EP1015736B1 - Turbinenschaufel sowie verwendung einer turbinenschaufel - Google Patents

Turbinenschaufel sowie verwendung einer turbinenschaufel Download PDF

Info

Publication number
EP1015736B1
EP1015736B1 EP98954146A EP98954146A EP1015736B1 EP 1015736 B1 EP1015736 B1 EP 1015736B1 EP 98954146 A EP98954146 A EP 98954146A EP 98954146 A EP98954146 A EP 98954146A EP 1015736 B1 EP1015736 B1 EP 1015736B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
slot
wall
blade according
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98954146A
Other languages
English (en)
French (fr)
Other versions
EP1015736A1 (de
Inventor
Michael Scheurlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1015736A1 publication Critical patent/EP1015736A1/de
Application granted granted Critical
Publication of EP1015736B1 publication Critical patent/EP1015736B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form

Definitions

  • the invention relates to a turbine blade that runs along a Main axis is directed and has a wall structure, wherein the wall structure has an interior for guiding cooling fluid surrounds an outer wall with an outer surface and includes an inner surface facing the interior and has an outlet for cooling fluid.
  • the invention relates continue to use such a turbine blade.
  • a gas turbine vane with a guide from Cooling gas for cooling them is described in US Pat. No. 5,419,039.
  • the guide vane is designed as a casting or composed of two castings. It has an interior to supply cooling air from the compressor Gas turbine on. Your exposed to the hot gas flow of the gas turbine, has the wall structure surrounding the air supply a load-bearing inner wall with a largely constant thickness, on which outlets for cooling air are arranged.
  • Such a Outlet is as a cool bag located on the inner wall running a cavity with an outlet opening has, which is referred to as a slot.
  • the cavity is formed by a pocket cover attached to the inner wall, the inner wall and / or the pocket cover so are designed so that between them the cavity with the Exit opening remains.
  • the inner wall is flat and the pocket cover is curved.
  • the inner wall a curvature facing the interior, so that in the curvature a depression is formed.
  • the cavity is in the curvature Cooling bag between the inside wall and the bag cover educated.
  • the pocket cover made in one piece with the inner wall as a casting.
  • the cooler bags are both in the direction of flow of the hot gas as well as perpendicular to the flow direction of the hot gas arranged along the main direction of expansion of the guide vane.
  • the blade surface is therefore of a plurality formed by pocket covers.
  • the cavities are each through which cooling air can be supplied via the air supply, that at the outlet opening into the flow of hot gas emerges and a cooling air film on the blade surface through which the blade surface is cooled.
  • the object of the invention is to provide a turbine blade with a specify coolable wall structure. There is another task in using such a turbine blade specify.
  • Cooling fluid in particular cooling air
  • the thickening facing the interior increases stability the outer wall, so that they are very thin can, which improves the cooling effect.
  • the slot preferably extends over a depth of penetration into the outer wall without penetrating it. Thereby the stability of the outer wall is further increased.
  • the slot preferably extends over the entire depth of penetration a constant cross section. This makes it production-related easy to manufacture.
  • the slot is preferably oriented parallel to the main axis. This has the advantage that when the turbine blade is used in a gas turbine, which gas turbine from one Hot gas is flowed through, the cooling fluid in the direction of flow of the hot gas emerges.
  • the outer wall is preferably made particularly thin. This results in particularly effective cooling. Because of the thickening, even an extremely thin one Outside wall for the outlet a large length-diameter ratio given and a small angle of inclination of the outlet realizable in relation to the outer wall.
  • the slot of the outlet is preferably pointed Angle ⁇ , in particular between 10 ° and 45 °, with respect to Outside wall inclined.
  • cooling air is drawn through the interior the turbine blade flows, warms and passes through the Outlet, which is designed as a slot on the outer surface is in a flow of a flowing around the turbine blade Fluids, especially a hot gas.
  • the slot of the outlet is for use of the turbine blade in a gas turbine, preferably directed along an axis, opposite the direction of flow of the fluid around the acute angle ⁇ is inclined. This ensures that cooling air flowing out of the outlet, which is proportional cool to the fluid, especially a hot gas, is forming a cold film of cooling fluid around the turbine blade. This effectively protects the turbine blade at.
  • the area of the outlet on the inner surface is preferred designed as a depression, in particular as a blind hole, which are introduced into the thickening in the area of the outlet is.
  • the slot cuts the recess, thereby the outlet is formed. This allows the slot and recess composite outlet manufacturing technology just be made.
  • the thickening on the outer wall is preferred formed as a linear increase along the slot.
  • the thickening can contain several depressions.
  • the cross section of the depression is preferably smaller than the cross section of the slot. This forms the recess a choke area and the slot an expanding one Deceleration area.
  • the throttle range is in essentially a quantity control of the cooling fluid flow achievable. Due to the widening slowdown range a reduction in the flow rate of the cooling fluid accessible so that this is immediately downstream of the outlet can lay on the outer wall.
  • the cross section of the recess is smaller than the cross section of the slot is further, the stability of the outer wall improved because the outer wall only about the diameter of the recess and not penetrated over the entire slot length becomes.
  • the height H of the slot is preferably (slot height H) and the diameter D of the depression of the same order of magnitude, especially in the range between 0.5 mm and 1 mm.
  • the Length of the slot L is preferably in Range between 1 cm and 3 cm.
  • the distance between the Slitting in the direction of the main axis is preferably in the range between 0.5 cm and 2 cm.
  • the task aimed at using the turbine blade is solved in that the turbine blade as a moving blade or guide vane in a gas turbine plant, in particular in a gas turbine in the temperatures of significantly above 1000 ° C of the hot gas flowing around the turbines, is used.
  • Such a turbine blade is preferably suitable for the Use in a gas turbine, the turbine blade from a hot gas flows around. At a temperature of the hot gas, those above the melting temperature of the base material the turbine blade is located by one with the turbine blade achievable cooling a failure of the turbine blade avoided.
  • the temperature on the outer wall, the surface temperature is through film cooling as well as cooling over the interior to a non-critical one for the turbine blade Temperature level lowered. Cooling air from the interior leads to a convective transition and heat conduction through the outer wall, creating the surface the outer wall can be cooled sufficiently.
  • the turbine blade 1 shows a turbine blade directed along a main axis 2 1 of a gas turbine shown.
  • the turbine blade 1 has a wall structure 3, which has an interior 4 surrounds for guiding cooling fluid 5, which is not shown in FIG Subareas is divided.
  • the wall structure 3 has an outer wall 6 with an outer surface 7 and one the inner surface 8 facing the interior 4.
  • the outer wall 6 has a plurality of thickenings directed towards the interior 4 11 on. For the sake of clarity, it is only one Thickening 11 shown.
  • the thickening 11 is a recess 12, which is designed as a blind hole, brought in.
  • the outer wall 6 in the area of Thicken 11 on a slot 10 the depression 12th cuts.
  • the recess 12 and the slot 10 together form an outlet 9. This allows one in the interior 4 led cooling fluid 5, cooling air, from the interior 4 to flow through the thickening 11 to the outer surface 7. Outside the turbine blade 1, the cooling air mixes 5 with the flow 13 of a flowing around the turbine blade 1 Hot gas.
  • the outlet 9 shown in FIG. 1 is enlarged in FIG shown.
  • the slot 10 with a slot height H penetrates an acute angle ⁇ over a depth of penetration E into the outer wall 6 and cuts the recess 12, the one Has diameter D.
  • the slot 10 and the recess 12 thus form the outlet 9. Characterized in that the slot 10 the has an acute angle ⁇ , it is achieved that the cooling air 5 immediately downstream of the outlet 9 to the outer wall 6 creates and thus effective film cooling of the outer wall 6 causes.
  • the choice of the diameter D can regulate the flow rate for the cooling fluid 5 be made.
  • FIG 3 shows a turbine blade 1 of a gas turbine in the Top view of the outer wall 6 (see FIG 1) is shown schematically.
  • the Flow 13 (see FIG. 1) has the direction of flow 14.
  • a plurality of slots 10 are along the major axis 2 arranged in a row. Several rows are adjacent in the direction perpendicular to the main axis 2 on the Outer surface 7 of the turbine blade 1.
  • the slots in one Row have a slot length 11, which is in the range between 1 cm and 3 cm. The distance between two slots a row is in the range between 0.5 cm and 2 cm.
  • the slots in a row are compared to the slots a directly adjacent row offset in the main axis direction arranged. This has the advantage that the areas between the slots of one row with the cooling air, the from the slots the opposite the flow direction 14 the flow 13 (see FIG 1) directly adjacent Row emerges, are cooled. This will cool the film the entire outer surface 7 guaranteed.
  • the invention is characterized by a turbine blade a wall structure in which one is exposed to hot gas Outer wall has an outlet on the outer surface the outer wall is designed as a slot, and one for Interior thickening penetrates. Through the slot a largely homogeneous flow of cooling fluid forms over the entire slot length. Because of the thickening A favorable length-diameter ratio even with an extremely thin outer wall of the outlet as well as a flat one Tilt angle of the slot of the outlet with respect to the outer wall guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Turbinenschaufel, die entlang einer Hauptachse gerichtet ist und eine Wandstruktur aufweist, wobei die Wandstruktur einen Innenraum zur Führung von Kühlfluid umgibt, eine Außenwand mit einer Außenoberfläche und einer dem Innenraum zugewandten Innenoberfläche umfaßt sowie einen Auslaß für Kühlfluid aufweist. Die Erfindung betrifft weiterhin eine Verwendung einer solchen Turbinenschaufel.
Eine Leitschaufel einer Gasturbine mit einer Führung von Kühlgas zu deren Kühlung ist in der US-PS 5,419,039 beschrieben. Die Leitschaufel ist als eine Gußstück ausgeführt bzw. aus zwei Gußstücken zusammengesetzt. Sie weist einen Innenraum zur Zuführung von Kühlluft aus dem Verdichter der Gasturbine auf. Ihre der Heißgasströmung der Gasturbine ausgesetzte, die Luftzuführung umschließende Wandstruktur weist eine tragende Innenwand mit weitgehend konstanter Dicke auf, an der Auslässe für Kühlluft angeordnet sind. Ein solcher Auslaß ist als eine an der Innenwand angeordnete Kühltasche ausgeführt, die einen Hohlraum mit einer Austrittsöffnung aufweist, die als Schlitz bezeichnet wird. Der Hohlraum ist durch eine an der Innenwand angebrachte Taschenabdeckung gebildet, wobei die Innenwand und/oder die Taschenabdeckung so ausgestaltet sind, daß zwischen ihnen der Hohlraum mit der Austrittsöffnung verbleibt. Nach einer ersten Ausführungsform ist dabei die Innenwand eben und die Taschenabdeckung gewölbt. Nach einer zweiten Ausführungsform weist die Innenwand eine zum Innenraum weisende Wölbung auf, so daß in der Wölbung eine Vertiefung gebildet ist. An der Innenwand ist eine ebene Taschenabdeckung angebracht, die die Vertiefung teilweise überdeckt. Dadurch ist in der Wölbung der Hohlraum der Kühltasche zwischen der Innenwand und der Taschenabdeckung gebildet. In einer dritten Ausführungsform ist die Taschenabdeckung einstückig mit der Innenwand als Gußteil ausgeführt.
Die Kühltaschen sind sowohl in Strömungsrichtung des Heißgases als auch senkrecht zur Strömungsrichtung des Heißgases entlang der Hauptausdehnungsrichtung der Leitschaufel angeordnet. Die Schaufeloberfläche ist dadurch von einer Mehrzahl von Taschenabdeckungen gebildet. Die Hohlräume sind jeweils von über die Luftzuführung zuführbarer Kühlluft durchströmbar, die an der Austrittsöffnung in die Strömung des Heißgases austritt und an der Schaufeloberfläche einen Kühlluftfilm bildet, durch den die Schaufeloberfläche gekühlt wird. Allen Ausführungsbeispielen gemein ist, daß die tragende Innenwand selbst wenn sie gewölbt ist, doch eine konstante Dicke aufweist und eine Kühltasche durch die tragende Innenwand und die mit der tragenden Innenwand verbundene dünnwandige Taschenabdeckung gebildet ist.
Aufgabe der Erfindung ist es, eine Turbinenschaufel mit einer kühlbaren Wandstruktur anzugeben. Eine weitere Aufgabe besteht darin, eine Verwendung einer solchen Turbinenschaufel anzugeben.
Erfindungsgemäß wird die auf eine Turbinenschaufel gerichtete Aufgabe durch eine solche Turbinenschaufel nach dem Oberbegriff des Patentanspruchs 1 gelöst, bei der die Außenwand eine zum Innenraum gerichtete Verdickung aufweist, die der Auslaß durchdringt.
Durch den Auslaß kann Kühlfluid, insbesondere Kühlluft, in ausreichender Menge und weitgehend homogen über den Schlitz verteilt zur Ausbildung einer Filmkühlung der Außenwand strömen. Die zum Innenraum gerichtete Verdickung erhöht die Stabilität der Außenwand, so daß diese sehr dünn ausgeführt werden kann, wodurch die Kühlwirkung verbessert wird.
Der Schlitz erstreckt sich vorzugsweise über eine Eindringtiefe in die Außenwand, ohne diese zu durchdringen. Dadurch wird die Stabilität der Außenwand weiterhin erhöht.
Vorzugsweise weist der Schlitz über die gesamte Eindringtiefe einen konstanten Querschnitt auf. Dadurch ist er fertigungstechnisch einfach herzustellen.
Der Schlitz ist vorzugsweise parallel zur Hauptachse orientiert. Dies hat den Vorteil, daß bei einem Einsatz der Turbinenschaufel in einer Gasturbine, welche Gasturbine von einem Heißgas durchströmt wird, das Kühlfluid in Richtung der Strömung des Heißgases austritt.
Die Außenwand wird vorzugsweise besonders dünn ausgeführt. Dadurch wird eine besonders effektive Kühlung erzielt. Aufgrund der Verdickung ist selbst bei einer äußerst dünnen Außenwand für den Auslaß ein großes Längen-Durchmesser-Verhältnis gegeben sowie ein kleiner Neigungswinkel des Auslasses in bezug auf die Außenwand realisierbar.
Der Schlitz des Auslasses ist vorzugsweise um einen spitzen Winkel α, insbesondere zwischen 10° und 45°, gegenüber der Außenwand geneigt.
Bei einem Einsatz der Turbinenschaufel als Turbinenschaufel in einer Gasturbine, wird Kühlluft, die durch den Innenraum der Turbinenschaufel strömt, erwärmt und gelangt durch den Auslaß, welcher an der Außenoberfläche als Schlitz ausgeführt ist, in eine Strömung eines die Turbinenschaufel umströmenden Fluides, insbesondere eines Heißgases, hinein. Der Schlitz des Auslasses ist für einen Einsatz der Turbinenschaufel in einer Gasturbine vorzugsweise entlang einer Achse gerichtet, die gegenüber der Richtung der Strömung des Fluides um den spitzen Winkel α geneigt ist. Hierdurch ist gewährleistet, daß aus dem Auslaß ausströmende Kühlluft, welche verhältnismäßig kühl gegenüber dem Fluid, insbesondere einem Heißgas, ist, einen kalten Kühlfluidfilm um die Turbinenschaufel ausbildet. Dieser trägt wirksam zu einem Schutz der Turbinenschaufel bei.
Der Bereich des Auslasses an der Innenoberfläche ist vorzugsweise als Vertiefung, insbesondere als Sackloch, ausgeführt, die im Bereich des Auslasses in die Verdickung eingebracht ist. Vorzugsweise schneidet der Schlitz die Vertiefung, wodurch der Auslaß gebildet wird. Dadurch kann der aus Schlitz und Vertiefung zusammengesetzte Auslaß fertigungstechnisch einfach hergestellt werden.
Die an der Außenwand angebrachte Verdickung ist vorzugsweise als linienförmige Erhöhung entlang des Schlitzes ausgebildet. Die Verdickung kann mehrere Vertiefungen enthalten.
Vorzugsweise ist der Querschnitt der Vertiefung kleiner als der Querschnitt des Schlitzes. Hierdurch bildet die Vertiefung einen Drosselbereich und der Schlitz einen sich erweiternden Verlangsamungsbereich. Mit dem Drosselbereich ist im wesentlichen eine Mengenregelung des Kühlfluidstroms erreichbar. Durch den sich erweiternden Verlangsamungsbereich ist eine Reduzierung der Strömungsgeschwindigkeit des Kühlfluides erreichbar, so daß sich dieses unmittelbar stromab des Auslasses an die Außenwand anlegen kann. Ebenso wird dadurch, daß der Querschnitt der Vertiefung kleiner als der Querschnitt des Schlitzes ist, die Stabilität der Außenwand weiter verbessert, weil die Außenwand nur über den Durchmesser der Vertiefung und nicht über die gesamte Schlitzlänge durchdrungen wird.
Vorzugsweise liegen die Höhe H des Schlitzes (Schlitzhöhe H) und der Durchmesser D der Vertiefung in gleicher Größenordnung, insbesondere im Bereich zwischen 0,5 mm und 1 mm. Die Länge des Schlitzes L (Schlitzlänge L) liegt vorzugsweise im Bereich zwischen 1 cm und 3 cm. Der Abstand zwischen den Schlitzen in Richtung der Hauptachse liegt bevorzugt im Bereich zwischen 0,5 cm und 2 cm.
Die auf eine Verwendung der Turbinenschaufel gerichtete Aufgabe wird dadurch gelöst, daß die Turbinenschaufel als Laufschaufel oder Leitschaufel in einer Gasturbinenanlage, insbesondere in einer Gasturbine in der Temperaturen von deutlich über 1000°C des die Turbinen umströmenden Heißgases auftreten, verwendet wird.
Vorzugsweise eignet sich eine solche Turbinenschaufel für den Einsatz in einer Gasturbine, wobei die Turbinenschaufel von einem Heißgas umströmt wird. Bei einer Temperatur des Heißgases, die oberhalb der Schmelztemperatur des Grundmaterials der Turbinenschaufel liegt, wird durch eine mit der Turbinenschaufel erreichbare Kühlung ein Versagen der Turbinenschaufel vermieden. Die Temperatur an der Außenwand, die Oberflächentemperatur, wird durch eine Filmkühlung sowie eine Kühlung über den Innenraum auf ein für die Turbinenschaufel unkritisches Temperaturniveau gesenkt. Kühlluft aus dem Innenraum führt zu einem konvektiven Übergang und zu einer Wärmeleitung durch die Außenwand hindurch, wodurch die Oberfläche der Außenwand ausreichend kühlbar ist.
Anhand der in der Zeichnung dargestellten Ausführungsbeispiele wird die Turbinenschaufel näher erläutert. Es zeigen schematisiert und teilweise nicht maßstäblich unter Darstellung der für die Erläuterung verwendeten konstruktiven und funktionellen Merkmale:
FIG 1
eine Turbinenschaufel einer Gasturbine in einem Querschnitt,
FIG 2
eine vergrößerte Darstellung der Wandstruktur gemäß FIG 1 und
FIG 3
eine Draufsicht auf die Außenwand einer Turbinenschaufel einer Gasturbine.
Die Bezugszeichen sämtlicher Figuren haben jeweils die gleiche Bedeutung.
In FIG 1 ist eine entlang einer Hauptachse 2 gerichtete Turbinenschaufel 1 einer Gasturbine dargestellt. Die Turbinenschaufel 1 weist eine Wandstruktur 3 auf, die einen Innenraum 4 zur Führung von Kühlfluid 5 umgibt, der in nicht näher dargestellte Teilbereiche unterteilt ist. Die Wandstruktur 3 besitzt eine Außenwand 6 mit einer Außenoberfläche 7 und einer dem Innenraum 4 zugewandten Innenoberfläche 8. Die Außenwand 6 weist eine Mehrzahl von zum Innenraum 4 gerichteten Verdikkungen 11 auf. Der Anschaulichkeit halber ist lediglich eine Verdickung 11 dargestellt. In die Verdickung 11 ist eine Vertiefung 12, die als sacklochartige Bohrung ausgeführt ist, eingebracht. Weiterhin weist die Außenwand 6 im Bereich der Verdickung 11 einen Schlitz 10 auf, der die Vertiefung 12 schneidet. Die Vertiefung 12 und der Schlitz 10 bilden gemeinsam einen Auslaß 9. Dieser ermöglicht einem in dem Innenraum 4 geführten Kühlfluid 5, Kühlluft, aus dem Innenraum 4 durch die Verdickung 11 an die Außenoberfläche 7 zu strömen. Außerhalb der Turbinenschaufel 1 vermischt sich die Kühlluft 5 mit der Strömung 13 eines die Turbinenschaufel 1 umströmenden Heißgases.
In FIG 2 wird vergrößert der in FIG 1 dargestellte Auslaß 9 gezeigt. Der Schlitz 10 mit einer Schlitzhöhe H dringt unter einem spitzen Winkel α über eine Eindringtiefe E in die Außenwand 6 ein und schneidet die Vertiefung 12, die einen Durchmesser D aufweist. Der Schlitz 10 und die Vertiefung 12 bilden somit den Auslaß 9. Dadurch, daß der Schlitz 10 den spitzen Winkel α aufweist, wird erreicht, daß sich die Kühlluft 5 unmittelbar stromab des Auslasses 9 an die Außenwand 6 anlegt und somit eine wirksame Filmkühlung der Außenwand 6 bewirkt. Ist der Durchmesser D der Vertiefung 12 in der gleichen Größenordnung wie die Schlitzhöhe H des Schlitzes 10, so wirken die Vertiefung 12 als Drosselbereich und der Schlitz 10 als Verlangsamungsbereich. Über die Wahl des Durchmessers D kann eine Durchflußmengenregulierung für das Kühlfluid 5 vorgenommen werden.
In FIG 3 wird eine Turbinenschaufel 1 einer Gasturbine in der Draufsicht auf die Außenwand 6 (siehe FIG 1) schematisch dargestellt. Bei einem Einsatz der Turbinenschaufel 1 in einer Gasturbine, wird diese mit der Strömung 13 (siehe FIG 1) eines Fluides, insbesondere eines Heißgases, umströmt. Die Strömung 13 (siehe FIG 1) besitzt die Strömungsrichtung 14. Eine Mehrzahl von Schlitzen 10 ist entlang der Hauptachse 2 in einer Reihe angeordnet. Mehrere Reihen befinden sich benachbart in der Richtung senkrecht zur Hauptachse 2 auf der Außenoberfläche 7 der Turbinenschaufel 1. Die Schlitze in einer Reihe besitzen eine Schlitzlänge 11, die im Bereich zwischen 1 cm und 3 cm liegt. Der Abstand zwischen zwei Schlitzen einer Reihe liegt im Bereich zwischen 0,5 cm und 2 cm. Die Schlitze einer Reihe sind im Vergleich zu den Schlitzen einer direkt benachbarten Reihe in Hauptachsenrichtung versetzt angeordnet. Dies hat den Vorteil, daß die Bereiche zwischen den Schlitzen der einen Reihe ausreichend mit der Kühlluft, die aus den Schlitzen der entgegen der Strömungsrichtung 14 der Strömung 13 (siehe FIG 1) direkt benachbarten Reihe austritt, gekühlt werden. Hierdurch wird eine Filmkühlung der gesamten Außenoberfläche 7 gewährleistet.
Die Erfindung zeichnet sich durch eine Turbinenschaufel mit einer Wandstruktur aus, bei der eine einem Heißgas aussetzbare Außenwand einen Auslaß aufweist, der an der Außenoberfläche der Außenwand als Schlitz ausgeführt ist, und eine zum Innenraum weisende Verdickung durchdringt. Durch den Schlitz bildet sich eine weitgehend homogene Strömung von Kühlfluid über die gesamte Schlitzlänge aus. Durch die Verdickung ist selbst bei einer äußerst dünnen Außenwand ein günstiges Längen-Durchmesser-Verhältnis des Auslasses sowie ein flacher Neigungswinkel des Schlitzes des Auslasses gegenüber der Außenwand gewährleistet.

Claims (12)

  1. Turbinenschaufel (1), die entlang einer Hauptachse (2) gerichtet ist und eine Wandstruktur (3) aufweist, wobei die Wandstruktur einen Innenraum (4) zur Führung von Kühlfluid (5) umgibt, eine Außenwand (6) mit einer Außenoberfläche (7) und einer dem Innenraum (4) zugewandten Innenoberfläche (8) umfaßt sowie einen Auslaß (9) für Kühlfluid (5) aufweist, wobei der Auslaß (9) an der Außenoberfläche (7) als Schlitz (10) ausgebildet ist, dadurch gekennzeichnet, daß die Außenwand (6) eine zum Innenraum (4) gerichtete Verdickung (11) aufweist, die der Auslaß (9) durchdringt.
  2. Turbinenschaufel nach Anspruch 1,
    dadurch gekennzeichnet, daß der Schlitz (10) sich über eine Eindringtiefe (E) in die Außenwand (6) erstreckt, ohne diese zu durchdringen.
  3. Turbinenschaufel nach Anspruch 2,
    dadurch gekennzeichnet, daß der Schlitz (10), über die gesamte Eindringtiefe (E) einen konstanten Querschnitt aufweist.
  4. Turbinenschaufel nach einem der vorhergehenden Ansprüche ,
    dadurch gekennzeichnet, daß der Schlitz (10) parallel zur Hauptachse (2) orientiert ist.
  5. Turbinenschaufel nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß der Schlitz (10) unter einem spitzen Winkel α zur Außenoberfläche (7), insbesondere im Bereich zwischen 10° und 45° angebracht ist.
  6. Turbinenschaufel nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Verdickung (11) im Bereich des Auslasses (9) eine Vertiefung (12) aufweist.
  7. Turbinenschaufel nach Anspruch 6,
    dadurch gekennzeichnet, daß die Vertiefung (12) sacklochartig ausgeführt ist.
  8. Turbinenschaufel nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, daß der Schlitz (10) die Vertiefung (12) schneidet.
  9. Turbinenschaufel nach Anspruch 8,
    dadurch gekennzeichnet, daß der Querschnitt der Vertiefung (12) kleiner als der Querschnitt des Schlitzes (10) ist.
  10. Turbinenschaufel nach Anspruch 9,
    dadurch gekennzeichnet, daß der Schlitz (10) eine Schlitzhöhe (H) und die Vertiefung einen Durchmesser (D) aufweisen und die Schlitzhöhe (H) in der gleichen Größenordnung wie der Durchmesser (D), insbesondere im Bereich zwischen 0,5 mm und 1,0 mm liegt.
  11. Turbinenschaufel nach einem der vorhergehenden Ansprüche, welche eine Laufschaufel oder eine Leitschaufel für eine Gasturbine ist.
  12. Verwendung einer Turbinenschaufel nach einem der vorhergehenden Ansprüche in einer Gasturbinenanlage.
EP98954146A 1997-09-18 1998-09-08 Turbinenschaufel sowie verwendung einer turbinenschaufel Expired - Lifetime EP1015736B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19741231 1997-09-18
DE19741231 1997-09-18
PCT/DE1998/002657 WO1999014465A1 (de) 1997-09-18 1998-09-08 Turbinenschaufel sowie verwendung einer turbinenschaufel

Publications (2)

Publication Number Publication Date
EP1015736A1 EP1015736A1 (de) 2000-07-05
EP1015736B1 true EP1015736B1 (de) 2003-11-19

Family

ID=7842852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98954146A Expired - Lifetime EP1015736B1 (de) 1997-09-18 1998-09-08 Turbinenschaufel sowie verwendung einer turbinenschaufel

Country Status (4)

Country Link
EP (1) EP1015736B1 (de)
JP (1) JP2001516834A (de)
DE (1) DE59810230D1 (de)
WO (1) WO1999014465A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236676A1 (de) * 2002-08-09 2004-02-19 Rolls-Royce Deutschland Ltd & Co Kg Turbinenschaufel für eine Gasturbine mit zumindest einer Kühlungsausnehmung
JP5039837B2 (ja) * 2005-03-30 2012-10-03 三菱重工業株式会社 ガスタービン用高温部材
CA2870740C (en) * 2012-04-23 2017-06-13 General Electric Company Turbine airfoil with local wall thickness control
US9957814B2 (en) 2014-09-04 2018-05-01 United Technologies Corporation Gas turbine engine component with film cooling hole with accumulator
US10982552B2 (en) * 2014-09-08 2021-04-20 Raytheon Technologies Corporation Gas turbine engine component with film cooling hole
US20170306764A1 (en) * 2016-04-26 2017-10-26 General Electric Company Airfoil for a turbine engine
FR3111661B1 (fr) * 2020-06-22 2022-11-04 Safran Aircraft Engines Aube de turbine avec système de refroidissement
US11486259B1 (en) 2021-11-05 2022-11-01 General Electric Company Component with cooling passage for a turbine engine
CN114382553B (zh) * 2021-12-26 2024-06-18 西北工业大学 涡轮叶片中弦区用高堵塞比肋片层板冷却结构及冷却方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314442A (en) * 1978-10-26 1982-02-09 Rice Ivan G Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine
US4672727A (en) * 1985-12-23 1987-06-16 United Technologies Corporation Method of fabricating film cooling slot in a hollow airfoil
US4859147A (en) * 1988-01-25 1989-08-22 United Technologies Corporation Cooled gas turbine blade
US5405242A (en) 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
GB2262314A (en) * 1991-12-10 1993-06-16 Rolls Royce Plc Air cooled gas turbine engine aerofoil.
US5651662A (en) * 1992-10-29 1997-07-29 General Electric Company Film cooled wall
US5458461A (en) * 1994-12-12 1995-10-17 General Electric Company Film cooled slotted wall
DE59806535D1 (de) * 1997-02-20 2003-01-16 Siemens Ag Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage

Also Published As

Publication number Publication date
EP1015736A1 (de) 2000-07-05
JP2001516834A (ja) 2001-10-02
WO1999014465A1 (de) 1999-03-25
DE59810230D1 (de) 2003-12-24

Similar Documents

Publication Publication Date Title
DE3789514T2 (de) Gekühlte Gasturbinenschaufel.
EP1745195B1 (de) Strömungsmaschinenschaufel
EP0964981B1 (de) Turbinenschaufel sowie deren verwendung in einer gasturbinenanlage
DE1946535C3 (de) Bauteil für ein Gasturbinentriebwerk
DE2718661C2 (de) Leitschaufelgitter für eine axial durchströmte Gasturbine
DE60213328T2 (de) Gekühlte hohle Schaufelspitzenabdeckung einer Turbinenschaufel
DE69932688T2 (de) Kühlungsöffnungen für Gasturbinenkomponenten
DE69302614T2 (de) Gekühlte Schaufel für eine Turbomaschine
DE69505882T2 (de) Kühlung für die Blattspitzen einer Turbine
DE69714960T3 (de) Wirbelelementkonstruktion für Kühlkanäle eines Gasturbinenrotorschaufelblattes
DE2358521C2 (de) Gasturbinenschaufel mit gewelltem Austrittskantenbereich
DE69211317T2 (de) Kühlkanäle mit Turbulenzpromotoren für Gasturbinenschaufeln
DE60015233T2 (de) Turbinenschaufel mit interner Kühlung
DE60014170T2 (de) Statorschaufel einer Gasturbine
DE1476796C3 (de) Aus einem hochfesten Material integral hergestelltes Bauteil einer Gasturbinenanlage
DE69729980T2 (de) Turbinenschaufelkühlung
DE2320581C2 (de) Gasturbine mit luftgekühlten Turbinenlaufschaufeln
DE2703815A1 (de) Hohlschaufel fuer ein gasturbinentriebwerk
DE102006004437A1 (de) Plattform einer Laufschaufel einer Gasturbine, Verfahren zur Herstellung einer Laufschaufel, Dichtungsplatte und Gasturbine
EP1013884A2 (de) Turbinenschaufel mit aktiv gekültem Deckbandelememt
DE2555049A1 (de) Gekuehlte turbinenschaufel
EP1267039A1 (de) Kühlkonstruktion für Schaufelblatthinterkante
DE1601550B2 (de) Kuehlbare wand mit porositaet, insbesondere fuer schaufeln oder leitflaechen in einer gasturbine
EP1015736B1 (de) Turbinenschaufel sowie verwendung einer turbinenschaufel
DE2406277A1 (de) Einrichtung zur kuehlfilmbildung fuer brennkammern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59810230

Country of ref document: DE

Date of ref document: 20031224

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

26N No opposition filed

Effective date: 20040820

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050906

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050912

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051121

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060908

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070908