EP1015747B1 - Procede et dispositif pour reguler un debit de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne - Google Patents

Procede et dispositif pour reguler un debit de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne Download PDF

Info

Publication number
EP1015747B1
EP1015747B1 EP98946235A EP98946235A EP1015747B1 EP 1015747 B1 EP1015747 B1 EP 1015747B1 EP 98946235 A EP98946235 A EP 98946235A EP 98946235 A EP98946235 A EP 98946235A EP 1015747 B1 EP1015747 B1 EP 1015747B1
Authority
EP
European Patent Office
Prior art keywords
throttle valve
gas flow
throttle
fkmsdk
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98946235A
Other languages
German (de)
English (en)
Other versions
EP1015747A1 (fr
Inventor
Ernst Wild
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19740918A external-priority patent/DE19740918A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1015747A1 publication Critical patent/EP1015747A1/fr
Application granted granted Critical
Publication of EP1015747B1 publication Critical patent/EP1015747B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the invention relates to a method and a device to control a gas flow via a throttle valve in an internal combustion engine.
  • the invention relates in particular such a method and such Device for use in automotive engineering.
  • the EP 0 375 710 B1 discloses an adjustment system which is not has only one setting unit, but via two adjustment units.
  • the first setting unit sends the control signal to the Adjustment distance, while the second adjustment unit is used to calibrate the first setting unit.
  • the known device is supported with a throttle valve Fill signal controlled the injection, where this relatively fast setting signal in steady state by means of an air mass meter is calibrated.
  • the invention is based on the problem of a method and a device for controlling a gas flow over a Provide throttle valve in an internal combustion engine, which set the gas flow quickly and precisely.
  • the process should also be carried out inexpensively can and the device is inexpensive to manufacture and can be operated.
  • the problem is solved in particular by a method for Control of gas flow via a throttle valve in a Combustion chamber of an internal combustion engine, with the steps: Calculating a throttle setpoint from a set gas flow, Actuation of the throttle valve with the throttle setpoint, and determining an actual gas flow, characterized by the steps: calculate a Gas flow through the throttle valve based on a Actual throttle control value, determining a difference between the calculated gas flow through the throttle valve and the Actual gas flow, and taking into account the determined difference when calculating the throttle setpoint, in particular by adjusting the target gas flow.
  • the target air mass in the combustion chamber in converted into a throttle valve setpoint in one step which is an actual air mass with the accuracy of the sensor used to determine the actual gas flow sets.
  • HARM hot film air mass sensor
  • a special embodiment of the invention that is Method characterized by determining at least two correction values when taking the difference into account between the gas flow through the throttle valve of the Throttle valve and the actual gas flow. This has the advantage that by determining at least two correction values, faster and more precise control behavior is achieved. It is also an advantage that by determining different from at least two correction values Fault sizes and disturbances are dealt with separately and can be compensated, which increases the accuracy and the speed of the control process is further improved.
  • the process is characterized by additives Taking into account at least one first correction variable and multiplicative consideration of at least one second correction quantity, the first and second Correction values taken into account simultaneously or alternatively , especially the first correction variable, especially for the case of small gas flows is taken into account or is relevant, and the second correction factor especially for the case of large gas flows via the throttle valve is taken into account or is relevant.
  • the first Correction variable one by leakage air via the throttle valve caused errors
  • the second correction quantity corrects one by incorrectly determining one Pressure before the throttle valve caused errors. This is advantageous because it makes the two mistakes their respective Error character can be treated accordingly, which increases the accuracy of the control process.
  • a further special embodiment of the invention is when the operation of the internal combustion engine starts a predetermined one for at least one of the correction variables Value used as a seed. This is beneficial because it makes it easy for certain Correction quantities determined a predetermined cold start value can be.
  • the provision of predetermined values of advantage because it also for the In the event of a long idle period of operation of the internal combustion engine or a loss of data or information regarding the previously determined correction values safe control behavior is guaranteed.
  • the target gas flow is based on at least one Torque requirement of the internal combustion engine determined. This is advantageous because of it for example in a motor vehicle with a Internal combustion engines don't just exceed the torque requirement the accelerator pedal can be considered, but also Torque requirements from an automatic Gearbox of the motor vehicle or from an anti-slip control of the motor vehicle are caused.
  • the problem underlying the invention also becomes solved by a device for controlling a Gas flow through a throttle valve in a combustion chamber Internal combustion engine with a throttle valve control one input signal for a target gas flow and one Output signal for a valve position, and one Measuring sensor for determining an actual gas flow, characterized in that the throttle valve control Has computing means that a gas flow over the Throttle valve based on the throttle control value that continue to calculate a difference between that calculated gas flow via the throttle valve and the actual gas flow determine, this difference in the Calculation of the output signal is taken into account especially by adjusting the target gas flow.
  • a such device according to the invention has the same Advantages already mentioned above for the were called method according to the invention. In particular is such a device advantageous because it is a fast and ensures precise control behavior, with the apparatus and computing requirements are low, so that such a device manufactured, maintained and operated at low cost can.
  • At least two correction values when determining the Difference determined are advantageous that also complex error sizes and interferences quickly and with relatively little effort can be recorded, and a stable and precise control behavior is achieved. This applies in particular if the at least two correction variables Error sources with additive and multiplicative Record fault characteristics separately and preferably take into account at the same time.
  • the teaching of the present invention also includes one Device which is one of the above-described executes control method according to the invention. there combine the advantages of fast and accurate Tax procedure with the cost-effective implementation a device according to the invention.
  • the teaching of the present invention also includes Motor vehicle, which has a device as above described.
  • the present invention also encompasses Disk that is a control program to run one of the The invention described above Control process, or include parameters, to perform any of the above, The inventive method required or advantageous are.
  • the data carrier can store the information in save in any form, especially in mechanical, magnetic, opic or electrical form.
  • Advantageous are in particular electronic data carriers, for example a ROM, PROM, EPROM or EEPROM device that advantageously plugged into corresponding control units can be.
  • Control parameters and control programs easily exchanged become, for example, a uniform Control unit for different vehicle types simply insert the appropriate data carrier can be configured.
  • Figure 1 shows a structure diagram for the Fill detection with a hot film air mass sensor (HFM) and for the determination of two correction variables msndko and fkmsdk.
  • HFM hot film air mass sensor
  • FIG HFM measured air mass flow mshfm into a corrected converted the relative filling rl of a cylinder.
  • the air mass flow mshfm measured by the HFM into an uncorrected relative fill rlroh one Converted cylinders. This is done by Division 111 of the air mass flow mshfm measured by the HFM by a Value resulting from multiplication 112 one engine-specific constant KUMSRL and the engine speed nmot results.
  • Raw from the uncorrected relative filling is by applying the gas equation and a corresponding integration 113 of the intake manifold pressure ps determined.
  • a corresponding integration 113 of the intake manifold pressure ps determined By considering 114 more Influencing variables in relation to the flow conditions in the Intake manifold is corrected from intake manifold pressure ps relative filling rl of the cylinder is calculated.
  • From the Intake manifold pressure ps is calculated together with the throttle valve angle wdkba of the throttle valve related to a stop and an intake air temperature correction factor ftvdk Conversion of the standard air mass flow to a mass flow at a current temperature the air mass over the Throttle valve calculates 115.
  • the calculation of the air mass Figure 2 shows the throttle valve msdk in detail shown.
  • the multiplicative correction variable fkmsdk is over a Multiplication 120 by one from a pressure sensor measured ambient pressure pvdkds while determining a effective pressure upstream of the throttle valve pvdk the calculation of the throttle valve gas flow fed back.
  • the multiplicative correction for example assumes that the one coming from the ambient pressure sensor Pressure value pvdk is tolerant, making a difference between the calculated gas mass flow msdk and the measured gas flow mshfm arises.
  • the correction reacts to this difference by adjusting the multiplicative correction quantity fkmsdk until msdk is equal to mshfm.
  • the pvdk size is after one steady adjustment with actual pressure before the throttle valve identical when the others Influencing factors would not be tolerant. Normally all the tolerances that can be found in the HFM path and occur in the throttle valve path, so the Size pvdk from the actual pressure upstream of the throttle valve deviates. Nevertheless, the adaptation serves its purpose Throttle valve-based air mass flow calculation to the Air mass flow calculation based on the hot film air mass sensor is supported to adapt.
  • the size pvdkds can be one of a naturally aspirated Ambient pressure sensor can be derived and at a charged engine from a boost pressure sensor in front of the Throttle valve are derived.
  • a naturally aspirated engine a hot film air mass sensor and a pressure sensor in the The intake manifold can be adjusted by adjusting the pressure pvdkds the intake manifold pressure can be learned. If no pressure sensor pvdkds is set to 1 and fkmsdk is immediately set pvdk, and the suction motor is Ambient pressure information in fkmsdk included with the Inaccuracies in the tolerances in the throttle valve and HFM system.
  • FIG. 2 shows a structural diagram for determining the gas mass flow msdk via the throttle valve in accordance with the calculation unit 115 from FIG. 1.
  • the setpoint angle wdkba of a throttle valve of the throttle valve is initially available as an input signal.
  • the target angle wdkba is preferably based on the stop of the throttle valve.
  • the mass flow msndk after the throttle valve is calculated using a transfer function MSNWDK 201 determined on an air test bench.
  • the additive correction variable msndko is added 202 to the mass flow msndk, which preferably detects the leakage air via the throttle valve under standard conditions.
  • the value resulting from this addition 202 is multiplied 203 by an intake air temperature correction factor ftvdk in order to convert the standard air mass flow to an air mass flow at the current temperature hPa a correction factor fpvdk for adapting the air mass flow at standard pressure upstream of the throttle valve to current conditions.
  • the value pvdk is multiplied from an ambient pressure pvdkds measured by a pressure sensor and the multiplicative correction factor fkmsdk, as shown in FIG. 1.
  • quotient 205 from the intake manifold pressure ps and the pressure upstream of the throttle valve of the throttle valve pvdk and a subsequent transfer function 206, which is also referred to as the outflow characteristic curve and which serves to adapt the standard flow rate of the throttle valve measured at supercritical flow velocity to subcritical flow velocities
  • Correction factor KLAF (ps / pvdk) determined.
  • the two determined correction factors fpvdk and KLAF (ps / pvdk) are each taken into account by multiplying 207, 208 by the mass flow.
  • FIG. 3 shows the filling control according to the invention by calculating the target angle of the throttle valve of the Throttle valve wdks from the setpoint for the Air mass flow mssol.
  • the setpoint for the Air mass flow mssol initially correspondingly different Correction values changed.
  • the invention Fill control is largely inverse to that in Figure 1 filling detection constructed.
  • the invention Fill control in the course of filling detection determined correction variables msndko and fkmsdk used.
  • multiplication takes place 112 the parameters engine speed nmot and KUMSRL.
  • the setpoint mssol is determined by the resulting product divided, resulting in a target filling rlsol in the combustion chamber results.
  • the target pressure is obtained pssol in the intake manifold.
  • This value pssol is determined using a Division 304 by a pressure pvdk in front of the throttle valve of the throttle valve changed and a transfer function Pass 305, which is also referred to as "outflow characteristic" and the adaptation of the supercritical Flow rate measured standard flow of the Throttle valve on subcritical Serves flow rates.
  • the pvdk value is represented by Multiplication 306 from that measured by a pressure sensor Ambient pressure pvdkds and the multiplicative Correction factor fkmsdk calculated, analogous to the calculation from FIG. 1.
  • the flow characteristic 305 The determined value is then multiplied 307 with an intake air temperature correction factor ftvdk to convert the standard air mass flow to one Air mass flow at current temperature and then by multiplying 308 by a correction factor fpvdk to adjust the air mass flow at standard pressure the throttle valve to current conditions at the moment applicable temperature and pressure conditions adjusted.
  • the Correction factor fpvdk is determined by division 309 from the Pressure pvdk in front of the throttle valve of the throttle valve determined a nominal pressure of 1013 hPa.
  • the one from the resulting value as described above is used together with the setpoint mssol for the Air mass flow subjected to a division 310. From there the value resulting from division 310 then becomes additive correction value msndko that the leakage air over the Throttle valve taken into account in standard conditions, subtracted.
  • the msnwdks value thus obtained becomes one Transfer function WDKMSN 311 passed, which the inverted characteristic of the transfer function MSNWDK the figure 2 and thus from the corrected and adjusted setpoint for the air mass flow msnwdks Target angle wdks of the throttle valve of the throttle valve results.
  • FIG. 4 shows the device for Control of gas flow via a throttle valve. From the Position of an accelerator pedal 401 becomes the setpoint mssol for determines the air mass flow.
  • the fill controller 402 determines a target angle as shown in FIG. 3 wdks a throttle valve 403. The actual angle wdkba the throttle valve is determined and serves as Input variable for the filling detection 404.
  • Die Fill detection 404 determined from the value wdkba, as in 1, the mass flow msdk over the Throttle valve.
  • Hot film air mass sensor 405 determines the air mass flow mshfm.
  • the values msdk and mshfm become, as in the Figure 1 shown in a comparator and Integrator stage 406 an additive correction value msndko and a multiplicative correction value fkmsdk is determined.
  • the Both correction values are sent to both Fill controller 402 as well as fill detection 404 output and serve as input variables.
  • the fill controller 402 without any correction by one relatively slow controller a throttle angle at which the setpoint and that of the hot film air mass sensor measured value matches, but also that with an injection with pre-storage before Inlet valve where the air mass flow at the time to which the inlet valve closes must be known, the appearing at this later point in time Throttle valve angle is easier to estimate than one future air mass flow based on the hot film air mass sensor signal. Based on this future Throttle valve angle can be the future Calculate air mass flow and thus advantageously the Correct current injection duration, this prediction due to the correction factors the accuracy of the Has hot film air mass sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (13)

  1. Procédé de commande d'un débit de gaz par une vanne d'étranglement dans une chambre de combustion d'un moteur à combustion interne, comprenant les étapes suivantes : calcul d'une valeur de consigne de réglage de l'étranglement (wdks) à partir d'un débit de gaz de consigne (mssol), commande de la vanne d'étranglement avec la valeur de consigne de réglage de l'étranglement (wdks), et détermination d'un débit réel de gaz (mshfm),
    caractérisé par les étapes suivantes :
    calcul d'un débit de gaz via la vanne d'étranglement (msdk) sur la base d'une valeur réelle de réglage de l'étranglement (wdkba),
    détermination d'une différence (msdif) entre le débit de gaz via la vanne d'étranglement, calculé, (msdk) et le débit réel de gaz (mshfm), et
    prise en considération de la différence déterminée (msdif) lors du calcul de la valeur de consigne de réglage de l'étranglement (wdks).
  2. Procédé selon la revendication 1,
    caractérisé par
    la détermination d'au moins deux grandeurs de correction (msndko, fkmsdk) lors de la prise en considération de la différence (msdif).
  3. Procédé selon la revendication 2,
    caractérisé par
    la prise en considération additive d'au moins une première grandeur de correction (msndko), et la prise en considération multiplicative d'au moins une deuxième grandeur de correction (fkmsdk).
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    la première grandeur de correction (msndko) corrige une erreur causée par une fuite d'air sur la vanne d'étranglement, et
    la deuxième grandeur de correction corrige une erreur causée par une détermination défectueuse d'une pression avant la vanne d'étranglement.
  5. Procédé selon l'une quelconque des revendications 2 à 4,
    caractérisé en ce que
    lorsque le moteur à combustion interne s'arrête de fonctionner on met en mémoire au moins l'une des grandeurs de correction (msndko, fkmsdk).
  6. Procédé selon l'une quelconque des revendications 2 à 5,
    caractérisé en ce que
    lorsque le moteur à combustion interne recommence à fonctionner on utilise pour au moins l'une des grandeurs de correction (msndko, fkmsdk) une valeur prédéterminée comme valeur de démarrage.
  7. Procédé selon l'une quelconques des revendications 1 à 6,
    caractérisé en ce que
    le débit de gaz de consigne (mssol) est déterminé sur la base d'au moins une requête de couple de rotation du moteur à combustion interne.
  8. Dispositif de commande d'un débit de gaz par une vanne d'étranglement (403) dans une chambre de combustion d'un moteur à combustion interne, comprenant :
    une commande (402) de la vanne d'étranglement avec un signal d'entrée pour un débit de gaz de consigne (mssol) et
    un signal de sortie pour le réglage de la vanne (wdks), et
    avec un enregistreur de la valeur de mesure (404) servant à déterminer un débit de gaz réel (mshfm),
    caractérisé en ce que
    la commande de la vanne d'étranglement présente des moyens de calcul (403, 404) qui calculent (403) un débit de gaz via la vanne d'étranglement (msdk) sur la base de la valeur de réglage de consigne (wdks, wdkba), qui déterminent (404) en outre une différence (msdif) entre le débit de gaz, calculé, via la vanne d'étranglement (msdk) et le débit de gaz réel (mshfm), cette différence (msdif) étant prise en considération lors du calcul du signal de sortie (wdks).
  9. Dispositif selon la revendication 8,
    caractérisé en ce que
    les moyens de calcul (404) déterminent au moins deux grandeurs de correction (msndko, fkmsdk) lors de la détermination de la différence (msdif).
  10. Dispositif selon l'une quelconque des revendications 8 ou 9,
    caractérisé en ce que
    le dispositif met en oeuvre un procédé selon l'une des revendications 1 à 7.
  11. Véhicule automobile,
    caractérisé par
    un dispositif selon l'une des revendications 8 à 10.
  12. Support de données,
    caractérisé en ce que
    le support de données contient un programme de commande servant à mettre en oeuvre un procédé selon l'une des revendications 1 à 7.
  13. Support de données,
    caractérisé en ce que
    le support de données contient des paramètres, qui sont nécessaires ou avantageux pour la mise en oeuvre d'un procédé selon l'une des revendications 1 à 7.
EP98946235A 1997-09-17 1998-07-11 Procede et dispositif pour reguler un debit de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne Expired - Lifetime EP1015747B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19740918 1997-09-17
DE19740918A DE19740918A1 (de) 1997-04-01 1997-09-17 Verfahren und eine Vorrichtung zur Steuerung eines Gasflusses über ein Drosselventil in einem Verbrennungsmotor
PCT/DE1998/001937 WO1999014475A1 (fr) 1997-09-17 1998-07-11 Procede et dispositif pour reguler un flux de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1015747A1 EP1015747A1 (fr) 2000-07-05
EP1015747B1 true EP1015747B1 (fr) 2001-10-24

Family

ID=7842665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98946235A Expired - Lifetime EP1015747B1 (fr) 1997-09-17 1998-07-11 Procede et dispositif pour reguler un debit de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne

Country Status (6)

Country Link
US (1) US6422202B1 (fr)
EP (1) EP1015747B1 (fr)
JP (1) JP2001516839A (fr)
KR (1) KR20010023770A (fr)
CN (1) CN1096552C (fr)
WO (1) WO1999014475A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014000395A1 (de) 2014-01-17 2015-07-23 Fev Gmbh Verfahren zur Steuerung einer Verbrennungskraftmaschine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010023961A (ko) 1997-09-17 2001-03-26 클라우스 포스 내연기관에서 가스 흡기를 결정하기 위한 방법 및 장치
DE19927674B4 (de) * 1999-06-17 2010-09-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10039785B4 (de) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10045421A1 (de) * 2000-09-14 2002-03-28 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine
DE10129037A1 (de) * 2001-06-15 2002-12-19 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer aufgeladenen Brennkraftmaschine
US6651492B2 (en) * 2001-11-01 2003-11-25 Ford Global Technologies, Llc Method and system for controlling partial pressure of air in an intake manifold of an engine
EP1701022A3 (fr) * 2001-11-28 2006-10-18 Volkswagen Aktiengesellschaft Procédé pour déterminer la composition d'un mélange gazeux dans une chambre de combustion d'un moteur à combustion interne comprenant une conduite de recyclage des gaz d'échappement
DE102005047446A1 (de) * 2005-09-30 2007-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008000581A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit einer Massenstromleitung
EP2687709A4 (fr) * 2011-03-16 2017-01-11 Toyota Jidosha Kabushiki Kaisha Appareil de commande de moteur à combustion interne
DE102015210761A1 (de) * 2015-06-12 2016-12-15 Volkswagen Aktiengesellschaft Luftfüllungsbestimmung, Motorsteuergerät und Verbrennungskraftmaschine
JP6350431B2 (ja) * 2015-07-28 2018-07-04 トヨタ自動車株式会社 内燃機関の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791343A (en) * 1980-11-28 1982-06-07 Mikuni Kogyo Co Ltd Electronically controlled fuel injector for ignition internal combustion engine
US4473052A (en) * 1983-05-25 1984-09-25 Mikuni Kogyo Kabushiki Kaisha Full open throttle control for internal combustion engine
DE3729635A1 (de) 1987-09-04 1989-03-16 Bosch Gmbh Robert Einstellsystem (steuerung- und/oder regelungssystem) fuer kraftfahrzeuge
KR930000347B1 (ko) 1988-04-28 1993-01-16 가부시기가이샤 히다찌세이사꾸쇼 내연기관용 공연비제어장치
US5606951A (en) * 1993-06-30 1997-03-04 Orbital Engine Company (Australia) Pty. Limited Engine air supply systems
DE19508641A1 (de) 1994-12-31 1996-07-04 Bosch Gmbh Robert Einrichtung zur Lasterfassung bei einer Brennkraftmaschine mit Turbolader
JP3489251B2 (ja) 1995-03-28 2004-01-19 株式会社デンソー 内燃機関のスロットル制御装置
US5526787A (en) * 1995-05-08 1996-06-18 Ford Motor Company Electronic throttle control system including mechanism for determining desired throttle position

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014000395A1 (de) 2014-01-17 2015-07-23 Fev Gmbh Verfahren zur Steuerung einer Verbrennungskraftmaschine

Also Published As

Publication number Publication date
JP2001516839A (ja) 2001-10-02
WO1999014475A1 (fr) 1999-03-25
US6422202B1 (en) 2002-07-23
EP1015747A1 (fr) 2000-07-05
KR20010023770A (ko) 2001-03-26
CN1270657A (zh) 2000-10-18
CN1096552C (zh) 2002-12-18

Similar Documents

Publication Publication Date Title
DE19740918A1 (de) Verfahren und eine Vorrichtung zur Steuerung eines Gasflusses über ein Drosselventil in einem Verbrennungsmotor
DE19945618B4 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftstoffzumeßsystems einer Brennkraftmaschine
DE3924923C2 (fr)
DE3807175C2 (de) Verfahren und System zum Steuern der Brennstoffeinspritzrate in einer Brennkraftmaschine
EP1015747B1 (fr) Procede et dispositif pour reguler un debit de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne
DE19536038A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Kraftfahrzeugs
WO2000043670A1 (fr) Dispositif pour supprimer le cognement dans un moteur a combustion interne
DE3932888A1 (de) Regelsystem fuer die kraftstoffeinspritzung einer brennkraftmaschine
EP1250525B1 (fr) Procede et dispositif pour commander un moteur a combustion interne
DE10039785B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2276918A1 (fr) Adaptation d'un moment maximal stationnaire d'un moteur à combustion interne
DE19855493B4 (de) Motorsteuervorrichtung
EP1725915B1 (fr) Systeme de commande de processus
DE102006005701A1 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit, Computerprogramm-Produkt und Computerprogramm
DE19513370B4 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
DE4401828A1 (de) Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine
DE4333896B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1005609B1 (fr) Procede permettant de commander le recyclage des gaz d'echappement d'un moteur a combustion interne
DE19851457B4 (de) Verfahren und Vorrichtung zur Steuerung des Drehmoments einer Antriebseinheit
DE10221337A1 (de) Verfahren und Vorrichtung zur Korrektur einer Kraftstoffmenge, die einer Brennkraftmaschine zugeführt wird
EP1045235A2 (fr) Procédé de contrôle de couple pour moteurs à allumage par étincelle dans les véhicules automobiles
DE102007012340B3 (de) Verfahren zum Ermitteln und Einregeln des Luftmassenstroms im Saugrohr eines Verbrennungsmotors sowie zugehöriges Steuergerät
DE10305092B4 (de) Verfahren zur automatischen Anpassung eines Drehmomentenmodells sowie Schaltungsanordnung
EP1561022A1 (fr) Procede de regulation d'une unite moteur a combustion interne-generateur
DE19803664B4 (de) Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001117

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 59801892

Country of ref document: DE

Date of ref document: 20011129

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090720

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090730

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59801892

Country of ref document: DE

Effective date: 20140224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801892

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201