EP1014020A1 - Procédé de séparation cryogénique des gaz de l'air - Google Patents

Procédé de séparation cryogénique des gaz de l'air Download PDF

Info

Publication number
EP1014020A1
EP1014020A1 EP99403101A EP99403101A EP1014020A1 EP 1014020 A1 EP1014020 A1 EP 1014020A1 EP 99403101 A EP99403101 A EP 99403101A EP 99403101 A EP99403101 A EP 99403101A EP 1014020 A1 EP1014020 A1 EP 1014020A1
Authority
EP
European Patent Office
Prior art keywords
column
turbine
pressure
air
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99403101A
Other languages
German (de)
English (en)
Other versions
EP1014020B1 (fr
Inventor
Jean-Pierre Tranier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9534328&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1014020(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1014020A1 publication Critical patent/EP1014020A1/fr
Application granted granted Critical
Publication of EP1014020B1 publication Critical patent/EP1014020B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/54Oxygen production with multiple pressure O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods

Definitions

  • the present invention relates to methods and installations for cryogenic separation of gases from air.
  • US-A-5758515 discloses a process for producing oxygen under pressure using a first turbine which feeds the medium pressure column a double column and a turbine powered by a booster whose all air relaxed is recycled to the main compressor of the device.
  • An object of the present invention is to increase the production of liquid on a pump unit with two turbines without increasing the size of the compressor air while improving cycle performance. Another purpose of this invention is to better optimize the exchange diagram for a air separation with two turbines.
  • it may include means for increasing the supply pressure of the first turbine by compared to the supply pressure of the second turbine.
  • an air flow is sent to compressor 1 where it is compressed at medium pressure of the order of 5 bars before being purified in purification unit 3. It is then divided into two parts 19, 21. Part 21 constituting 20% of the air is sent to the heat exchanger 8 where it is cooled to its dew point and sent to the medium pressure column 11. The part 19 is compressed in the first stages 5 of a compressor up to an intermediate pressure of 11.5 bars; then it is compressed in last stages 6 of the compressor up to a high pressure of 35 bars.
  • the air at high pressure is divided into two fractions 23, 25 of which the first is cooled to an intermediate temperature of 160 K of the line heat exchanger 8 before being divided into two.
  • Part 31 is relaxed at the medium pressure in the first turbine 9 and joins the flow 21 to be sent to column 11.
  • Part 29 condenses by heat exchange with a flow of oxygen which vaporizes and is divided in two to be sent (in 35, 37) in the two columns 11, 13, after expansion in a valve.
  • the second high pressure air function 25 cools down to a intermediate temperature of 243 K, higher than the inlet temperature of the first turbine 9. It is then expanded in the second turbine 7 until the intermediate pressure, returned to the exchanger 8 and heated to the end hot before being mixed with air at intermediate pressure.
  • Liquid nitrogen and liquid oxygen flows 41, 45 are withdrawn from the columns 11, 13. Part of the liquid oxygen 43 is pumped, pressurized by pump 17 to a pressure of 17 bars and then vaporizes in the exchanger 8.
  • the air from compressor 105 eventually cools in a refrigeration unit 103 '.
  • Figure 4 differs from Figure 3 in that air from the second turbine liquefies in vaporizer 353 by heat exchange with oxygen liquid pumped by pump 317. In this case, all the liquefied air is sent to the column operating at higher pressure. The vaporized oxygen heats up in the main exchanger.
  • Figure 5 shows a refrigeration unit 450 which cools part of the air intended for the second turbine 407.
  • Figure 6 shows a variant of Figure 1 in which air 523 intended for the first turbine 509 is boosted at a pressure higher than the high pressure by a 570 booster.
  • the 570 booster can be coupled to the first or second turbine. Part of the air intended for the second turbine cools in a 550 refrigeration unit rather than in the exchanger main.
  • the air 525 intended for the second turbine 507 is also boosted at a pressure less than or equal to the inlet pressure of the second turbine in a 580 booster which is coupled to the other turbine.
  • two boosters 670, 680 boost the air intended for the first turbine 609.
  • the air intended for the second turbine 607 is at pressure delivery of compressor 5.
  • Each booster is coupled to one of the turbines
  • the first column can be a single column or the middle column pressure of a double column.
  • the double column can optionally be type "AZOTONNE” (registered trademark) having a head condenser of the low pressure column.
  • Part of the frigories can be supplied by nitrogen expansion of one of the columns in a turbine or by air expansion in a blowing turbine.
  • the boosters of Figures 6 and 7 can be replaced by boosters cold.
  • the low pressure column can optionally operate at a pressure above 2 bar.
  • the double column can be replaced by a triple column comprising a high pressure column, a pressure column intermediate and a low pressure column.
  • the liquid to be sprayed can come from of one of these columns.
  • the installation may include a mixing column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dans un appareil de séparation d'air par distillation cryogénique, tout l'air est comprimé à une moyenne pression (1). Ensuite une partie de l'air est comprimé à une pression intermédiaire (5) et une fraction de cet air est comprimée à une haute pression (6). L'air à haute pression est divisé au moins en deux (23,25) et détendu dans deux turbines (7, 9), le refroidissement de la turbine chaude (7) étant recyclé au moins partiellement vers le bout chaud de l'échangeur (8) à une pression supérieure. Un liquide provenant de l'appareil de séparation d'air se vaporise dans l'échangeur. <IMAGE>

Description

La présente invention est relative aux procédés et aux installations de séparation cryogénique des gaz de l'air.
Les pressions dont il est question ci-dessous sont des pressions absolues. De plus, on entend par " condensation " ou " vaporisation " soit une condensation ou une vaporisation proprement dite, soit une pseudo-condensation ou une pseudo-vaporisation, selon que les pressions en question sont subcritiques ou supercritiques.
Au cours de ces dernières années, l'utilisation des procédés " à pompe " pour la production d'oxygène sous pression s'est généralisée. Ces procédés consistent à extraire une fraction liquide enrichie en oxygène de la partie inférieure de la colonne basse pression, typiquement en cuve de pomper ce liquide à la pression requise, de le vaporiser et de le réchauffer jusqu'à une température proche de la température ambiante par échange de chaleur avec l'air entrant et/ou un fluide enrichi en azote sous pression. Ce procédé permet donc de faire l'économie d'un compresseur d'oxygène et est donc plus économique. De la même façon, on peut produire par pompe de l'azote ou de l'argon sous pression.
Cette généralisation des procédés à pompe a été rendue possible en partie par l'utilisation de l'adsorption pour éliminer l'eau et le CO2 de préférence aux échangeurs réversibles.
Par ailleurs, pour pouvoir vaporiser de l'oxygène à haute pression, il convient de disposer d'un fluide calorigène à haute pression (air ou fluide enrichi en azote) qui se condensera par échange indirect avec l'oxygène comme dans US 4 303 428 et/ou par expansion isentropique dans une turbine (voir US 5 329 776), de manière à équilibrer le bilan thermique de la partie distillation. Par haute pression, il s'agit d'une pression supérieure à la pression de la colonne moyenne pression d'un système à double colonne ou à la pression côté condenseur du vaporiseur d'une simple colonne. La présence de fluide à haute pression a, en outre, favorisé l'utilisation de cycles plus complexes avec turbines multiples pour la production de liquide.
Des exemples de cycles à pompe à deux turbines sont données dans les documents US 5 329 776, GB 2251931, US 5 564 290 ou US 5 108 476. Malheureusement, pour tous les procédés connus, la quantité de liquide que l'on peut produire est limitée si l'on ne veut pas augmenter la taille du compresseur d'air (i.e. le débit sur le premier étage).
US-A-5758515 divulgue un procédé de production d'oxygène sous pression utilisant une première turbine qui alimente la colonne moyenne pression d'une double colonne et une turbine alimentée par un surpresseur dont tout l'air détendu est recyclé au compresseur principal de l'appareil.
Un but de la présente invention est d'augmenter la production de liquide sur un appareil à pompe à deux turbines sans augmenter la taille du compresseur d'air tout en améliorant la performance du cycle. Un autre but de la présente invention est de mieux optimiser le diagramme d'échange pour un appareil de séparation d'air à deux turbines.
Selon un objet de l'invention, il est prévu un procédé de séparation cryogénique du gaz de l'air dans un système de colonnes comprenant au moins une colonne par distillation d'air comprenant les étapes de :
  • comprimer la totalité de l'air à une moyenne pression et au moins une partie de l'air jusqu'à une pression intermédiaire entre la moyenne pression et une haute pression
  • comprimer de l'air de la pression intermédiaire à la haute pression
  • diviser l'air comprimé à la haute pression en une première et une deuxième fractions
  • refroidir la première fraction dans un échangeur de chaleur et la détendre au moins en partie dans une première turbine
  • refroidir la deuxième fraction dans l'échangeur de chaleur et la détendre au moins en partie à la pression intermédiaire dans une deuxième turbine
  • réchauffer dans l'échangeur de chaleur la partie détendu de la deuxième fraction (ou la deuxième fraction détendue) et en recycler au moins une partie dans l'air à la pression intermédiaire
  • envoyer de l'air de la première turbine à une première colonne , où il s'enrichit en azote en tête de colonne et s'enrichit en oxygène en cuve et
  • soutirer un liquide provenant au moins partiellement d'une colonne du système et le vaporiser, éventuellement après pressurisation, dans l'échangeur de chaleur
   caractérisé en ce que la pression d'alimentation de la première turbine n'est pas inférieure à la pression d'alimentation de la deuxième turbine.
Selon d'autres caractéristiques facultatives de l'invention, il est prévu un procédé dans lequel
  • les pressions d'entrée de la première et deuxième turbines sont identiques ou la pression d'entrée de la première turbine est supérieure à la pression d'entrée de la deuxième turbine, de préférence supérieure d'au moins 1 bar ou même d'au moins 2 bars à la pression d'entrée de la deuxième turbine.
  • la première colonne fait partie d'une double colonne ou une triple colonne
  • on envoie un débit enrichi en oxygène et un débit enrichit en azote de la première colonne à une deuxième colonne de la double colonne, la première colonne opérant à une pression plus élevée que la colonne basse pression.
  • on soutire un débit liquide de la colonne basse pression ou la colonne moyenne pression (ou la colonne intermédiaire dans le cas d'une triple colonne) et on le vaporise par échange de chaleur avec de l'air.
  • la totalité de l'air est comprimé jusqu'à la pression intermédiaire
  • la température d'aspiration de la deuxième turbine est supérieure à celle de la première turbine
  • une portion non-détendue de la première fraction se condense par échange de chaleur avec un fluide soutiré de la colonne
  • la portion qui se condense échange de la chaleur avec le liquide qui se vaporise
  • une portion non-détendue de la deuxième fraction se condense par échange de chaleur avec un fluide soutiré de la colonne
  • la portion qui se condense échange de la chaleur avec le liquide qui se vaporise.
  • le débit liquide est enrichi en oxygène, en azote ou en argon.
  • plusieurs débits liquides se vaporisent dans l'échangeur de chaleur.
  • une fraction de l'air est refroidie dans un groupe frigorifique.
  • au moins une partie de la deuxième fraction est refroidie dans un groupe frigorifique.
  • la température de sortie du groupe frigorifique est la température d'entrée de la turbine.
  • l'énergie d'au moins une des turbines sert à entraíner un ou plusieurs compresseurs
  • un débit de la colonne bass e pression alimente une colonne argon
  • un débit d'air est envoyé à la première colonne sans avoir été détendu dans une des turbines.
Selon d'autres aspects de l'invention, il est prévu une installation de séparation cryogénique des gaz de l'air par distillation cryogénique comprenant :
  • au moins une première colonne de distillation d'air
  • une ligne d'échange,
  • des moyens pour comprimer tout l'air à une moyenne pression,
  • des moyens pour comprimer au moins une partie de l'air jusqu'à une pression intermédiaire entre la moyenne pression et une haute pression,
  • des moyens pour comprimer de l'air de la pression intermédiaire à la haute pression,
  • des moyens pour envoyer une première et une deuxième fractions d'air à la haute pression à la ligne d'échange,
  • une première turbine pour détendre au moins une partie de la première fraction, éventuellement jusqu'à la moyenne pression,
  • une deuxième turbine pour détendre au moins une partie de la deuxième fraction jusqu'à la pression intermédiaire,
  • des moyens pour réchauffer au moins une portion de la partie détendue de la deuxième fraction
  • des moyens pour recycler au moins une partie de cette portion dans l'air à la pression intermédiaire et des moyens pour soutirer au moins un liquide d'une colonne de l'installation et des moyens pour l'envoyer à la ligne d'échange caractérisée en ce qu'elle ne comprend pas de moyens pour augmenter la pression d'alimentation de la deuxième turbine par rapport à la pression d'alimentation de la première turbine
Selon d'autres caractéristiques facultatives elle peut comprendre des moyens pour augmenter la pression d'alimentation de la première turbine par rapport à la pression d'alimentation de la deuxième turbine.
En recyclant le débit de la turbine chaude à une pression supérieure à la pression de la colonne moyenne pression, on peut avoir un meilleur rendement sur cette turbine. En effet, le rendement isentropique d'une turbine est d'autant plus élevé que son taux de détente est faible (plus proche de 5 que de 10).
Avec ce concept, on augmente le débit du compresseur d'air que sur les derniers étages et non sur les premiers qui en déterminent la taille. D'autre part, en recyclant le débit de la turbine chaude à une pression supérieure à la pression de la colonne moyenne pression, on optimise mieux le diagramme d'échange dans sa partie chaude et on peut éventuellement choisir cette pression intermédiaire comme pression de l'épuration d'air ce qui est un très bon compromis, une pression plus basse entraínant un surcoût sur les adsorbeurs alors qu'une pression plus haute peut poser des problèmes technologiques. Ceci est un avantage par rapport au procédé divulgué dans les demandes de brevet EP 0 316 768 et EP 0 811 816 qui bien que n'étant pas à pompe recyclent le débit de la turbine chaude (et aussi de la turbine froide) à la pression de la colonne moyenne pression.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés sur lesquels :
  • la figure 1 représente schématiquement une installation de séparation cryogénique de l'air selon l'invention
  • les figures 2 à 7 sont des vues analogues de variantes de l'invention et
  • la figure 8 est un diagramme d'échange thermique correspondant à une utilisation de l'installation de la figure 1.
Dans la figure 1, un débit d'air est envoyé au compresseur 1 où il est comprimé à la moyenne pression de l'ordre de 5 bars avant d'être épuré dans l'unité d'épuration 3. Il est ensuite divisé en deux parties 19, 21. Une partie 21 constituant 20 % de l'air est envoyée à l'échangeur de chaleur 8 où elle est refroidie à son point de rosée et envoyée à la colonne moyenne pression 11. La partie 19 est comprimée dans les premiers étages 5 d'un compresseur jusqu'à une pression intermédiaire de 11,5 bars; ensuite elle est comprimée dans les derniers étages 6 du compresseur jusqu'à une haute pression de 35 bars.
L'air à la haute pression est divisé en deux fractions 23, 25 dont la première est refroidie à une température intermédiaire de 160 K de la ligne d'échangeur de chaleur 8 avant d'être divisé en deux. La partie 31 est détendue à la moyenne pression dans la première turbine 9 et rejoint le débit 21 pour être envoyée à la colonne 11. La partie 29 se condense par échange de chaleur avec un débit d'oxygène qui se vaporise et est divisée en deux pour être envoyé (en 35, 37) aux deux colonnes 11, 13, après détente dans une vanne.
La deuxième fonction d'air à haute pression 25 se refroidit jusqu'à une température intermédiaire de 243 K, supérieure à la température d'entrée de la première turbine 9. Elle est ensuite détendue dans la deuxième turbine 7 jusqu'à la pression intermédiaire, renvoyée à l'échangeur 8 et réchauffée jusqu'au bout chaud avant d'être mélangée à l'air à la pression intermédiaire.
Des débits d'azote liquide et d'oxygène liquide 41, 45, sont retirés des colonnes 11, 13. Une partie de l'oxygène liquide 43 est pompée, pressurisée par la pompe 17 jusqu'à une pression de 17 bars et ensuite se vaporise dans l'échangeur 8.
Elle pourrait éventuellement se vaporiser dans un échangeur indépendant de l'échangeur 8 contre le débit d'air 29.
Dans la figure 2, les mêmes chiffres de référence identifient les éléments de l'installation, sauf que tous les chiffres sont augmentés par 100.
La différence principale entre la figure 2 et la figure 1, est que dans la figure 2, tout l'air est pressurisé dans le compresseur 105 jusqu'à la pression intermédiaire de 11,5 bars. L'oxygène liquide 141 se vaporise contre l'air 129 à la pression intermédiaire.
L'air provenant du compresseur 105 se refroidit éventuellement dans un groupe frigorifique 103'.
Dans la figure 3, une partie de l'air détendue dans la deuxième turbine n'est pas recyclée mais est envoyée à la double colonne après s'être liquéfiée à travers les vannes. L'air venant du compresseur 205 peut se refroidir dans un groupe frigorifique 203'.
La figure 4 diffère de la figure 3 en ce que de l'air de la deuxième turbine se liquéfie dans le vaporiseur 353 par échange de chaleur avec de l'oxygène liquide pompé par la pompe 317. Dans ce cas, tout l'air liquéfié est envoyé à la colonne opérant à la pression plus élevée. L'oxygène vaporisé se réchauffe dans l'échangeur principal.
La figure 5 montre un groupe frigorifique 450 qui refroidit une partie de l'air destiné à la deuxième turbine 407.
La figure 6 montre une variante de la figure 1 dans laquelle de l'air 523 destinée à la première turbine 509 est surpressée à une pression supérieure à la haute pression par un surpresseur 570. Le surpresseur 570 peut être couplé à la première ou à la deuxième turbine. Une partie de l'air destinée à la deuxième turbine se refroidit dans un groupe frigorifique 550 plutôt que dans l'échangeur principal. L'air 525 destiné à la deuxième turbine 507 est également surpressé à une pression moindre que ou égale à la pression d'entrée de la deuxième turbine dans un surpresseur 580 qui est couplée à l'autre turbine.
Dans la figure 7, deux surpresseurs 670, 680 surpressent l'air destiné à la première turbine 609. L'air destiné à la deuxième turbine 607 est à la pression de refoulement du compresseur 5. Chaque surpresseur est couplé à une des turbines
Il est évidemment possible d'utiliser une installation d'une des figures pour produire de l'argon à partir d'une colonne argon alimentée par la colonne basse pression 13, 113 ou pour produire de l'oxygène impur à partir d'une colonne de mélange.
La première colonne peut être une simple colonne ou la colonne moyenne pression d'une double colonne. La double colonne peut être éventuellement du type "AZOTONNE" (marque déposée) ayant un condenseur de tête de la colonne basse pression.
Une partie des frigories peut être fournie par détente d'azote d'une des colonnes dans une turbine ou par détente d'air dans une turbine d'insufflation. Les surpresseurs des figures 6 et 7 peuvent être remplacés par des surpresseurs froids.
La colonne basse pression peut éventuellement fonctionner à une pression au-dessus de 2 bar.
Pour la figure 8 la chaleur échangée dans la ligne d'échange en kcal/h est en ordinés et la température en °C est en abscisse.
Dans tous les cas, la double colonne peut être remplacée par une triple colonne comprenant une colonne haute pression, une colonne pression intermédiaire et une colonne basse pression. Le liquide à vaporiser peut provenir d'une de ces colonnes.
L'installation peut comprendre une colonne de mélange.

Claims (35)

  1. Procédé de séparation cryogénique du gaz de l'air par distillation d'air dans un système de colonnes comprenant au moins une colonne (11, 13, 90) comprenant les étapes de :
    comprimer la totalité de l'air à une moyenne pression et au moins une partie (19, 119, 219, 319, 419, 519, 619) de l'air jusqu'à une pression intermédiaire entre la moyenne pression et une haute pression
    comprimer de l'air de la pression intermédiaire à la haute pression
    diviser l'air comprimé à la haute pression en une première et une deuxième fractions (23, 25, 123, 125, 223, 225, 323, 325, 423, 425, 523, 525, 623, 625)
    refroidir la première fraction dans un échangeur de chaleur (8) et la détendre au moins en partie dans une première turbine (9, 109, 209, 309, 409, 509, 609)
    refroidir la deuxième fraction dans l'échangeur de chaleur (8) et la détendre au moins en partie jusqu'à la pression intermédiaire dans une deuxième turbine (7, 107, 207, 307, 407, 507, 607)
    réchauffer au moins une portion de la partie détendue (27, 127, 227, 327, 427, 527, 627) de la deuxième fraction (ou la deuxième fraction détendue) dans l'échangeur de chaleur (8) et en recycler au moins une partie au débit d'air à la pression intermédiaire (19, 119, 219, 319, 419, 519, 619)
    envoyer de l'air à la moyenne pression à une première colonne (11, 111, 211, 311, 411, 511, 611); où il s'enrichit en azote en tête de colonne et s'enrichit en oxygène en cuve
    soutirer un liquide d'une colonne du système et le vaporiser, éventuellement après pressurisation, dans l'échangeur de chaleur.
       caractérisé en ce que la pression d'alimentation de la première turbine n'est pas inférieure à la pression d'alimentation de la deuxième turbine.
  2. Procédé selon la revendication 1 dans lequel les pression d'alimentation des première et deuxième turbines sont identiques ou la pression d'alimentation de la première turbine est supérieure, éventuellement d'au moins 1 bar, à la pression d'alimentation de la deuxième turbine.
  3. Procédé selon la revendication 1 ou 2 dans lequel la première colonne (11, 111) fait partie d'une double colonne ou une triple colonne
  4. Procédé selon la revendication 3 dans lequel la première colonne opère à une pression plus élevée qu'une deuxième colonne de la double colonne et dans lequel on envoie un débit enrichi en oxygène et un débit enrichi en azote de la première colonne à la deuxième colonne (13, 113) de la double colonne.
  5. Procédé selon la revendication 3 ou 4 dans lequel on soutire un débit liquide (41, 141) de la première ou la deuxième colonne et on le vaporise par échange de chaleur avec de l'air, éventuellement après l'avoir pressurisé.
  6. Procédé selon l'une des revendications précédentes dans lequel la totalité (119) de l'air est comprimé jusqu'à la pression intermédiaire.
  7. Procédé selon la revendication 6 dans lequel l'air est épuré en eau et en dioxyde de carbone à la pression intermédiaire.
  8. Procédé selon l'une des revendications précédentes dans lequel la température d'aspiration de la deuxième turbine (7, 107) est supérieure à celle de la première turbine (9, 109).
  9. Procédé selon l'une des revendications précédentes dans lequel une portion (29, 129) non-détendue de la première fraction se condense par échange de chaleur avec un fluide (41, 141) soutiré de la colonne (13, 113).
  10. Procédé selon la revendication 9 dans lequel la portion (29, 129) qui se condense échange de la chaleur avec un liquide qui se vaporise.
  11. Procédé selon l'une des revendications précédentes dans lequel une portion (29, 129) non-détendue ou détendue de la deuxième fraction se condense par échange de chaleur avec un fluide soutiré de la colonne (13, 113).
  12. Procédé selon la revendication 11 dans lequel la portion (29, 129) qui se condense échange de la chaleur avec le liquide qui se vaporise.
  13. Procédé selon l'une des revendications précédentes dans lequel le débit liquide soutiré de la colonne (11, 13, 90) est enrichi en oxygène, en azote ou en argon.
  14. Procédé selon la revendication 13 dans lequel plusieurs débits liquides se vaporisent par échange de chaleur avec de l'air.
  15. Procédé selon la revendication 14 dans lequel un premier liquide se vaporise par échange avec la portion non-détendue de la première fraction qui se condense et un deuxième liquide se vaporise par échange avec une portion détendue ou non-détendue de la deuxième fraction qui se condense.
  16. Procédé selon l'une des revendications précédentes dans lequel une fraction de l'air est refroidie dans un groupe frigorifique (103, 203, 303, 403, 450, 503, 603).
  17. Procédé selon la revendication 16 dans lequel au moins une partie de la deuxième fraction est refroidie dans un groupe frigorifique.
  18. Procédé selon la revendication 17 dans lequel la température de sortie du groupe frigorifique est la température d'entrée de la deuxième turbine.
  19. Procédé selon l'une des revendications précédentes dans lequel l'énergie d'au moins une des turbines (7, 9, 107, 109) sert à entraíner un ou plusieurs compresseurs (5, 6).
  20. Procédé selon la revendication 19 dans lequel la première turbine sert à entraíner un compresseur qui comprime la première fraction de la haute pression à une pression encore plus élevée avant le refroidissement de la première fraction.
  21. Procédé selon la revendication 19 dans lequel la première turbine et la deuxième turbine servent à entraíner des compresseurs en série qui compriment la première fraction.
  22. Procédé selon une des revendications précédentes dans lequel la première fraction se condense au moins partiellement lors de la détente dans la première turbine.
  23. Procédé selon une des revendications précédentes dans lequel la température en sortie de la deuxième turbine est proche de celle en entrée de la première turbine.
  24. Procédé selon l'une des revendications précédentes dans lequel un débit de la colonne basse pression alimente une colonne argon (90).
  25. Installation de séparation cryogénique des gaz de l'air par distillation cryogénique comprenant :
    au moins une première colonne de distillation d'air (13, 113, 213, 413, 513, 613)
    une ligne d'échange (8, 108, 208, 308, 408, 508, 608),
    des moyens (1, 101, 201, 301, 401, 501, 601) pour comprimer tout l'air à une moyenne pression,
    des moyens (5, 105, 205, 305, 405, 505, 605) pour comprimer au moins une partie de l'air jusqu'à une pression intermédiaire entre la moyenne pression et une haute pression,
    des moyens (6, 105, 205, 305, 405, 505, 605) pour comprimer de l'air de la pression intermédiaire à la haute pression,
    des moyens pour envoyer une première et une deuxième fractions d'air à la haute pression à la ligne d'échange,
    une première turbine (9, 109, 209, 309, 409, 509, 609) pour détendre au moins une partie de la première fraction, éventuellement jusqu'à la moyenne pression,
    une deuxième turbine (7, 107, 207, 307, 407, 507, 607) pour détendre au moins une partie de la deuxième fraction jusqu'à la pression intermédiaire,
    des moyens (8, 108, 208, 308, 408, 508, 608) pour réchauffer au moins une portion de la partie détendue de la deuxième fraction
    des moyens (27, 127, 227, 327, 427, 527, 627) pour recycler au moins une partie de cette portion dans l'air à la pression intermédiaire
    des moyens (41, 141, 241, 341, 541, 641) pour soutirer au moins un liquide d'une colonne de l'installation et des moyens pour l'envoyer à la ligne d'échange
       caractérisée en ce qu'elle ne comprend pas de moyen pour augmenter la pression d'alimentation de la deuxième turbine par rapport à la pression d'alimentation de la première turbine.
  26. Installation selon la revendication 25 comprenant ou ne comprenant pas des moyens (5, 570, 670) pour augmenter la pression d'alimentation de la première turbine par rapport à la pression d'alimentation de la deuxième turbine.
  27. Installation selon la revendication 25 ou 26 selon laquelle la première colonne est soit la colonne opérant à la pression plus basse soit la colonne opérant à la pression plus élevée d'une double colonne ou une colonne d'une triple colonne.
  28. Installation selon la revendication 27 dans lequel la première colonne opère à une pression plus élevée qu'une deuxième colonne de la double colonne et dans lequel on envoie un débit enrichi en oxygène et un débit enrichi en azote de la première colonne à la deuxième colonne (13, 113) de la double colonne.
  29. Installation selon la revendication 27 ou 28 comprenant des moyens pour soutirer un débit liquide (41, 141) de la première ou la deuxième colonne ou une colonne d'argon (90) et le vaporiser par échange de chaleur avec de l'air, éventuellement après l'avoir pressurisé.
  30. Installation selon l'une des revendications 25 à 29 dans laquelle la totalité (119) de l'air est comprimé jusqu'à la pression intermédiaire.
  31. Installation selon l'une des revendications 25 à 30 comprenant des moyens pour soutirer un débit liquide enrichi en oxygène, en azote ou en argon de l'installation.
  32. Installation selon une des revendications 25 à 31comprenant un groupe frigorifique (550) pour refroidir une partie de l'air.
  33. Installation selon l'une des revendications 25 à 32 comprenant une colonne argon ( 90 ).
  34. Installation selon l'une des revendications 25 à 33 comprenant une triple colonne comprenant une première colonne opérant à haute pression alimentée par de l'air, une colonne opérant à pression intermédiaire et une colonne opérant à basse pression.
  35. Installation selon la revendication 34 dans lequel les moyens pour soutirer un liquide d'une colonne sont reliées à la colonne haute pression, la colonne intermédiaire ou la colonne basse pression.
EP99403101A 1998-12-22 1999-12-09 Procédé de séparation cryogénique des gaz de l'air Expired - Lifetime EP1014020B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9816243A FR2787560B1 (fr) 1998-12-22 1998-12-22 Procede de separation cryogenique des gaz de l'air
FR9816243 1998-12-22

Publications (2)

Publication Number Publication Date
EP1014020A1 true EP1014020A1 (fr) 2000-06-28
EP1014020B1 EP1014020B1 (fr) 2003-10-22

Family

ID=9534328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99403101A Expired - Lifetime EP1014020B1 (fr) 1998-12-22 1999-12-09 Procédé de séparation cryogénique des gaz de l'air

Country Status (7)

Country Link
US (1) US6257020B1 (fr)
EP (1) EP1014020B1 (fr)
JP (1) JP2000193365A (fr)
CA (1) CA2292174A1 (fr)
DE (1) DE69912229T2 (fr)
ES (1) ES2211010T3 (fr)
FR (1) FR2787560B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099690A1 (fr) 2003-05-05 2004-11-18 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation de separation d'air par distillation cryogenique
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying
WO2016137538A1 (fr) * 2015-02-24 2016-09-01 Praxair Technology, Inc. Système et procédé de séparation et de liquéfaction d'air intégrées
US10794630B2 (en) 2017-08-03 2020-10-06 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7020868B2 (en) * 2000-11-22 2006-03-28 General Electric Company Graphic application development system for a medical imaging system
US6543253B1 (en) * 2002-05-24 2003-04-08 Praxair Technology, Inc. Method for providing refrigeration to a cryogenic rectification plant
FR2865024B3 (fr) * 2004-01-12 2006-05-05 Air Liquide Procede et installation de separation d'air par distillation cryogenique
US7437890B2 (en) * 2006-01-12 2008-10-21 Praxair Technology, Inc. Cryogenic air separation system with multi-pressure air liquefaction
DE102006012241A1 (de) * 2006-03-15 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
FR2913759B1 (fr) 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique.
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
US8397535B2 (en) * 2009-06-16 2013-03-19 Praxair Technology, Inc. Method and apparatus for pressurized product production
US9291388B2 (en) 2009-06-16 2016-03-22 Praxair Technology, Inc. Method and system for air separation using a supplemental refrigeration cycle
FR2973486B1 (fr) * 2011-03-31 2013-05-03 Air Liquide Procede de separation d'air par distillation cryogenique
CN103759500A (zh) * 2014-01-24 2014-04-30 浙江大川空分设备有限公司 一种低能耗制高纯氮的方法及装置
US10295252B2 (en) * 2015-10-27 2019-05-21 Praxair Technology, Inc. System and method for providing refrigeration to a cryogenic separation unit
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique
CN116547488A (zh) 2020-11-24 2023-08-04 林德有限责任公司 用于空气低温分离的方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595405A (en) * 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
DE4204172A1 (de) * 1992-02-13 1993-08-19 Linde Ag Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft
US5355681A (en) * 1993-09-23 1994-10-18 Air Products And Chemicals, Inc. Air separation schemes for oxygen and nitrogen coproduction as gas and/or liquid products
EP0661505A1 (fr) * 1993-12-31 1995-07-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de liquéfaction d'un gaz
EP0757217A1 (fr) * 1995-08-03 1997-02-05 The BOC Group plc Séparation d'air
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275003A (en) * 1992-07-20 1994-01-04 Air Products And Chemicals, Inc. Hybrid air and nitrogen recycle liquefier
GB9405072D0 (en) * 1994-03-16 1994-04-27 Boc Group Plc Air separation
GB9711258D0 (en) * 1997-05-30 1997-07-30 Boc Group Plc Air separation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595405A (en) * 1984-12-21 1986-06-17 Air Products And Chemicals, Inc. Process for the generation of gaseous and/or liquid nitrogen
DE4204172A1 (de) * 1992-02-13 1993-08-19 Linde Ag Verfahren zur behandlung eines einsatzstromes und verfahren zur tieftemperaturzerlegung von luft
US5355681A (en) * 1993-09-23 1994-10-18 Air Products And Chemicals, Inc. Air separation schemes for oxygen and nitrogen coproduction as gas and/or liquid products
EP0661505A1 (fr) * 1993-12-31 1995-07-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de liquéfaction d'un gaz
EP0757217A1 (fr) * 1995-08-03 1997-02-05 The BOC Group plc Séparation d'air
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099690A1 (fr) 2003-05-05 2004-11-18 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation de separation d'air par distillation cryogenique
US7464568B2 (en) 2003-05-05 2008-12-16 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic distillation method and system for air separation
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying
WO2016137538A1 (fr) * 2015-02-24 2016-09-01 Praxair Technology, Inc. Système et procédé de séparation et de liquéfaction d'air intégrées
US10794630B2 (en) 2017-08-03 2020-10-06 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation
US10866024B2 (en) 2017-08-03 2020-12-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for separating air by cryogenic distillation

Also Published As

Publication number Publication date
CA2292174A1 (fr) 2000-06-22
FR2787560A1 (fr) 2000-06-23
JP2000193365A (ja) 2000-07-14
US6257020B1 (en) 2001-07-10
EP1014020B1 (fr) 2003-10-22
FR2787560B1 (fr) 2001-02-09
DE69912229T2 (de) 2004-08-05
DE69912229D1 (de) 2003-11-27
ES2211010T3 (es) 2004-07-01

Similar Documents

Publication Publication Date Title
EP1014020B1 (fr) Procédé de séparation cryogénique des gaz de l&#39;air
EP0689019B1 (fr) Procédé et installation de production d&#39;oxygène gazeux sous pression
EP0628778B2 (fr) Procédé et unité de fourniture d&#39;un gaz sous pression à une installation consommatrice d&#39;un constituant de l&#39;air
TWI379986B (en) System to cold compress an air stream using natural gas refrigeration
EP1623172B1 (fr) Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air
EP3631327B1 (fr) Procédé et appareil pour la séparation de l&#39;air par distillation cryogénique
EP0606027B1 (fr) Procédé et installation de production d&#39;au moins un produit gazeux sous pression et d&#39;au moins un liquide par distillation d&#39;air
FR2913759A1 (fr) Procede et appareil de production de gaz de l&#39;air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique.
EP1711765A1 (fr) Procede et installationde de separation d&#39;air par distillation cryogenique
FR2690982A1 (fr) Procédé et installation de production d&#39;oxygène gazeux impur par distillation d&#39;air.
CA2119597A1 (fr) Procd et installation de production d&#39;oxygne gazeux et/ou d&#39;azote gazeux sous pression par distillation d&#39;air
EP2938413A2 (fr) Procédé et appareil de purification d&#39;un mélange riche en dioxyde de carbone à basse température
FR2821351A1 (fr) Procede de recuperation d&#39;ethane, mettant en oeuvre un cycle de refrigeration utilisant un melange d&#39;au moins deux fluides refrigerants, gaz obtenus par ce procede, et installation de mise en oeuvre
CA2771205A1 (fr) Procede et installation de production d&#39;oxygene par distillation d&#39;air
EP2118600A2 (fr) Procédé et appareil de production de gaz de l&#39;air sous forme gazeuse et liquide à haute flexibilité par distillation cryogénique
EP3899389A1 (fr) Appareil et procédé de séparation d&#39;air par distillation cryogénique
EP1189003B1 (fr) Procédé et installation de séparation d&#39;air par distillation cryogénique
FR2688052A1 (fr) Procede et installation de production d&#39;oxygene et/ou d&#39;azote gazeux sous pression par distillation d&#39;air.
CA2146831A1 (fr) Procede et installation pour la production de l&#39;oxygene par distillation de l&#39;air
FR2724011A1 (fr) Procede et installation de production d&#39;oxygene par distillation cryogenique
EP1132700B1 (fr) Procédé et installation de séparation d&#39;air par distillation cryogénique
FR2701553A1 (fr) Procédé et installation de production d&#39;oxygène sous pression.
FR2919717A1 (fr) Procede et appareil de separation d&#39;air avec compression de produit
EP1697690A2 (fr) Procede et installation d enrichissement d&#39;un flux gazeux en l&#39;un de ses constituants
FR2864213A1 (fr) Procede et installation de production sous forme gazeuse et sous haute pression d&#39;au moins un fluide choisi parmi l&#39;oxygene, l&#39;argon et l&#39;azote par distillation cryogenique de l&#39;air

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRANIER, JEAN-PIERRE

17P Request for examination filed

Effective date: 20001228

AKX Designation fees paid

Free format text: DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

17Q First examination report despatched

Effective date: 20021001

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69912229

Country of ref document: DE

Date of ref document: 20031127

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2211010

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 20040722

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20090615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20091222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091222

Year of fee payment: 11

Ref country code: GB

Payment date: 20091218

Year of fee payment: 11

Ref country code: FR

Payment date: 20100108

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091222

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69912229

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101210