EP1014028B1 - Système de guidage, de navigation et de commande pour missile - Google Patents

Système de guidage, de navigation et de commande pour missile Download PDF

Info

Publication number
EP1014028B1
EP1014028B1 EP99124092A EP99124092A EP1014028B1 EP 1014028 B1 EP1014028 B1 EP 1014028B1 EP 99124092 A EP99124092 A EP 99124092A EP 99124092 A EP99124092 A EP 99124092A EP 1014028 B1 EP1014028 B1 EP 1014028B1
Authority
EP
European Patent Office
Prior art keywords
missile
guidance
navigation
control system
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99124092A
Other languages
German (de)
English (en)
Other versions
EP1014028A1 (fr
Inventor
Uwe Dr. Krogmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP1014028A1 publication Critical patent/EP1014028A1/fr
Application granted granted Critical
Publication of EP1014028B1 publication Critical patent/EP1014028B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2206Homing guidance systems using a remote control station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2246Active homing systems, i.e. comprising both a transmitter and a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2286Homing guidance systems characterised by the type of waves using radio waves

Definitions

  • the invention relates to a steering, navigation and control system for tracking Missile with sensor and signal processing means in the aircraft, sensor and Signal processing means in the missile and data transmission means between Plane and missile.
  • An airplane contains sensors. These are inertial sensors for flight control and Navigation and receiver for satellite navigation. It also contains an airplane Radar. Fighter jets contain infrared (FLIR) sensors. They are different too Communication systems provided. These sensors and systems are used for Flight guidance of the aircraft. They also serve to capture and identify goals, those from the plane e.g. can be attacked with a missile.
  • the Aircraft also contains a "mission unit" which is based on the sensor data providing the pilot with mission planning and e.g. calculates which of several existing missiles with the highest hit probability a specific target reached.
  • the aircraft serves as a carrier of the missile, which is held in a launcher.
  • the missile also has sensors. These are once sensors, which is a goal capture and deliver signals from which derived steering signals for the missile so that the missile follows the target.
  • sensors can be radar sensors or a seeker head with passive infrared sensors.
  • the missile contains usually also inertial sensors for stabilizing the seeker head and for Decoupling of the seeker head and the infrared sensor from the movements of the Missile.
  • the missile often also contains inertial sensors for navigation Missile.
  • Missile mission unit In this missile mission unit are those for the mission of the Missile relevant data and facts stored as knowledge. On the missile mission unit are still data from sensors switched on. The missile mission unit delivers from the stored knowledge and that from the sensors data provided decision criteria for the launch of the missile.
  • Missile mission unit is by plane via a standardized interface connected. Thus, each missile itself provides decision criteria for being Shoot through a standardized interface. If the plane is a new one Type of missile is appended to the aircraft, about the mission unit of the Plane, nothing to be changed. Each missile "tells" the pilot if he does due to its known, stored in the missile mission unit Characteristics in the current state of flight a particular destination to which he is instructed to meet.
  • the US 4,288,049 describes a guidance system for missiles by a Aircraft are shot at, where a target, here an enemy warship, located by the radar of the aircraft. The plane then flies towards the Aim and shoot the missile off. The missile then sinks to a predetermined Altitude while the aircraft turns off in a loop. Then the radar of the Plane at the same time the target and the missile. About Data-Link delivers the Missile his position and the aircraft corrects via data link the course of the Missile, so that this captures the target. The aircraft then turns off and leaves the the missile, the target to track and hit.
  • a target here an enemy warship
  • the invention is based on the object, an improved steering, navigation and To create a control system for missiles.
  • the invention is based on the object, a steering, Navigation and control system for missiles to create a target capture and -identification and use of the missile against high maneuverable targets even under unfavorable conditions, eg. B. beyond the visual range.
  • the object is achieved in that the sensor and Signal processing means in the aircraft and the sensor and Signal processing means in the missile through the Data transfer means integrated into a cooperative system are, via an interface in a boot device, an exchange of data, in particular for the identification of a goal, between the aircraft side and the missile side sensor and Signal processing means before the launch of the missile feasible and via wireless data transfer means (Data Link) an exchange of data, in particular for the identification of a target, between the aircraft-side and the missile-side sensor and Signal processing means after the launch of the missile is feasible.
  • Data Link wireless data transfer means
  • the invention not only certain data from the onboard Sensors and computers of the aircraft before launching on the Transmit missile. It will not be just information about the Missile transmitted to the mission unit of the aircraft. Much more be the sensor and signal processing means of aircraft and Missile integrated into a system in which the sensors of the Missile (or different missile), means of communication of the Aircraft and the signal processing means of the aircraft interact.
  • the missiles can z. B. sensors that are in the plane are not available. Signals from such sensors are then with used to identify a target.
  • Aircraft own sensors On the other hand, radar can detect distant targets, such as the viewfinder of the missile does not yet "see", and the orbit of the missile accordingly or program the missile on one of the aircraft steer the goal.
  • Airplane and one or more missiles thus form a much more efficient system compared to the prior art for the steering, navigation and regulation of the missile.
  • aircraft is here also unmanned possibly autonomously operating Include carriers of targeting missiles.
  • the aircraft-side sensor and Signal processing means and the missile side sensor and Signal processing means via an interface in the boot device with each other in Data exchange. But it can also alternatively or additionally the aircraft-side sensor and signal processing means and the missile side Sensor and signal processing means via wireless data transmission means ("Data Link ”) are in communication with each other.
  • Data Link wireless data transmission means
  • Fig.1 10 denotes an aircraft.
  • the aircraft 10 carries a missile 12.
  • the missile 12 is fired from the aircraft 10.
  • various sensors are provided, namely a radar 14, a missile approach sensor (MAWS) 16, an infrared sensor (FLIR) 18, a receiver for the Friend-Enemy Identification (IFF) 20 and a sensor 22 integrated by integration Inertial Navigation System (INS) and Satellite Navigation Receiver (GPS) Position of the aircraft delivers.
  • INS Inertial Navigation System
  • GPS Satellite Navigation Receiver
  • Signal processing means 28 for the detection (detection), identification and Tracking a goal.
  • the aircraft 10 further includes a mission unit 30 for mission planning.
  • the Mission unit is in data exchange in both directions with the Signal processing means 28.
  • the mission unit 30 is also in communication with other contributors, in particular other "friendly" aircraft. These other contributors are represented by a dashed block 32.
  • Through this data exchange can also be a destination by a third party take place, e.g. if this third party can better recognize the target or the aircraft 10 is seriously endangered.
  • This destination determination by a third party is determined by a block 34 symbolizes.
  • Block 36 symbolizes the information-based networking of several Aircraft for the coordinated control of an attack (Internetted Strike Package Management Control).
  • the mission unit 30 continues to supply data to an information distribution system (MIDS) 38.
  • MIMS information distribution system
  • the missile 12 contains a mission control unit 40.
  • the mission control unit 40 gets data from the missile's own sensors, here through the K-band and the X-band working radar sensors 42 and 44 are shown. Furthermore also contains the Missile 12 an inertia measuring unit (IMU) 46 and a receiver 48 for the Satellite navigation (GPS).
  • the signals of the inertial measuring unit 46 and the receiver 48 are signal processing means 50 for integrally processing the signals from Inertia measuring unit 46 and receiver 48 connected.
  • the signal processing means 50 cause an initialization of the missile and continue the position calculation based on the signals from Trägheitsmeßtechnik 46 and receiver 48.
  • the thus obtained Position data is also applied to the mission control unit 40.
  • the mission control unit 40 is before the launch of the missile 12 via a Launcher interface 52 in two directions with the signal processing means 28 of Aircraft 10 in data exchange. This forms the sensor and Signal processing means of the aircraft 10 and the sensor and Signal processing means of the missile 12 an integrated system that works on all Sensors and all signal processing means of aircraft 10 and missile 12 can fall back.
  • the mission control unit 40 includes means 53 for data and sensor fusion to Generation of target vectors, situation detection and generation of a Situational vector, where the components of the target vectors and the situation vector Quantities are used to characterize the goal or situation, as well as means 55 for decision and planning.
  • the means for decision and planning meet Reason for the data supplied Decisions on the objective to be pursued, a Threat, decoys separation from the target, the target, the web optimization and the sensor steering.
  • the missile side mission control unit 40 and the Signal processing means 28 of the aircraft 10 still via a wireless Data transmission 54 (data link) in possibly somewhat limited data exchange. Also During the flight, therefore, the missile 12 receives information from the Signal processing means 28 of the aircraft 10 transmits and receive the Signal processing means 28 information from the missile 12, e.g. information from the target-detecting sensors 42, 44 of the missile 12 or information about the Position of the missile from the signal processing means 50. About the Mission unit 30 of the aircraft 10 may also target determinations by third parties to the Missiles are transmitted.
  • the mission control unit 40 of the missile 12 provides data to a steering and Control system 56.
  • the steering and control system 56 includes a steering processor 58.
  • the Steering processor 58 issues commands to an autopilot 60.
  • the autopilot controls i.a. a Mach number regulator 62.
  • the functions of the three mission phases namely before the firing (pre-launch), cruise flight (midcourse) and final approach (terminal), of the Missile 12 by software in a real-time processing enabling Hardware configuration realized.
  • the essential elements of this sensor data and Information processing are: The mission control function with data and Sensor fusion as well as decision and planning, the optimal steering and highly dynamic control of the missile cell, the integrated navigation through Processing the signals from Trägheitsmeßtechnik 46 and satellite receiver 48 and the initialization, calibration and alignment of the inertial measuring unit by the high-precision inertial navigation system 22 of the aircraft 10, whereby a common reference system for aircraft and missiles.
  • FIG. 2 shows the hierarchical control structure in the arrangement of FIG. 1.
  • Superordinate is the mission control, which is shown in Fig.2 by a block 64.
  • the mission control indicates what should happen, e.g. which missile on which Target should be shot down.
  • the next level of the "hierarchy" is the sensor subsystem with the processing of the viewfinder signals. This is represented by block 66.
  • This sensor subsystem includes both e.g. the sensors 14 and 18 of the aircraft as also the sensors 42, 44 of the missile.
  • the viewfinder indicates where that is from the Mission Control specific target is located. Generated based on these finder signals a steering processing represented by block 68 steering commands for cruise flight ("Midcourse") and final approach.
  • the steering commands are from an autopilot 60th This is illustrated in FIG. 2 by block 70.
  • the highest level of the hierarchical control structure shown in FIG. 2 thus controls the mission control unit 40 with the situation, the interactions of the missile 10 with the "real world” scenario in which the interesting event takes place. she uses on one side of the multi-sensor system (capture situation) and on the other side of the steering and regulation (situation influence by interaction).
  • the mission control unit performs besides missile and I / O management in particular the functions of data and sensor fusion as well as the situational planning and decision-making processes.
  • a situation vector By overlaying all available information and data (sensors, data-link) becomes a situation vector generates and from the extraction of relevant features (feature vector) performed.
  • feature vector This is followed by a target identification and classification.
  • SITAW situation awareness
  • Missiles belong to the class of nonlinear, time-variant, multivariable, dynamic systems.
  • the disturbances acting on them are largely unknown and time variable.
  • large incidence occur in addition to the Changes in the missile mass and the moment of inertia considerable Changes in nonlinear aerodynamics during use.
  • Missiles against fast maneuvering targets must be in view of the endgame be highly agile.
  • the required high lateral accelerations require at a Bank-to-turn strategy a fast rolling motion of the missile.
  • the case occurring high roll rates cause extremely strong couplings between the roll channel and the lateral channels and make high demands on the autopilot.
  • the interaction of the autopilot in conjunction with the steering must be based on the validated simulation program with six degrees of freedom. Is that lying Structure of the autopilot fixed, can with the generation of operational algorithms to be started.
  • the steering of autonomous missiles requires the knowledge of essential parameters of the Relative kinematics between missile and target. This includes in particular the direction and the intertial spin rate of the line of sight. Steering methods based thereon belong the class of widely used proportional navigation methods.
  • the power of the steering in particular the size of the shot areas and the "No-escape zone" as well as the hit filing can be improved if additional Information about the distance, the approach speed and the Target maneuvers are available.
  • Steering methods based on the complete State vector of relative kinematics fall back, can be defined on a Quality criterion as "optimal guidance” (Optimum Guidance) are designed.
  • Optimal Guidance Optimum Guidance
  • this information is not available or not with the necessary accuracy Available, so that in practice solutions are often used in some form of initial information on the encounter situation and / or Consider information about the self-propelled state of the missile in order to achieve this Steering law to adapt to the current encounter situation.
  • the Measures with the greatest success not necessarily by a straightforward design accessible, rather, the necessary strategies in lengthy simulations be determined.
  • a block 72 symbolizes the target dynamics.
  • the target dynamics 72 provides a state vector x T of the target. From the state vector x M of the missile and the state vector x T of the target, the relative geometry between target and missile is obtained, which is symbolized by a block 74 in FIG.
  • This relative geometry 74 can be represented by a vector x .
  • the vector x affects a target sensor 76 which tracks the target.
  • the signals from the target sensor 76 are connected to a filter 78 which, taking into account perturbations symbolized by an "input" 80, provides an estimate x and the vector x .
  • Target sensor 76 and filter 78 form the sensor system 82.
  • the estimated value x and acts on the flight guidance which is represented by a block 84. These are the means that dictate the orbit of the missile and give lateral acceleration commands a MG to an autopilot 86.
  • the flight guide 84 represents the controller 88.
  • the autopilot 86 influences the missile dynamics, which is represented by a block 90.
  • the missile dynamics 90 influenced by the autopilot 86 provide the missile's state vector x M.
  • the autopilot 86 and the missile dynamics 90 represent the "actuator", which is symbolized by a block 92. This is the "outer” control loop.
  • An “inner loop” is provided by the feedback 94 from the "exit” of the missile dynamics 90, ie, the state vector x M , to the input of the autopilot 86.
  • One approach to the integration of regulation and governance may be that the Structure (neuro, fuzzy, neuro-fuzzy) is given for that element. This is followed by an optimization of the parameters of this structure and possibly also the Structure itself using genetic or evolutionary algorithms. It can do so be proceeded that first a control function in the linear areas of Route is optimized and this under gradual extension to the nonlinear Field of application is expanded. Subsequently, this process is similarly for the steering performed.
  • Structure neuro, fuzzy, neuro-fuzzy
  • Block 100 the missile dynamics is symbolized by block 100.
  • This missile dynamics is non-linear and time-variable.
  • the neural Network 102 has 7 processor units and 28 weights.
  • Block 104 symbolizes the "Chromosomes" of genetic optimization.
  • Block 106 shows the process of genetic optimization: Block 108 represents an initial population. These is subjected to genetic operators, referred to here as “reproduction” 110, "Partner Pool” 112, "Crossing" 114 and “Mutation” 116 are indicated.
  • Block 118 at the "crossing” symbolizes the father, block 120 the "mother”. It results in a "Offspring population” 122 which alters the starting population 108 as by Loop 124 is shown.
  • the "children" are states of the neural network 102.
  • Block 126 once shows in a simulation as after 8572 "generations" 100 missile dynamics and once the neural network responds to step inputs. The responses to level inputs are practically consistent.
  • an estimate x T and the associated covariance of the estimation error can be calculated with the aid of Kalman filters.
  • the step towards an extended target model is particularly interesting when In addition to the aforementioned measures a seeker head with multi-sensor technology used becomes. Such seekers will be in the face of anticipated advanced goals their countermeasures necessary.
  • the purpose of the extended target modeling is to improve the LGC and / or ILGC be achieved by providing relevant available knowledge about potential goals in real time is being used.
  • This knowledge includes e.g. a priori knowledge about the target behavior that is manifested in linguistic rules or in the knowledge of maneuverability. This knowledge will generally be sparse. Nevertheless, also appears the use of this knowledge makes sense, e.g. in a first solution Multiple hypotheses about target maneuvers and movement are set up and online Use of the knowledge-based elements considered here.
  • FIG. 1 A conceptual design of such an extended target model is shown in FIG shown.
  • the extended target model is represented by a block 128 in FIG.
  • the target model 128 receives target sensor data, as shown by an arrow 130.
  • the target model delivers Information to the flight guide 84. This is shown by arrow 134.
  • 136.1 to 136.n are dynamic, neural networks.
  • these neural networks are information about various possible Dodge maneuvers of a potential target saved. This information is based on prior knowledge of the properties of the target. They are generally knowledgeable available about which evasive maneuvers a particular "enemy” plane or can execute various such aircraft when approaching a missile and usually run. These evasive maneuvers are called “hypotheses" in the neural networks 136.1 to 136.n stored. For this purpose, the Networks with an analysis of the results of optimal avoidance maneuvers of the target trained.
  • neural networks are designated, which are designed in the next higher level as non-linear filters and predictors.
  • the outputs of all neural networks 136.1 to 136.n are applied to all neural networks 138.1 to 138.m.
  • These networks 138.1 to 138.m use the target sensor data x and the outputs of the "hypothesis" networks 136.1 to 136.n.
  • the networks 138.1 to 138.m check how the different "hypotheses" match the actually observed sensor data and from that estimate the target state vector x T in real time.
  • the networks 138.1 to 138.m are off-line trained with the data of an SDRE or extended Kalman filter design.
  • the outputs of the networks 138.1 to 138.m are supplied to an inferring unit 140.
  • the inferring unit 140 is designed as a fuzzy-neural network in order to be able to consider important heuristic knowledge in the form of linguistic rules for the inference process.
  • the inference unit correlates the information and makes a conclusion regarding the best available estimate of the state vector x T of the target. This estimated value is then made available for further processing for the steering as an output variable.
  • Flight mastering and control with adaptive structures is also by itself, i. E. without the in 1 described integration of the systems of aircraft and missile applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (18)

  1. Système de guidage, de navigation et de régulation pour missiles de poursuite (12), avec des moyens (14, 16, 18, 20, 22 ou 28, 30) de détection et de traitement de signaux dans l'avion (10), des moyens (42, 44 ou 40) de détection et de traitement de signaux dans le missile (12) et des moyens (52) de transmission de données entre l'avion (10) et le missile (12), sachant que
    a. les moyens (14, 16, 18, 20, 22 ou 28, 30) de détection et de traitement de signaux dans l'avion (10) et les moyens (42, 44 ou 40) de détection et de traitement de signaux dans le missile (12) sont regroupés par les moyens (52, 54) de transmission de données en un système coopérant de guidage, de navigation et de régulation du missile,
    sachant que,
    b. par l'intermédiaire d'une interface (52) dans un lanceur, un échange de données, notamment afin d'identifier une cible, peut être effectué avant le lancement du missile (12) entre les moyens (14, 16, 18, 20, 22 ou 28, 30 et 42, 44 ou 40) de détection et de traitement de signaux de l'avion et du missile,
    c. et, par l'intermédiaire de moyens (54) de transmission de données sans fil, un échange de données, notamment afin d'identifier une cible, peut être effectué après le lancement du missile (12) entre les moyens (14, 16, 18, 20, 22 ou 28, 30 et 42, 44 ou 40) de détection et de traitement de signaux de l'avion et du missile.
  2. Système de guidage, de navigation et de régulation selon la revendication 1, caractérisé en ce que, par l'intermédiaire des moyens (54) de transmission de données sans fil, des données provenant de tiers peuvent être affectées au missile (12).
  3. Système de guidage, de navigation et de régulation selon la revendication 1 ou 2, caractérisé en ce que les moyens de détection et de traitement de signaux (14, 16, 18, 20, 22 ou 28, 30) de l'avion comprennent des moyens (28) de détection, d'identification et de poursuite de cible, auxquels sont affectés des détecteurs (14, 16, 18, 20, 22) de l'avion.
  4. Système de guidage, de navigation et de régulation selon la revendication 3, caractérisé en ce qu'un module (30) de planification et de contrôle de mission est prévu dans l'avion et en ce qu'il échange des données d'une part avec les moyens (28) de détection, d'identification et de poursuite de cible et d'autre part avec le missile (12).
  5. Système de guidage, de navigation et de régulation selon l'une des revendications 1 à 4, caractérisé en ce que les moyens (42, 44 ou 40) de détection et de traitement de signaux du missile comprennent un module (40) de contrôle de mission auquel des données provenant de l'avion (10) peuvent être affectées par l'intermédiaire de l'interface (52) et/ou des moyens (54) de transmission de données sans fil.
  6. Système de guidage, de navigation et de régulation selon la revendication 5, caractérisé en ce que des données provenant de radars détecteurs (42, 44) peuvent être affectées au module (40) de contrôle de mission.
  7. Système de guidage, de navigation et de régulation selon la revendication 5 ou 6, caractérisé en ce que des données combinées provenant d'un module (46) de mesure d'inertie et d'un récepteur (48) de navigation par satellite peuvent être affectées au module (40) de contrôle de mission.
  8. Système de guidage, de navigation et de régulation selon l'une des revendications 5 à 7, caractérisé en ce que le module (40) de contrôle de mission du missile présente
    a. des moyens (53) de fusion de données et de détecteurs afin de produire des vecteurs de cible, d'identifier une situation et de produire un vecteur de situation, sachant que les composantes des vecteurs de cible et du vecteur de situation sont des paramètres qui servent à caractériser respectivement la cible et la situation,
    b. et des moyens (55) de décision et de planification.
  9. Système de guidage, de navigation et de régulation selon la revendication 8, caractérisé en ce que les moyens (55) de décision et de planification affectent des signaux de guidage à des moyens (58) de guidage qui, dans des moyens de guidage et de régulation, asservissent un pilote automatique (60).
  10. Système de guidage, de navigation et de régulation selon la revendication 9, caractérisé en ce que les moyens de guidage et de régulation comprennent un régulateur de mach (62) qui peut être asservi par le pilote automatique (60).
  11. Système de guidage, de navigation et de régulation selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la dynamique (90) du missile et la géométrie relative (74) du missile (12) et de la cible sont regroupées dans des moyens adaptatifs de conduite de vol et de régulation.
  12. Système de guidage, de navigation et de régulation selon la revendication 11, caractérisé en ce que des structures (neuronale, floue, neuro-floue), dont les paramètres peuvent être ensuite optimisés, sont prédéfinies pour les éléments.
  13. Système de guidage, de navigation et de régulation selon la revendication 12, caractérisé en ce que l'optimisation s'effectue par des algorithmes génétiques.
  14. Système de guidage, de navigation et de régulation selon la revendication 13, caractérisé en ce que l'optimisation s'effectue par des algorithmes évolutionnaires.
  15. Système de guidage, de navigation et de régulation selon l'une quelconque des revendications 1 à 14, caractérisé en ce que les moyens de traitement de signaux du missile contiennent, intégrés dans des structures adaptatives (98), un calculateur (84) de conduite de vol et un pilote automatique (86).
  16. Système de guidage, de navigation et de régulation selon la revendication 15, caractérisé en ce que le calculateur de conduite de vol comprend
    a. une banque de réseaux neuronaux dynamiques (136.1... 136.n) qui reproduisent les connaissances concernant les manoeuvres optimales d'évitement de cibles potentielles,
    b. et les sorties de ces réseaux neuronaux (136.1... 136.n) sont fournies à une banque de réseaux neuronaux ou neuro-flous (138.1... 138.m) d'un niveau supérieur qui, en tant qu'estimateurs/filtres/prédicteurs non linéaires, estiment en temps réels le vecteur (x T) d'état de cible en utilisant des données de détecteur de cible.
  17. Système de guidage, de navigation et de régulation selon la revendication 16, caractérisé en ce que les paramètres de sortie des réseaux (138.1... 138.m) du niveau supérieur sont affectés à un module d'inférence (140) qui corrèle les informations et en conclut la meilleure valeur estimée disponible du vecteur (x T) d'état de cible, et la met à disposition comme paramètre de sortie pour la poursuite du traitement pour le guidage.
  18. Système de guidage, de navigation et de régulation selon l'une quelconque des revendications 1 à 17, caractérisé en ce qu'un comportement dynamique différent du missile est reproduit dans des éléments, basés sur des connaissances, du guidage et de la régulation et est donc disponible de manière autonome (Fig. 7).
EP99124092A 1998-12-15 1999-12-13 Système de guidage, de navigation et de commande pour missile Expired - Lifetime EP1014028B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19857895A DE19857895A1 (de) 1998-12-15 1998-12-15 Lenk-, Navigations- und Regelsystem für Flugkörper
DE19857895 1998-12-15

Publications (2)

Publication Number Publication Date
EP1014028A1 EP1014028A1 (fr) 2000-06-28
EP1014028B1 true EP1014028B1 (fr) 2005-06-29

Family

ID=7891187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99124092A Expired - Lifetime EP1014028B1 (fr) 1998-12-15 1999-12-13 Système de guidage, de navigation et de commande pour missile

Country Status (2)

Country Link
EP (1) EP1014028B1 (fr)
DE (2) DE19857895A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132184B4 (de) * 2001-07-03 2004-07-08 Peter Zahner Vorrichtungen und Verfahren für den autarken und damit sichereren Abgang von lenkbaren Außenlasten von Trägerflugzeugen
IL163450A (en) * 2004-08-10 2009-12-24 Rafael Advanced Defense Sys Guided missile with distributed guidance mechanism
DE102007054382A1 (de) * 2007-11-14 2009-05-20 Diehl Bgt Defence Gmbh & Co. Kg De-Letalisierbare Munition
DE102010005198B4 (de) * 2010-01-21 2012-01-12 Diehl Bgt Defence Gmbh & Co. Kg Flugkörper und Verfahren zum Erfassen eines Ziels
DE102011107630A1 (de) * 2011-06-30 2013-01-03 Lfk-Lenkflugkörpersysteme Gmbh Lenken eines Vehikels in Richtung eines Ziels
CN111412793B (zh) * 2019-01-08 2022-08-16 北京理工大学 应用于远程制导飞行器上的防侧偏的全射程覆盖控制系统
CN118034039B (zh) * 2024-04-15 2024-06-11 北京理工大学 一种用于低成本制导炮弹的最优炸高决策系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4288049A (en) * 1971-01-19 1981-09-08 The United States Of America As Represented By The Secretary Of The Navy Remote targeting system for guided missiles
DE4132233C2 (de) * 1990-11-22 2003-03-06 Rheinmetall W & M Gmbh Panzerabwehrraketensystem
DE4218600C2 (de) * 1992-06-05 1994-09-22 Bodenseewerk Geraetetech Einrichtung zur Bestimmung von Bewegungsgrößen eines Flugkörpers
US5458041A (en) * 1994-08-02 1995-10-17 Northrop Grumman Corporation Air defense destruction missile weapon system
IL117589A (en) * 1996-03-21 2001-10-31 Israel Aircraft Ind Ltd Air-to-air missile guidance system
DE19645556A1 (de) * 1996-04-02 1997-10-30 Bodenseewerk Geraetetech Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper
DE19716025B4 (de) 1997-04-17 2009-12-03 Diehl Bgt Defence Gmbh & Co. Kg Plattform mit abschießbaren, zielverfolgenden Flugkörpern, insbesondere Kampfflugzeug

Also Published As

Publication number Publication date
DE19857895A1 (de) 2000-06-21
EP1014028A1 (fr) 2000-06-28
DE59912218D1 (de) 2005-08-04

Similar Documents

Publication Publication Date Title
DE69501209T2 (de) System zur regelung von ferngesteuerten fahrzeugen mit variablen bezugsrahmen
DE102020006465B4 (de) Abfangflugkörper und Verfahren zu dessen Lenkung
EP1014028B1 (fr) Système de guidage, de navigation et de commande pour missile
DE69931216T2 (de) Flugbahnbefehlssteuerung mit neuronalem netzwerk
EP1020699B1 (fr) Missile
Hafez et al. UAVs in formation and dynamic encirclement via model predictive control
Sattigeri et al. An adaptive vision-based approach to decentralized formation control
DE19645556A1 (de) Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper
Hafez et al. Multiple cooperative uavs target tracking using learning based model predictive control
DE69913490T2 (de) Verfahren und system zum lenken eines flugkörpers
DE19716025B4 (de) Plattform mit abschießbaren, zielverfolgenden Flugkörpern, insbesondere Kampfflugzeug
CN115981155A (zh) 一种面向空地异构多机器人的安全轨迹协同规划方法
DE2204261C1 (fr)
EP1087200B1 (fr) Unité de mission de missile
EP0974806A1 (fr) Procédé pour entrainer un réseau neuronal utilisé pour guider un missile vers une cible
EP3608622B1 (fr) Système d'armes et procédé de fonctionnement d'un système d'armes
Hafez et al. Multi-UAV tactic switching via model predictive control and fuzzy q-learning
EP0401693B1 (fr) Procédé pour améliorer la précision du tir d'un missile commandé
DE102022001285B4 (de) Verfahren zum Lenken eines Flugkörpers
Hafez et al. Cooperative unmanned aerial vehicles formation via decentralized lbmpc
DE102010023449A1 (de) Verfahren und Vorrichtung zum Steuern eines Lenkflugkörpers
Zhou et al. Flight Strategy Design for Unmanned Aerial Vehicle Flying in Multi-threats Environment
DE10033368A1 (de) Lenkstruktur für Flugkörper
DE102007056661A1 (de) Unbemannter Flugkörper
DE19543048A1 (de) Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgenden Flugkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT SE

17Q First examination report despatched

Effective date: 20030203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL BGT DEFENCE GMBH & CO.KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59912218

Country of ref document: DE

Date of ref document: 20050804

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050908

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141219

Year of fee payment: 16

Ref country code: SE

Payment date: 20141219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141219

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150218

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59912218

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151213

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231