalancing the distribution of the four wires of the CR cable.
  • the resulting impedance mismatch is not distributed over the entire spectrum but localized at a very precise frequency and at its harmonics. In practice, these frequencies are prohibited use frequencies which are selected outside the useful radiotelephony bands.
  • a CRa cable having the same dimensional and material characteristics as that CR according to the first embodiment differs from it by a change of direction of the twists every 500 mm, that is to say - say for a twisting pitch L of 50 mm, the cable comprising ten direct propellers successive of total length L, then ten successive retrograde propellers of total length L and so on.
  • the inversion of the rotation of the twists creates an impedance mismatch at the frequency of 400 MHz and its multiples 400, 800, 1200, 1600, 2000 MHz. These frequencies constitute prohibited use frequencies.
  • the inversion of the helical winding of the insulated conducting wires FI to F4 is not carried out immediately to pass from direct propellers to retrograde propellers and vice versa, but carried out by means of a length of cable of length LP in which the conducting wires FI to F4 are substantially parallel to the axis XX of the cable.
  • the length LP can reach approximately the pitch PH of the helices of the wires FI to F.
  • the imbalance of the cable is accentuated by differences in dimensions and / or sheath dielectrics for example between the four conductors CF of the wires FI to F4 or between the conductors of the pairs of wires F1-F3 and F2-F4 .
  • CF of wires thickness of insulating sheath GF of wires, dielectric constant of insulating sheaths GF, and material or design of the conductive core CF.
  • the ribbon thermally protects the GF sheaths of wires FI to F4 during the extrusion of the retaining sheath G and avoids sticking between the wire sheaths GF and the external retaining sheath G.
  • the RD ribbon is made of polyester, polypropylene or even kraft paper.
  • the RD dielectric tape can also be made of a material giving the cable better fire resistance; for example the RD ribbon is a mineral ribbon made of mica or glass silk. As shown in FIG.
  • the RM ribbon is wound “already”, that is to say two turns of the helix of the metallic ribbon, or of several metallic ribbons, are separated by a helical gap, for example substantially equal to one to two widths of metallic ribbon.
  • the metallic strip RM improves the maintenance of the characteristic impedance Z CR of the radiating cable CR at a constant value, while allowing a release of radiant energy by the helical gap.
  • the twisting of the 2N insulated conductive wires, the possible laying of RD and / or RM ribbons, and the extrusion of the retaining sheath G is carried out in a single operation.

Abstract

Le câble rayonnant comprend N premiers et N deuxièmes fils conducteurs isolés (F1, F3; F2, F4 ou F1, F2; F3, F4) torsadés ensemble dans une gaine de maintien (G). A des premières extrémités (E11-E14), les premiers fils (F1, F3) sont reliés au conducteur externe (CE) d'un câble coaxial d'alimentation (CX), et les deuxièmes fils (F2, F4) sont reliés au conducteur interne (CI) du câble coaxial. Des deuxièmes extrémités (E21-E24) des premiers et deuxièmes fils sont reliées respectivement aux bornes d'une charge adaptée (CH). Ce câble rayonnant est moins onéreux que le câble coaxial rayonnant à fentes classique et peut être installé dans des bâtiments pour fonctionner jusqu'à 3 GHz environ.

Description

Câble rayonnant
La présente invention concerne un câble rayonnant utilisé notamment dans le domaine de la téléphonie cellulaire ou des réseaux locaux de transmission de données sans fils dans la bande de
1MHz à 3 GHz environ.
La couverture radio des grands bâtiments nécessite souvent l'installation d'équipements dédiés. Cette couverture est réalisée à l'aide d'antennes placées à l'intérieur des bâtiments.
L'utilisation de câbles rayonnants disposés dans les couloirs serait techniquement intéressante, mais elle engendre des coûts souvent rédhibitoires . En effet, les câbles rayonnants installés actuellement dans des tunnels sont des câbles coaxiaux à motifs de fentes périodiques. Ils sont chers, encombrants, rigides et difficiles à poser.
Par ailleurs, la demande de brevet japonais JP- 60038902 divulgue un câble rayonnant comprenant deux premiers fils conducteurs isolés ayant des premières extrémités reliées à l'une des bornes d'un oscillateur et deux deuxièmes fils conducteurs isolés ayant des premières extrémités reliées à l'autre borne de l'oscillateur.
Les premiers fils et les deuxièmes fils constituent respectivement deux paires de fils torsadés indépendamment dans une gaine de maintien. Afin d'obtenir une fréquence de rayonnement suffisamment faible, les paires ont des pas d'hélice différents entr'elles. Cette différence de pas est obtenue en torsadant séparément les deux paires de fils. L'objectif de la présente invention est de fournir un câble rayonnant pour la couverture de bâtiments adapté pour fonctionner dans une bande de fréquence élevée jusqu'à 3 MHz environ, plus souple, plus petit et moins cher que les câbles connus pour des applications tunnel. Comparativement au câble coaxial rayonnant à fentes, les performances du câble rayonnant de l'invention sont sensiblement réduites, notamment en ce qui concerne l'affaiblissement linéique, la vitesse de propagation et l'affaiblissement de réflexion.
A cette fin, un câble rayonnant à haute fréquence comprenant des premiers fils conducteurs isolés ayant des premières extrémités reliées entr' elles, et des deuxièmes fils conducteurs isolés ayant des premières extrémités reliées entr 'elles, les premiers fils étant en nombre égal aux deuxièmes fils, et une gaine de maintien externe contenant les premiers et deuxièmes fils, est caractérisé en ce que les premiers et deuxièmes fils sont torsadés ensemble autour d'un axe longitudinal du câble, et des deuxièmes extrémités des premiers fils conducteurs isolés et des deuxièmes extrémités des deuxièmes fils conducteurs isolés sont reliées respectivement aux bornes d'une charge sensiblement égale à l'impédance caractéristique du câble, ou aux bornes d'entrée d'un moyen amplificateur. La sortie du moyen amplificateur est par exemple reliée à une extrémité d'un autre câble rayonnant, ou à une antenne.
Les fils sont ainsi en nombre pair, égal ou supérieur à 4 dans le câble de l'invention. Par exemple, le câble comprend une quarte de fils conducteurs accolés deux à deux et sensiblement symétriques par rapport à l'axe longitudinal du câble. Selon une autre variante, le câble rayonnant de 1 ' invention comprend six fils conducteurs isolés équirépartis circulairement , à raison de trois premiers fils d'un côté d'un plan diamétral longitudinal du câble et de trois deuxièmes fils de l'autre côté du plan diamétral, ou bien à raison d'un premier fil accolé entre deux deuxièmes fils et vice versa d'un deuxième fil accolé entre deux premiers fils le long d'un cercle en coupe transversale. La liaison des deuxièmes extrémités des premiers et deuxièmes fils conducteurs à une charge adaptée, c'est-à-dire sensiblement égale à l'impédance caractéristique du câble, ou aux bornes d'entrée d'un moyen amplificateur dont la sortie peut être connectée à un autre câble rayonnant ou à une antenne, assure un meilleur rendement du câble comparativement au câble défini dans la demande JP- 60038902.
Les fils sont torsadés ensemble dans une gaine de maintien externe, c'est-à-dire tous les fils ont le même pas d'hélice. Comparativement au câble selon la demande JP-60038902, un câble de l'invention avec deux premiers fils et deux deuxièmes fils a une impédance caractéristique constante le long du câble et est plus souple et surtout est plus facile à fabriquer et donc moins coûteux. Les fils sont torsadés ensemble en même temps que la mise sous la gaine de maintien, ou un ensemble d'enveloppes incluant la gaine de maintien, en une seule opération en continu.
En pratique, les premières extrémités des premiers fils conducteurs isolés et les premières extrémités des deuxièmes fils conducteurs isolés sont reliées respectivement aux conducteurs externe et interne d'un câble coaxial d'alimentation qui assure la liaison entre le câble rayonnant et un poste émetteur/récepteur fixe, par exemple une station de base d'un réseau de radiotéléphonie cellulaire. Cette liaison peut également être assurée par un câble d'alimentation en paires torsadées ou le câble rayonnant peut directement être connecté au système émetteur/récepteur fixe. Les premières extrémités d'une paire de fils conducteurs isolés du câble rayonnant et les premières extrémités de l'autre paire de fils conducteurs isolés du câble rayonnant sont alors reliées respectivement à deux conducteurs du câble d'alimentation ou à deux bornes du système émetteur/récepteur fixe.
Comme on le verra ci-après, bien que tous les fils conducteurs soient torsadés simultanément, l'invention met en oeuvre positivement les effets nuisibles des rayonnements d'un câble classique à deux paires de fils qui engendrent de la diaphonie, et accentue ces effets dûs principalement au déséquilibre des paires de fils.
Afin d' augmenter le rayonnement du câble et le déséquilibre des paires de fils dans celui-ci, une torsade de fils est tantôt une succession d'hélices directes, tantôt une succession d'hélices rétrogrades. Par exemple, le sens des hélices change tous les 8 à 12 pas d'hélice. De préférence, un tronçon de torsade de fils en hélice directe est séparé par un tronçon de torsade de fils en hélice rétrograde par un tronçon de câble dans lequel les fils sont sensiblement parallèles à l'axe du câble. Par exemple, soit les premiers fils conducteurs sont disposés de manière alternée avec les deuxièmes fils conducteurs autour d'un axe longitudinal du câble, soit l'ensemble des premiers fils conducteurs est sensiblement symétrique de l'ensemble des deuxièmes fils conducteurs par rapport à un axe longitudinal du câble.
Le pas d'hélice des fils torsadés peut être compris entre 10 et 50 fois environ le diamètre externe des fils conducteurs isolés.
Plus généralement, le rayonnement peut être augmenté en provoquant des déséquilibres entre les différents éléments du câble. Ces déséquilibres peuvent être créés par des différences de dimensions entre les différents fils conducteurs ou des différences de capacités linéiques entre les différents fils conducteurs. Ces différences de capacités linéiques peuvent résulter soit d'épaisseurs différentes de gaines isolantes des fils conducteurs isolés, soit par des matériaux d'isolation à constantes diélectriques différentes de gaines isolantes des fils conducteurs isolés. Plus généralement, au moins l'un des premiers fils conducteurs et au moins l'un des deuxièmes fils conducteurs peuvent différer entre eux par au moins l'un des trois paramètres suivants : diamètre d'âme conductrice des fils, épaisseur de gaine isolante des fils, et constante diélectrique des gaines isolantes.
Selon une autre variante, les fils conducteurs isolés peuvent avoir des âmes conductrices noyées dans une gaine diélectrique cylindrique.
L'affaiblissement linéique d'un câble rayonnant à haute fréquence dépend très fortement des pertes par effet Joule dans les conducteurs. Aux fréquences d'utilisation privilégiées du câble, entre 1 MHz et 3 GHz, la conduction des courants se passe quasi- exclusivement en surface des conducteurs. Pour limiter ces pertes ohmiques, la conductivité électrique de la périphérie des conducteurs doit être la plus grande possible et le périmètre de la section des conducteurs doit être le plus grand possible. A cette fin, dans le câble rayonnant de l'invention, chacun des fils conducteurs isolés peut comprendre une âme conductrice électriquement composée d'une partie centrale en une première matière conductrice, et d'un revêtement entourant la partie centrale, ledit revêtement étant en une seconde matière conductrice ayant une conductivité électrique supérieure à celle de la partie centrale. La première matière conductrice peut être en aluminium ou en aluminium faiblement allié et la seconde matière conductrice peut être en cuivre ou argent, ou en cuivre ou argent faiblement allié.
Un ruban diélectrique peut entourer l'ensemble des fils conducteurs isolés et être entouré par une gaine de maintien externe de manière à éviter tout collage entre les gaines des fils conducteurs isolés et la gaine de maintien externe. Ce ruban diélectrique peut être en matériau conférant au câble une meilleure tenue au feu ; par exemple le ruban diélectrique est un ruban minéral en mica ou soie de verre. Un ruban métallique à déjoint ou un ou plusieurs fils métalliques peuvent être enroulés hélicoïdalement autour des fils conducteurs isolés et s'étendre entre le ruban diélectrique et la gaine de maintien externe, de manière à améliorer le maintien d'une impédance caractéristique constante le long du câble. Le ruban métallique à déjoint peut être remplacé par un écran métallique avec des ouvertures. La gaine de maintien externe peut être en polyéthylène, polychlorure de vinyle, en élasto ère ou en matériau ignifuge sans halogène suivant les propriétés de tenue à l'environnement souhaitées pour le câble.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention en référence aux dessins annexés correspondants dans lesquels : la figure 1 est une vue longitudinale en perspective schématique d'un câble rayonnant de l'invention, connecté à une tête de câble ;
- la figure 2 est une vue en coupe transversale schématique du câble rayonnant selon l'invention ; la figure 3 est une vue longitudinale en perspective d'une transition à fils conducteurs parallèles à l'axe d'un câble selon une deuxième réalisation de l'invention, située entre des hélices directes des fils et des hélices rétrogrades des fils selon une variante d'une deuxième réalisation de l'invention ;
- la figure 4 est une vue en coupe transversale d'un câble de l'invention avec un ruban diélectrique ; et la figure 5 est une vue en perspective longitudinale d'une extrémité d'un câble de l'invention avec un ruban diélectrique et un ruban métallique à déjoint.
En référence aux figures 1 et 2, un câble rayonnant CR comprend quatre fils conducteurs isolés identiques FI à F4 disposés comme dans une quarte étoile torsadée.
Chaque fil comprend une âme conductrice massive
CF, ou un toron de fils conducteurs minces pour améliorer la souplesse du câble, par exemple en cuivre recuit, et une gaine isolante individuelle GF qui isole l'âme conductrice des âmes conductrices dans les trois autres fils. En variante, l'âme de chaque fil conducteur isolé a une partie centrale de diamètre inférieur au millimètre, en aluminium peu ou faiblement allié, et un revêtement d'épaisseur de quelques dizaines de micromètre en cuivre, ou argent peu ou faiblement allié, entourant la partie centrale, afin d'accroître la conductivité électrique à la périphérie de l'âme conductrice et ainsi diminuer les pertes dans le câble.
La gaine isolante GF est par exemple en polyethylene, en polypropylene, en polychlorure de vinyle, en silicone ou en matériaux fluorés, massifs, cellulaires ou double couche.
Une gaine de maintien externe G entoure les fils conducteurs isolés FI à F4 et les maintient ensemble sans qu'ils soient noyés dans la gaine de maintien G. La gaine de maintien G est mince et est en matière thermoplastique, réticulée ou non, ou en élastomère et peut être transparente de manière à distinguer les couleurs différentes des gaines individuelles GF des fils conducteurs FI à F4.
Dans la gaine de maintien G de forme tubulaire, les fils FI à F4 sont sensiblement régulièrement torsadés autour de l'axe longitudinal XX du câble de sorte qu'en section transversale les fils FI à F4 soient disposés aux sommets d'un carré. Selon la réalisation illustrée, les fils Fl à F4 sont numérotés suivant l'ordre croissant des chiffres 1 à 4 en tournant suivant le sens des aiguilles d'une montre de sorte que les premiers fils FI et F3 sont diagonalement opposés et les deuxièmes fils F2 et F4 sont diagonalement opposés. Plus généralement, selon cette configuration, le câble comprend N premiers fils et N deuxièmes fils, qui sont torsadés ensemble avec un pas d'hélice prédéterminé PH et simultanément gainés avec la gaine de maintien G et qui sont, vus en coupe transversale, équirépartis circulairement autour de l'axe longitudinal XX du câble, chaque premier fil étant accolé longitudinalement à deux deuxièmes fils et vice versa, N étant un entier égal ou supérieur à deux.
Selon la réalisation illustrée à la figure 1, des premières extrémités Eli et E13 de premiers fils du câble rayonnant CR, tels que les fils en diagonale FI et F3 constituant une première paire de fils, ont leurs âmes conductrices CF qui sont reliées entre elles et à une première extrémité d'un conducteur tubulaire externe CE d'un câble coaxial d'alimentation CX, et des premières extrémités E12 et E14 de deuxièmes fils du câble rayonnant CR, tels que les deux autres fils en diagonale F2 et F4 constituant une deuxième paire de fils, ont leurs conducteurs CF reliés entre eux et à une première extrémité d'un conducteur interne CI du câble coaxial CX. Ces deux ensembles de connexions 2-vers-l sont réalisés dans un premier connecteur particulier CN1 qui réduit au maximum toute désadaptation d' impédance entre le câble rayonnant CR et le câble coaxial CX.
L'autre extrémité du câble coaxial CX est reliée à une tête de câble TC pour émettre à travers le câble rayonnant CR des signaux de radiocommunication suivant le sens descendant depuis une ou plusieurs stations de base incluses dans la tête de câble vers des terminaux radiotéléphoniques mobiles et pour recevoir à travers le câble rayonnant CR des signaux de radiocommunication suivant le sens montant depuis les terminaux mobiles vers les stations de base. Par exemple, au moins un câble coaxial CX est relié aux premières extrémités de câbles rayonnants à quarte CR de l'invention disposés au plafond de couloirs centraux aux étages d'un immeuble et est fixé dans un conduit vertical de l'immeuble jusqu'à une deuxième extrémité sur le toit de l'immeuble où sont installées trois stations de base pour des réseaux de radiotéléphonie cellulaires FRANCE TELECOM/GSM pour la bande de 890 à 947,5 MHz, SFR/GSM pour la bande de 902,5 à 960 MHz et BOUYGUES TELECOM/DCS pour la bande de 1710 à 1880 MHz, ainsi que des émetteurs- récepteurs pour services de secours et de radiomessagerie à des fréquences inférieures à 470 MHz ou des points d'accès pour un réseau local de transmission de données sans fil dans la bande de 2,4 GHz à 2,4835 GHz. Chaque câble rayonnant à quarte rayonne dans l'étage respectif de l'immeuble dans un rayon environ de 20 mètres autour du câble.
Dans un deuxième connecteur particulier CN2, des deuxièmes extrémités E21 et E23 des premiers fils FI et F3 du câble rayonnant CR ont leurs conducteurs CF reliés entre eux et à une première borne Bl d'une charge CH, et des deuxièmes extrémités E22 et E24 des deuxièmes fils F2 et F4 ont leurs conducteurs CF reliés entre eux et à une deuxième borne B2 de la charge CH. Ainsi comparativement à un câble coaxial rayonnant selon la technique antérieure, chacun des conducteurs externe et interne de celui-ci est remplacé par deux fils respectifs de la quarte torsadée dans le câble rayonnant CR de l'invention. En variante, les première et deuxième paires des fils F1-F3 et F2-F4 reliés entre eux à leurs premières et deuxièmes extrémités sont remplacées par d'autres première et deuxième paires de fils F1-F2 et F3-F4, ou F1-F4 et F2-F3, les fils de chacune de ces paires étant situés en section transversale aux extrémités d'un côté du carré aux sommets desquels sont disposés les fils conducteurs isolés FI à F4 selon la figure 2. Plus généralement, vus en coupe transversale, pour un câble à 2N fils torsadés ensemble, N premiers fils sont disposés aux sommets d'un polygone régulier à 2N sommets situés d'un côté d'un diamètre du câble, et N deuxièmes fils sont disposés aux sommets du polygone situés de l'autre côté du diamètre de câble, avec N > 2.
Par analogie avec un circuit fantôme pour une quarte étoile abandonné depuis plusieurs décennies en téléphonie, la capacité linéique du câble rayonnant
CR de l'invention est déduite de celle Cpaire d'une paire de fils conducteurs
^CR = 7. , o paire .
L' inductance linéique LCR du câble rayonnant CR est égale à l'inductance linéique Lpaire de deux paires de fils conducteurs mises en parallèle :
^CR = Lpaire'2.
A partir de la formule suivante de l'impédance caractéristique ZCR du câble rayonnant à haute fréquence :
est déduite la relation entre les impédances caractéristiques ZCR et Zpaire du câble rayonnant CR et de la paire de fils :
Z CR = Zpai re/2 , 2 .
Ainsi, s'il est possible de réaliser un câble rayonnant constitué d'une paire torsadée de fils conducteurs habituellement isolés avec des gaines GF en polyethylene ayant un diamètre égal environ au double du diamètre de l'âme conductrice CF avec une impédance caractéristique de l'ordre de 110 Ω, il est impossible de concevoir une paire de fils avec une impédance caractéristique de 50 Ω avec des gaines isolantes en polyethylene. Une paire de fils à
50 Ω serait réalisable avec une isolation en PVC ou un autre matériau de constante diélectrique assez élevée 4 à 5, mais au détriment d'autres caractéristiques de transmission telles qu'affaiblissement, vitesse de propagation.
Le câble rayonnant CR de l'invention ramène ainsi l'impédance caractéristique d'une paire à 110 Ω à l'impédance caractéristique de 110/2,2 = 50 Ω. La charge CH est ainsi égale à ZCR = 50 Ω.
L'affaiblissement linéique α du câble rayonnant est :
où R est la résistance linéique du câble rayonnant et donc R/4 celle de chaque fil conducteur FI à F4. A impédance caractéristique constante, l'affaiblissement linéique α est choisie en fonction du diamètre du conducteur CF des fils et est d' autant plus faible que le diamètre du conducteur est élevé.
Le diamètre des gaines individuelles GF et le diamètre des âmes conductrices CF sont à dimensionner pour avoir un câble rayonnant d' impédance caractéristique 50 Ω et d'affaiblissement linéique correct . Les paires de fils ne doivent pas être trop «équilibrées», c'est-à-dire symétriques, de manière à favoriser le rayonnement du câble. Pour un diamètre d'âme conductrice CF de 1 à 2 mm et un diamètre de fil conducteur isolé FI à F4 et donc de gaine GF égal sensiblement au double, soit 1,5 à 4 mm, le pas de câblage, c'est-à-dire le pas des hélices PH des fils, est compris entre 10 et 50 fois environ le diamètre de la gaine GF de manière à ne pas trop contraindre mécaniquement les fils et maintenir une souplesse du câble rayonnant CR.
Selon une réalisation préférée, un câble rayonnant CR comprend une quarte torsadée avec un pas d'hélice PH d'environ 50 mm, soit environ 2000 pas pour une longueur maximum de câble d'environ 100 m. Chacun des quatre fils FI à F4 a une âme conductrice CF en cuivre recuit massif de diamètre 1,5 mm et une gaine isolante GF en polyethylene massif ou cellulaire de diamètre externe de 2,8 mm. La gaine externe de maintien G est en matière ignifuge sans halogène définissant le diamètre externe du câble de 9,5 mm. Pour une impédance caractéristique du câble CR de 50 Ω, l'affaiblissement linéique du câble est 8,5 dB/100 m à 150 MHz, de 15 dB/100 m à 450 MHz, de 21 dB/100 m à 900 MHz, et de 30 dB/100 m à 1800 MHz. Les pertes de couplage à 2 m entre 150 MHz et 1800 MHz sont de 70 à 80 dB . En particulier, la longueur du câble est de l'ordre de 80 m environ pour des fréquences utiles atteignant 2 GHz et de 120 m environ pour des fréquences utiles limitées à 1 GHz.
La souplesse du câble est améliorée en remplaçant chaque âme conductrice massive CF par un toron de petits fils conducteurs en cuivre, par exemple un toron de 7 ou 19 fils minces.
Pour optimiser le câble rayonnant, deux phénomènes contradictoires sont à considérer :
- le rayonnement est d'autant plus élevé que la symétrie des fils FI à F4 dans le câble est déséquilibrée ; et plus le câble est déséquilibré, plus des désadaptations d' impédance sont rédhibitoires pour la transmission du signal.
Selon une deuxième réalisation, le rayonnement est augmenté sans trop pénaliser la transmission en déséquilibrant périodiquement la répartition des quatre fils du câble CR. La désadaptation d'impédance engendrée n'est pas répartie sur tout le spectre mais localisée à une fréquence bien précise et aux harmoniques de celle-ci. En pratique, ces fréquences sont des fréquences d'utilisation interdites qui sont sélectionnées en dehors des bandes utiles de radiotéléphonie .
Dans cette deuxième réalisation montrée à la figure 3, un câble CRa ayant les mêmes caractéristiques dimensionnelles et de matière que celui CR selon la première réalisation diffère de celui-ci par un changement de direction des torsades tous les 500 mm, c'est-à-dire pour un pas de torsade L de 50 mm, le câble comprenant dix hélices directes successives de longueur totale L, puis dix hélices rétrogrades successives de longueur totale L et ainsi de suite. L'inversion de la rotation des torsades crée une désadaptation d' impédance à la fréquence de 400 MHz et à ses multiples 400, 800, 1200, 1600, 2000 MHz. Ces fréquences constituent des fréquences d'utilisation interdites.
Pour encore augmenter la puissance rayonnée, selon une variante de la deuxième réalisation montrée à la figure 3, l'inversion de l'enroulement hélicoïdal des fils conducteurs isolés FI à F4 n'est pas effectuée immédiatement pour passer des hélices directes à des hélices rétrogrades et inversement, mais effectuée par l'intermédiaire d'un tronçon de câble de longueur LP dans lequel les fils conducteurs FI à F4 sont sensiblement parallèles à l'axe XX du câble. La longueur LP peut atteindre environ le pas PH des hélices des fils FI à F .
Selon une autre variante, le déséquilibre du câble est accentué par des différences de dimensions et/ou de diélectriques de gaine par exemple entre les quatre conducteurs CF des fils FI à F4 ou entre les conducteurs des paires de fils F1-F3 et F2-F4. Plus généralement, au moins deux des 2N=4 fils conducteurs isolés F1-F4 diffèrent entre eux par au moins l'un des paramètres suivants : diamètre d'âme conductrice
CF des fils, épaisseur de gaine isolante GF des fils, constante diélectrique des gaines isolantes GF, et matière ou conception de l'âme conductrice CF.
Selon d'autres variantes des première et deuxième réalisations, un ruban séparateur diélectrique RD montré à la figure 4 entoure l'ensemble des 2N=4 fils conducteurs isolés FI à F4 et est entouré par la gaine de maintien externe G. Le ruban protège thermiquement les gaines GF des fils FI à F4 lors de l'extrusion de la gaine de maintien G et évite des collages entre les gaines de fil GF et la gaine de maintien externe G. Par exemple, le ruban RD est en polyester, polypropylene ou même en papier en kraft. Le ruban diélectrique RD peut aussi être en matériau conférant au câble une meilleure tenue au feu ; par exemple le ruban RD est un ruban minéral en mica ou soie de verre. Comme montré à la figure 5, un ruban métallique RM est enroulé hélicoïdalement autour de l'ensemble des 2N=4 fils conducteurs isolés FI à F , et est de préférence introduit par dessus le ruban diélectrique RD sous la gaine de maintien externe G. Le ruban RM est enroulé «à déjoint», c'est-à-dire deux tours d'hélice du ruban métallique, ou de plusieurs rubans métalliques, sont séparés par un interstice hélicoïdal par exemple sensiblement égal à une à deux largeurs de ruban métallique. A fréquences élevées, de l'ordre du gigahertz, le ruban métallique RM améliore le maintien de l'impédance caractéristique ZCR du câble rayonnant CR à une valeur constante, tout en permettant une libération d'énergie rayonnante par l'interstice hélicoïdal. Selon une autre variante, le ruban métallique à déjoint est remplacé par un ou plusieurs fils métalliques guipés autour des 2N=4 fils conducteurs isolés FI à F4 ou du ruban diélectrique RD, en laissant des interstices, ou par tout autre écran métallique comportant des ouvertures susceptibles de laisser passer le champ électromagnétique rayonné.
Pour fabriquer économiquement le câble de l'invention, la torsion des 2N fils conducteurs isolés, la pose éventuelle de rubans RD et/ou RM, et l'extrusion de la gaine de maintien G sont réalisées en une seule opération.

Claims

REVENDICATIONS
1 - Câble rayonnant à haute fréquence comprenant des premiers fils conducteurs isolés (F1,F3 ; ou F1,F2) ayant des premières extrémités (E11,E13 ; ou E11,E12) reliées entr'elles, et des deuxièmes fils conducteurs isolés (F2,F4 ; ou F3,F4) ayant des premières extrémités (E12,E14 ; ou E13,E14) reliées entr'elles, les premiers fils étant en nombre égal aux deuxièmes fils, et une gaine de maintien externe (G) contenant les premiers et deuxièmes fils, caractérisé en ce que les premiers et deuxièmes fils sont torsadés ensemble autour d'un axe longitudinal (XX) du câble, et des deuxièmes extrémités (E21, E23) des premiers fils conducteurs isolés (FI, F3) et des deuxièmes extrémités (E22, E24) des deuxièmes fils conducteurs isolés (F2, F4 ) sont reliées respectivement aux bornes (Bl, B2) d'une charge (CH) sensiblement égale à l'impédance caractéristique du câble, ou aux bornes d'entrée d'un moyen amplificateur .
2 - Câble rayonnant conforme à la revendication 1, dans lequel les premières extrémités (Eli, E13) des premiers fils conducteurs isolés (FI, F3) et les premières extrémités (E12, E14) des deuxièmes fils conducteurs isolés (F2, F4) sont reliées respectivement à deux conducteurs (CE, CI) d'un câble d'alimentation (CX) , ou à deux bornes d'un système émetteur/récepteur fixe (TC) .
3 - Câble rayonnant conforme à la revendication 1 ou 2, dans lequel une torsade de fils est tantôt une succession d'hélices directes, tantôt une succession d'hélices rétrogrades. 4 - Câble rayonnant conforme à la revendication 3, dans lequel un tronçon de torsade de fils en hélice directe (L) est séparé par un tronçon de torsade de fils en hélice rétrograde (L) par un tronçon de câble (LP) où les fils (F1-F4) sont sensiblement parallèles à l'axe (XX) du câble (CRa).
5 - Câble rayonnant conforme à l'une quelconque des revendications l à 4, dans lequel les premiers fils conducteurs (FI, F3) sont disposés de manière alternée avec les deuxièmes fils conducteurs (F2, F ) autour d'un axe longitudinal (XX) du câble.
6 - Câble rayonnant conforme à l'une quelconque des revendications 1 à 4, dans lequel l'ensemble des premiers fils conducteurs (FI, F2) est sensiblement symétrique de l'ensemble des deuxièmes fils conducteurs par rapport à un axe longitudinal (XX) du câble.
7 - Câble rayonnant conforme à l'une quelconque des revendications 1 à 6, dans lequel le pas d'hélice
(PH) des fils torsadés est compris entre 10 et 50 fois environ le diamètre externe des fils conducteurs isolés (F1-F4).
8 - Câble rayonnant conforme à l'une quelconque des revendications 1 à 7, dans lequel au moins l'un des premiers fils conducteurs (F1,F3 ; ou F1,F2) et au moins l'un des deuxièmes fils conducteurs (F2,F4 ; ou F3,F4) diffèrent entre eux par au moins l'un des trois paramètres suivants : diamètre d'âme conductrice (CF) des fils, épaisseur de gaine isolante (GF) des fils, et constante diélectrique des gaines isolantes (GF) .
9 - Câble rayonnant conforme à l'une quelconque des revendications 1 à 7, dans lequel les fils conducteurs isolés ont des âmes conductrices (CF) noyées dans une gaine diélectrique cylindrique.
10 - Câble rayonnant conforme à la revendication 1 ou 2 , dans lequel chacun des premiers et deuxièmes fils conducteurs isolés (FI, F2 , F3, F ) comprend une âme conductrice électriquement composée d'une partie centrale, et d'un revêtement entourant la partie centrale, ledit revêtement étant en une matière conductrice ayant une conductivité électrique supérieure à celle de la partie centrale.
11 - Câble rayonnant conforme à l'une quelconque des revendications 1 à 10, comprenant un ruban diélectrique (RD) entourant l'ensemble des fils conducteurs isolés (F1-F4) et entouré par la gaine de maintien externe (G) .
12 - Câble rayonnant conforme à l'une quelconque des revendications 1 à 11, comprenant un ruban métallique à déjoint (RM) enroulé helicoidalement autour de l'ensemble des quatre fils conducteurs isolés (F1-F4) .
13 - Câble rayonnant conforme à la revendication 12 lorsqu'elle dépend de la revendication 11, dans lequel le ruban métallique (RM) s'étend entre le ruban diélectrique (RD) et la gaine de maintien externe (G) . 14 - Câble rayonnant conforme à la revendication 12 ou 13, dans lequel le ruban métallique à déjoint est remplacé par un ou plusieurs fils métalliques, ou par un écran métallique avec des ouvertures.
EP98954558A 1997-11-28 1998-11-12 Cable rayonnant Expired - Lifetime EP1016165B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9715135 1997-11-28
FR9715135A FR2771859B1 (fr) 1997-11-28 1997-11-28 Cable rayonnant
PCT/FR1998/002406 WO1999028992A1 (fr) 1997-11-28 1998-11-12 Cable rayonnant

Publications (2)

Publication Number Publication Date
EP1016165A1 true EP1016165A1 (fr) 2000-07-05
EP1016165B1 EP1016165B1 (fr) 2002-03-20

Family

ID=9514038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98954558A Expired - Lifetime EP1016165B1 (fr) 1997-11-28 1998-11-12 Cable rayonnant

Country Status (9)

Country Link
EP (1) EP1016165B1 (fr)
JP (1) JP2001525625A (fr)
KR (1) KR20010032560A (fr)
AU (1) AU1162299A (fr)
BR (1) BR9815417A (fr)
DE (1) DE69804330T2 (fr)
ES (1) ES2171047T3 (fr)
FR (1) FR2771859B1 (fr)
WO (1) WO1999028992A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791475B1 (fr) * 1999-03-23 2007-02-23 Sagem Cable rayonnant
KR100965797B1 (ko) * 2008-08-07 2010-06-24 주식회사 피플웍스 절연된 동축케이블을 이용한 트랜스포머용 라인 및 이를적용한 트랜스포머
KR101284074B1 (ko) * 2010-08-20 2013-07-10 가부시키가이샤후지쿠라 전선, 코일, 전선의 설계 장치 및 전기 모터

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3133432A1 (de) * 1981-08-24 1983-03-03 Siemens AG, 1000 Berlin und 8000 München Hochfrequenzfeld-einrichtung in einer kernspinresonanz-apparatur
JPS6038902A (ja) * 1983-08-12 1985-02-28 Sumitomo Electric Ind Ltd らせん導体型漏洩ケ−ブル
US5473336A (en) * 1992-10-08 1995-12-05 Auratek Security Inc. Cable for use as a distributed antenna
FR2698477B1 (fr) * 1992-11-23 1994-12-23 Filotex Sa Câble de transmission de signaux haute fréquence.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9928992A1 *

Also Published As

Publication number Publication date
BR9815417A (pt) 2000-10-24
FR2771859A1 (fr) 1999-06-04
DE69804330T2 (de) 2002-10-24
KR20010032560A (ko) 2001-04-25
AU1162299A (en) 1999-06-16
DE69804330D1 (de) 2002-04-25
WO1999028992A1 (fr) 1999-06-10
FR2771859B1 (fr) 1999-12-31
EP1016165B1 (fr) 2002-03-20
JP2001525625A (ja) 2001-12-11
ES2171047T3 (es) 2002-08-16

Similar Documents

Publication Publication Date Title
EP0375506B1 (fr) Câble semi-rigide de transmission d'ondes hyperfréquence
US6563052B2 (en) Electric installation cable
NO133851B (fr)
CN102237156A (zh) 屏蔽电缆
FR2850788A1 (fr) Cable de transmission pour le raccordement a des appareils mobiles
EP0554160B1 (fr) Câble électrique haute fréquence
US7876280B2 (en) Frequency control of electrical length for bicone antennas
US6023201A (en) Electrical signal transmission device protected against electromagnetic interference
AU2012377784A1 (en) Electric cable, in particular a data transmission cable, equipped with multi-layer, strip-type screening sheet
EP0871182B1 (fr) Câble plat de transmission de signaux à haut debit
EP1016165B1 (fr) Cable rayonnant
RU2610900C2 (ru) Коаксиальный кабель с нанотрубчатой изоляцией
CN108091429B (zh) 差分信号电缆
EP1163682B1 (fr) Cable rayonnant
EP0577467B1 (fr) Câble mixte de communication et d'énergie
CN216311370U (zh) 一种混合介质双同轴差分传输信号线
EP2148336B1 (fr) Câble d'énergie spécifiquement conçu pour transmettre des données à haut débit
CN220420292U (zh) 一种防白蚁防鼠型交联聚乙烯绝缘超高压电力电缆
RU2397564C1 (ru) Коаксиальный кабель связи
EP1025620B1 (fr) Cable coaxial rayonnant
JP2000223932A (ja) 4線巻ヘリカルアンテナ
US4769515A (en) Primary transmission line cable
WO2000067344A1 (fr) Systeme de communication a cable rayonnant pour assurer une couverture radio controlee d'un volume determine
EP0851437A1 (fr) Câble blindé facile à raccorder
BE395650A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010612

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 69804330

Country of ref document: DE

Date of ref document: 20020425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2171047

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021223

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101122

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69804330

Country of ref document: DE

Representative=s name: JOCHEN MUELLER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 69804330

Country of ref document: DE

Representative=s name: MUELLER, JOCHEN, DIPL.-ING., DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69804330

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161118

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161114

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171113