EP1163682B1 - Cable rayonnant - Google Patents

Cable rayonnant Download PDF

Info

Publication number
EP1163682B1
EP1163682B1 EP00910958A EP00910958A EP1163682B1 EP 1163682 B1 EP1163682 B1 EP 1163682B1 EP 00910958 A EP00910958 A EP 00910958A EP 00910958 A EP00910958 A EP 00910958A EP 1163682 B1 EP1163682 B1 EP 1163682B1
Authority
EP
European Patent Office
Prior art keywords
cable
radiating
cable according
wires
insulated conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00910958A
Other languages
German (de)
English (en)
Other versions
EP1163682A1 (fr
Inventor
Thierry Linossier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silec Cable SAS
Original Assignee
Silec Cable SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silec Cable SAS filed Critical Silec Cable SAS
Publication of EP1163682A1 publication Critical patent/EP1163682A1/fr
Application granted granted Critical
Publication of EP1163682B1 publication Critical patent/EP1163682B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/203Leaky coaxial lines

Definitions

  • the present invention relates to a radiating cable used in particular in the field of cellular telephony or in local networks for wireless data transmission up to about 2.4 GHz.
  • the radio coverage of large buildings often requires the installation of dedicated equipment. This coverage is achieved using antennas placed inside the buildings.
  • radiating cables arranged in the corridors would be technically interesting, but it generates costs often prohibitive. Indeed, current radiating cables are coaxial cables with periodic slot patterns and are expensive, bulky, rigid and difficult to install.
  • the object of the invention is to provide a low cost and easy to install radiating cable while having sufficient performance to ensure a satisfactory transmission of signals inside a building or a vehicle.
  • a radiating cable comprising at least one cable section, each cable section comprising a pair of insulated conductor wires, each cable section comprising a free end to which the insulated conductor wires have first ends connected to a load equal to a characteristic impedance of the cable section, the insulated conductors having second ends connected to a connector opposite the first ends.
  • the cable comprises at least two cable sections whose second ends are mounted in parallel on the connector. Given the equivalent impedance obtained by mounting the cable sections in parallel, it is thus possible to make a cable having an impedance adapted to the transmitter / receiver to which the radiating cable is connected while producing the radiating cable from sections of cables having a higher impedance, i.e. generally having better transmission performance than a single cable corresponding to the nominal impedance of the transmitter / receiver.
  • the two cable sections are identical. This minimizes the storage requirements and the cable can be installed without the need to locate the cable sections.
  • the radiating cable according to the particular embodiment illustrated comprises two cable sections generally designated 1, each comprising a pair of twisted insulated conductor wires 2 having first ends 3 connected to a load 4 and second ends 5 connected to a connector 6 according to a parallel connection.
  • the two cable sections 1 are identical and are each made from a pair of solid copper conductors having a diameter of 1.38 mm covered with an insulator having a 2.2 mm thick of cellular polyethylene having an expansion ratio of 41% and covered with polyethylene skin with a thickness of 0.08 mm.
  • the wire capacity thus produced is 210 pF / m and the insulator has a dielectric constant of 1.463.
  • a cable section comprising a twisted pair made from insulated conductors as described above then have a characteristic impedance of 100 Ohms so that when connected to a load of 100 Ohms, the impedance of the cable section is maintained at 100 Ohms regardless of its length.
  • each cable section has an equivalent impedance of 50 ohms corresponding to the nominal impedance usually required at the input / output of a transceiver.
  • the cable thus produced is well balanced, both in the direction of emission and in the sense of reception, and taking into account the linear attenuation, each cable section has a length of up to about 100 meters for a transmission at 450 MHz, approximately 75 meters at 900 MHz, approximately 45 meters at 1800 MHz and approximately 35 meters at 2.4 GHz.
  • the insulated conductors are held together by a dielectric ribbon 7 made of polyester, polypropylene or, more simply, of paper, but preferably of a material giving the cable a fire resistance such as a mineral ribbon in mica or glass silk.
  • the dielectric strip 7 is covered with a series of helically wound metal strips 8, the edges being separated by an interval preferably of the order of one to two times the width of the metal strips so that at high frequency the metal ribbon improves the maintenance of the characteristic impedance of the radiating cable at a constant value while allowing a release of radiant energy through the interstices between the ribbons 8.
  • the metal strips 8 can also be replaced by several metal wires wrapped around each of the insulated conductor wires.
  • the cable section further preferably comprises a thin outer sheath 9 of thermoplastic material or elastomer.
  • the cable according to the invention has been described according to an embodiment comprising identical cable sections connected in parallel, it is possible to provide different cable lengths either by their length or by their impedance. Depending on the structure of the area to be covered, it may indeed be interesting to use sections of cables with different performance, the weakening of each cable section being related to the average impedance thereof. In the case of cable lengths of different lengths, the cable with the highest impedance will preferably cover the longest area and the cable with the lowest impedance will cover the shortest area.
  • the geometry of the premises to be covered is complex, it is also possible to envisage more than two cable sections connected in parallel, the characteristic impedance of each section of cable being chosen so that the equivalent impedance of the radiating cable corresponds to the nominal impedance of the transmitter / receiver used.
  • the area to be covered is very small, for example in a small building or a vehicle, it is possible to favor the radiation at the expense of the linear attenuation and to provide a cable comprising a pair of parallel wires connected to the load. .
  • the flexibility of the cable can be improved by replacing the solid conductors with strands of small conductive wires.
  • the cable of the invention can also be made without metal ribbons and / or without dielectric ribbon.

Description

  • La présente invention concerne un câble rayonnant utilisé notamment dans le domaine de la téléphonie cellulaire ou dans des réseaux locaux de transmission de données sans fil jusqu'à environ 2,4 GHz.
  • La couverture radio des grands bâtiments nécessite souvent l'installation d'équipements dédiés. Cette couverture est réalisée à l'aide d'antennes placées à l'intérieur des bâtiments.
  • L'utilisation de câbles rayonnants disposés dans les couloirs serait techniquement intéressante, mais elle engendre des coûts souvent rédhibitoires. En effet, les câbles rayonnants actuels sont des câbles coaxiaux à motifs de fentes périodiques et sont chers, encombrants, rigides et difficiles à poser.
  • Par ailleurs, pour le câblage de bâtiments, le niveau de performances élevé des câbles rayonnants actuels n'est pas nécessaire. Le but de l'invention est de proposer un câble rayonnant de faible coût et facile à poser tout en présentant des performances suffisantes pour assurer une transmission satisfaisante des signaux à l'intérieur d'un bâtiment ou d'un véhicule.
  • Selon l'invention on prévoit un câble rayonnant comportant au moins un tronçon de câble, chaque tronçon de câble: comprenant une paire de fils conducteurs isolés, chaque tronçon de câble comportant une extrémité libre à laquelle les fils conducteurs isolés ont des premières extrémités reliées à une charge égale à une impédance caractéristique du tronçon de câble, les fils conducteurs isolés ayant des secondes extrémités reliées à un connecteur à l'opposé des premières extrémités. On obtient ainsi un câble d'une très grande flexibilité et d'un faible encombrement qui peut être aisément fixé dans les couloirs d'un bâtiment en utilisant les techniques habituelles de fixation d'un simple câble téléphonique et qui présente en outre une impédance indépendante de sa longueur.
  • Selon une version avantageuse de l'invention le câble comporte au moins deux tronçons de câble dont les secondes extrémités sont montées en parallèle sur le connecteur. Compte tenu de l'impédance équivalente obtenue en montant les tronçons de câbles en parallèle, on peut ainsi réaliser un câble présentant une impédance adaptée à l'émetteur/récepteur auquel le câble rayonnant est relié tout en réalisant le câble rayonnant à partir de tronçons de câbles présentant une impédance plus élevée, c'est-à-dire ayant généralement de meilleures performances de transmission qu'un câble unique correspondant à l'impédance nominale de l'émetteur/récepteur.
  • Selon encore un autre aspect avantageux de l'invention, les deux tronçons de câble sont identiques. On minimise ainsi les impératifs de stockage et le câble peut être installé sans nécessiter de repérage des tronçons de câble.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation particulier non limitatif du câble rayonnant selon l'invention, en relation avec les figures ci-jointes parmi lesquelles :
    • la figure 1 est une représentation schématique d'un câble rayonnant selon l'invention comportant deux tronçons de câble montés en parallèle,
    • la figure 2 est une vue en perspective d'une portion de câble selon l'invention.
  • En référence aux figures, le câble rayonnant selon le mode de réalisation particulier illustré comporte deux tronçons de câble généralement désignés en 1, comprenant chacun une paire de fils conducteurs isolés 2 torsadés ayant des premières extrémités 3 reliées à une charge 4 et des secondes extrémités 5 reliées à un connecteur 6 selon un montage en parallèle.
  • Dans ce mode de réalisation préféré, les deux tronçons de câble 1 sont identiques et sont chacun réalisés à partir d'une paire de conducteurs en cuivre massif ayant un diamètre de 1,38 mm recouvert d'un isolant ayant une épaisseur de 2,2 mm en polyéthylène cellulaire ayant un taux d'expansion de 41 % et recouvert d'une peau en polyéthylène d'une épaisseur de 0,08 mm. La capacité du fil ainsi réalisé est de 210 pF/m et l'isolant a une constante diélectrique de 1,463. Un tronçon de câble comportant une paire torsadée réalisée à partir de conducteurs isolés tels que décrits ci-dessus ont alors une impédance caractéristique de 100 Ohms de sorte que lorsqu'ils sont reliés à une charge de 100 Ohms, l'impédance du tronçon de câble est maintenue à 100 Ohms quelle que soit sa longueur. Deux tronçons de câble montés en parallèle ont une impédance équivalente de 50 Ohms correspondant à l'impédance nominale habituellement requise à l'entrée/sortie d'un émetteur/récepteur. Le câble ainsi réalisé est bien équilibré, aussi bien dans le sens de l'émission que dans le sens de la réception et en tenant compte de l'affaiblissement linéique, chaque tronçon de câble a une longueur pouvant aller jusqu'à environ 100 mètres pour une transmission à 450 MHz, environ 75 mètres à 900 MHz, environ 45 mètres à 1800 MHz et environ 35 mètres à 2,4 GHz.
  • Ainsi que cela est illustré par la figure 2, les conducteurs isolés sont maintenus assemblés par un ruban diélectrique 7 en polyester, polypropylène ou plus simplement en papier, mais de préférence en un matériau conférant au câble une tenue au feu telle qu'un ruban minéral en mica ou en soie de verre. Dans ce mode de réalisation, le ruban diélectrique 7 est recouvert d'une série de rubans métalliques 8 enroulés en hélice, les bords étant séparés par un intervalle de préférence de l'ordre de une à deux fois la largeur des rubans métalliques de sorte qu'à fréquence élevée le ruban métallique améliore le maintien de l'impédance caractéristique du câble rayonnant à une valeur constante tout en permettant une libération d'énergie rayonnante par les interstices entre les rubans métalliques 8. On peut également remplacer les rubans métalliques 8 par plusieurs fils métalliques guipés autour de chacun des fils conducteurs isolés.
  • Le tronçon de câble comporte en outre de préférence une gaine externe 9 mince en matière thermoplastique ou en élastomère.
  • Bien entendu l'invention n'est pas limitée au mode de réalisation particulier décrit et est susceptible de modifications sans sortir du cadre de l'invention tel que défini par les revendications.
  • En particulier, bien que le câble selon l'invention ait été décrit selon un mode de réalisation comportant des tronçons de câbles identiques montés en parallèle, on peut prévoir des tronçons de câbles différents soit par leur longueur soit par leur impédance. En fonction de la structure de la zone à couvrir, il peut en effet être intéressant d'utiliser des tronçons de câbles présentant des performances différentes, l'affaiblissement de chaque tronçon de câble étant en relation avec l'impédance moyenne de celui-ci. Dans le cas de tronçons de câbles de longueurs différentes, le câble ayant l'impédance la plus forte couvrira de préférence la zone la plus longue et le câble ayant l'impédance la plus faible couvrira la zone la plus courte.
  • Si la géométrie des locaux à couvrir est complexe on peut également envisager plus de deux tronçons de câbles montés en parallèle, l'impédance caractéristique de chaque tronçon de câble étant choisie pour que l'impédance équivalente du câble rayonnant corresponde à l'impédance nominale de l'émetteur/récepteur utilisé.
  • Afin d'augmenter le rayonnement du câble on peut provoquer des déséquilibres entre les différents éléments du câble soit par des différences de dimensions ou des différences de capacités linéiques entre les différents fils conducteurs en faisant varier l'épaisseur ou la nature des matériaux isolants, soit en faisant varier le pas de torsion des fils conducteurs isolés, la variation de pas de torsion pouvant aller jusqu'à une inversion du sens de torsion et/ou un maintien des fils conducteurs isolés parallèles l'un à l'autre sur une portion de câble, le pas de l'hélice dans les parties torsadées étant de préférence de l'ordre de 15 à 30 fois le diamètre des conducteurs isolés et la longueur de chaque portion de torsion constante étant de l'ordre de dix fois le pas de l'hélice considérée ou de dix fois le pas de l'hélice adjacente dans le cas d'une portion de fils parallèles.
  • Dans le cas où la zone à couvrir est très faible comme par exemple dans un bâtiment de petites dimensions ou un véhicule, on peut privilégier le rayonnement au dépend de l'affaiblissement linéique et prévoir un câble comportant une paire de fils parallèles reliés à la charge.
  • La souplesse du câble peut être améliorée en remplaçant les conducteurs massifs par des torons de petits fils conducteurs.
  • On peut également réaliser le câble de l'invention sans rubans métalliques et/ou sans ruban diélectrique.

Claims (12)

  1. Câble rayonnant comportant au moins un tronçon (1) de câble, chaque tronçon de câble comprenant une paire de fils conducteurs isolés (2), caractérisé en ce que chaque tronçon de câble comporte une extrémité libre à laquelle les fils conducteurs isolés ont des premières extrémités (3) reliées à une charge (4) égale à une impédance caractéristique du tronçon de câble, les fils conducteurs isolés ayant des secondes extrémités (5) reliées à un connecteur (6) à l'opposé des premières extrémités (3).
  2. Câble rayonnant selon la revendication 1, caractérisé en ce qu'il comporte au moins deux tronçons de câble dont les secondes extrémités (5) sont montées en parallèle sur le connecteur (6).
  3. Câble rayonnant selon la revendication 2, caractérisé en ce que les deux tronçons de câble (1) sont identiques.
  4. Câble rayonnant selon l'une des revendications 1 à 3, caractérisé en ce que les paires de fils conducteurs isolés (2) sont disposées dans une gaine de maintien (9).
  5. Câble rayonnant selon l'une des revendications 1 à 4, caractérisé en ce que les fils conducteurs isolés sont au moins partiellement torsadés.
  6. Câble rayonnant selon la revendication 5, caractérisé en ce que le pas de torsion des fils conducteurs isolés (2) est compris entre environ 15 fois et environ 30 fois le diamètre des fils isolés.
  7. Câble rayonnant selon la revendication 4 ou la revendication 6, caractérisé en ce que la torsion des fils est alternativement en hélice directe et en hélice inverse.
  8. Câble rayonnant selon la revendication 7, caractérisé en ce qu'une portion de câble torsadée en hélice directe est séparée d'une portion de câble torsadée en hélice inverse par une portion de câble ou les fils isolés sont sensiblement parallèles l'un à l'autre.
  9. Câble rayonnant selon l'une des revendications 1 à 8, caractérisé en ce qu'il comporte un ruban diélectrique (7) en contact avec les fils conducteurs isolés.
  10. Câble rayonnant selon l'une des revendications 1 à 9, caractérisé en ce qu'il comporte des rubans métalliques (8) enroulés hélicoïdalement sans recouvrement autour des paires de fils conducteurs isolés.
  11. Câble rayonnant selon la revendication 10 prise dans sa dépendance à la revendication 9, caractérisé en ce que les rubans métalliques (8) s'étendent entre le ruban diélectrique (7) et la gaine de maintien externe (9).
  12. Câble rayonnant selon l'une des revendications 1 à 11, caractérisé en ce que les deux fils de la paire diffèrent entre eux par au moins l'un des paramètres comprenant le diamètre des conducteurs, la nature ou la construction des conducteurs, l'épaisseur ou la nature de l'isolant entourant les conducteurs.
EP00910958A 1999-03-23 2000-03-16 Cable rayonnant Expired - Lifetime EP1163682B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9903586A FR2791475B1 (fr) 1999-03-23 1999-03-23 Cable rayonnant
FR9903586 1999-03-23
PCT/FR2000/000634 WO2000057431A1 (fr) 1999-03-23 2000-03-16 Cable rayonnant

Publications (2)

Publication Number Publication Date
EP1163682A1 EP1163682A1 (fr) 2001-12-19
EP1163682B1 true EP1163682B1 (fr) 2006-12-27

Family

ID=9543518

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910958A Expired - Lifetime EP1163682B1 (fr) 1999-03-23 2000-03-16 Cable rayonnant

Country Status (8)

Country Link
US (1) US6781051B1 (fr)
EP (1) EP1163682B1 (fr)
JP (1) JP2002540662A (fr)
AU (1) AU3298700A (fr)
DE (1) DE60032587T2 (fr)
ES (1) ES2277830T3 (fr)
FR (1) FR2791475B1 (fr)
WO (1) WO2000057431A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868573B1 (fr) * 2004-04-02 2006-06-23 Airbus France Sas Procede d'optimisation d'un cablage electrique, notamment dans le domaine aeronautique
FR2920918B1 (fr) * 2007-09-06 2009-10-23 Nexans Sa Cable rayonnant.
FR3012661B1 (fr) * 2013-10-28 2015-12-04 Labinal Procede de caracterisation d'un toron de cables electriques
EP2897217A1 (fr) * 2014-01-21 2015-07-22 Delphi Technologies, Inc. Dispositif d'adaptation d'impédance

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2192344B1 (fr) * 1972-07-07 1975-03-07 Thomson Csf
GB1431243A (en) * 1974-03-07 1976-04-07 Standard Telephones Cables Ltd Radiating cable arrangement
GB1583957A (en) * 1977-03-10 1981-02-04 Bicc Ltd Electric cables
GB1597125A (en) * 1977-08-24 1981-09-03 Bicc Ltd Radiating cables
US4339733A (en) * 1980-09-05 1982-07-13 Times Fiber Communications, Inc. Radiating cable
US4413469A (en) * 1981-03-23 1983-11-08 Allied Corporation Method of making low crosstalk ribbon cable
US4404424A (en) * 1981-10-15 1983-09-13 Cooper Industries, Inc. Shielded twisted-pair flat electrical cable
US4432193A (en) * 1982-09-20 1984-02-21 501 Control Data Canada, Ltd. Method of grading radiating transmission lines
EP0272211A3 (fr) * 1986-12-18 1989-07-05 Maillefer S.A. Câble électrique, procédé de fabrication de ce câble et installation pour la mise en oeuvre du procédé
US4860343A (en) * 1986-12-22 1989-08-22 Zetena Jr Maurice F Composite cable for use in high frequency data and voice transmission
US5247270A (en) * 1987-12-01 1993-09-21 Senstar Corporation Dual leaky cables
US4885747A (en) * 1988-02-17 1989-12-05 International Business Machines Corp. Broadband and baseband LAN
US5010399A (en) * 1989-07-14 1991-04-23 Inline Connection Corporation Video transmission and control system utilizing internal telephone lines
CA2010390A1 (fr) * 1990-02-20 1991-08-20 Robert Keith Harman Systeme de localisation a ligne de transmission ouverte
US5113159A (en) * 1990-02-22 1992-05-12 At&T Bell Laboratories Communications transmission system including facilities for suppressing electromagnetic interference
FR2665311B1 (fr) * 1990-07-30 1994-03-25 Alcatel Cable Dispositif de transmission radioelectrique a cables rayonnants.
FR2686727B1 (fr) * 1992-01-28 1997-01-31 Filotex Sa Conducteur electrique et cable electrique contenant un tel conducteur.
US5321372A (en) * 1993-01-08 1994-06-14 Synoptics Communications, Inc. Apparatus and method for terminating cables to minimize emissions and susceptibility
US5381348A (en) * 1993-01-11 1995-01-10 Fluke Corporation Token ring local area network testing apparatus using time delay reflectory
US5348397A (en) * 1993-03-29 1994-09-20 Ferrari R Keith Medical temperature sensing probe
FR2726708B1 (fr) * 1994-11-09 1997-01-31 Peugeot Dispositif d'adaptation d'une interface de ligne d'une station raccordee a un reseau de transmission d'informations multiplexees
JP3233861B2 (ja) * 1996-10-31 2001-12-04 住友電装株式会社 絶縁導体対及びこの絶縁導体対を用いた誘導ケーブル
FR2771859B1 (fr) 1997-11-28 1999-12-31 Telecommunications Sa Cable rayonnant
US6195561B1 (en) * 1998-07-03 2001-02-27 Tunnel Radio Of America, Inc. Antenna system for two-way UHF underground radio system

Also Published As

Publication number Publication date
DE60032587T2 (de) 2007-10-04
JP2002540662A (ja) 2002-11-26
FR2791475A1 (fr) 2000-09-29
AU3298700A (en) 2000-10-09
US6781051B1 (en) 2004-08-24
EP1163682A1 (fr) 2001-12-19
ES2277830T3 (es) 2007-08-01
FR2791475B1 (fr) 2007-02-23
DE60032587D1 (de) 2007-02-08
WO2000057431A1 (fr) 2000-09-28

Similar Documents

Publication Publication Date Title
EP0375506B1 (fr) Câble semi-rigide de transmission d'ondes hyperfréquence
CA2088215C (fr) Cable electrique haute frequence
FR2730341A1 (fr) Cable perfectionne a paires differentielles multiples de conducteurs
EP0643399B1 (fr) Cable de transmission haute fréquence
FR2850788A1 (fr) Cable de transmission pour le raccordement a des appareils mobiles
FR2522438A1 (fr) Cable electrique destine a etre utilise dans des puits de petrole
US6023201A (en) Electrical signal transmission device protected against electromagnetic interference
EP0141961B1 (fr) Cable electrique coaxial rayonnant
EP1163682B1 (fr) Cable rayonnant
EP0871182B1 (fr) Câble plat de transmission de signaux à haut debit
EP1016165B1 (fr) Cable rayonnant
EP0577467B1 (fr) Câble mixte de communication et d'énergie
EP2148336B1 (fr) Câble d'énergie spécifiquement conçu pour transmettre des données à haut débit
CA2214024C (fr) Conducteur electrique protege contre les perturbations electromagnetiques depassant un seuil
CH691095A5 (fr) Câble électrique de transmission haute fréquence.
US2711439A (en) Electric cables
EP1175711B1 (fr) Systeme de communication a cable rayonnant pour assurer une couverture radio controlee d'un volume determine
EP1025620B1 (fr) Cable coaxial rayonnant
FR3078435A1 (fr) Cable de communication et de transmission multimedia
EP0999557A1 (fr) Câble de transmission à haute fréquence à paire ou quarte
BE502294A (fr)
EP1786001A2 (fr) Cable électrique avec écran amélioré
BE395650A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM COMMUNICATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SILEC CABLE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT SE

REF Corresponds to:

Ref document number: 60032587

Country of ref document: DE

Date of ref document: 20070208

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277830

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080325

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090319

Year of fee payment: 10

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090317

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60032587

Country of ref document: DE

Representative=s name: SCHAUMBURG & PARTNER PATENTANWAELTE GBR, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60032587

Country of ref document: DE

Representative=s name: SCHAUMBURG UND PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170322

Year of fee payment: 18

Ref country code: FR

Payment date: 20170322

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60032587

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331