EP1010939A1 - Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem - Google Patents

Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem Download PDF

Info

Publication number
EP1010939A1
EP1010939A1 EP98811230A EP98811230A EP1010939A1 EP 1010939 A1 EP1010939 A1 EP 1010939A1 EP 98811230 A EP98811230 A EP 98811230A EP 98811230 A EP98811230 A EP 98811230A EP 1010939 A1 EP1010939 A1 EP 1010939A1
Authority
EP
European Patent Office
Prior art keywords
fuel
fuel supply
supply system
volume
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98811230A
Other languages
English (en)
French (fr)
Other versions
EP1010939B1 (de
Inventor
Jakob Prof. Dr. Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Alstom Power Switzerland Ltd
Alstom Power Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Alstom Power Switzerland Ltd, Alstom Power Schweiz AG filed Critical ABB Alstom Power Switzerland Ltd
Priority to EP98811230A priority Critical patent/EP1010939B1/de
Priority to DE59810760T priority patent/DE59810760D1/de
Priority to US09/458,095 priority patent/US6305927B1/en
Publication of EP1010939A1 publication Critical patent/EP1010939A1/de
Application granted granted Critical
Publication of EP1010939B1 publication Critical patent/EP1010939B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2210/00Noise abatement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to the field of burners, in particular the burner for use in gas turbines. It concerns a burner with a fuel supply system, in which the fuel supply system is fuel transported to the burner, the fuel in the burner into a combustion chamber is injected where the fuel is burned.
  • Burners of gas turbines serve the fuel and the combustion air in a controlled manner and controllably inject into a combustion chamber and there to burn the fuel.
  • the burners can be used in many different ways Arrangement in the wall of the combustion chamber, and will be charged with fuel by means of a fuel supply system.
  • the injection The fuel in the burner must be in order to optimally control the combustion process in the various operating states of the turbine ensure controllable and done in the best possible way.
  • More and more strict regulations regarding emissions of combustion processes make a highly specialized and complicated injection and mixing of combustion air and fuel in the Burner essential.
  • EP-B1-0 321 809 describes a so-called double-cone burner become known for liquid and gaseous fuels without a premix section, in which combustion air supplied from outside through at least two inlet slots tangentially between displaced, hollow half-cones enters and flows there towards the combustion chamber, and in which on the Combustion chamber facing away, tapered side of the half-cones fuel centrally or from distribution channels that run along the air inlet slots Rows of holes are injected transversely into the incoming air.
  • acoustic oscillations which also under the term "singing flame” are known. These are mostly oscillations, which results from the interaction of inflows of the combustion mixture and the actual combustion process in the combustion chamber.
  • These largely coherently periodic pressure fluctuations can, for example with a burner of the type mentioned above under typical operating conditions to acoustic vibrations with frequencies of about 80 to 100 Hz to lead. Since these frequencies have typical fundamental eigenmodes of Combustion chambers of gas turbines can collapse, make them thermoacoustic Oscillations are a problem.
  • the invention is therefore based on the object, a burner with at least a fuel supply system through which a fuel flow to the burner is supplied, the supplied fuel is injected via fuel nozzles, and then burned in a combustion chamber provide who is able to train and reinforce periodic To prevent pressure fluctuations in the combustion chamber at least partially.
  • a first preferred embodiment of the invention is characterized in that that the means at least a first, immediately upstream of the fuel nozzles arranged volume include, through which volume the fuel flow flows, and that this first volume is upstream over a first Narrowing with the fuel delivery system located further upstream communicates.
  • This first volume is essentially preferred chosen smaller than a certain critical volume, and especially continues the cross-sectional area of the first narrowing is less than a certain critical Cross-sectional area formed.
  • Another embodiment of the invention is characterized in that a second volume is arranged upstream of the first constriction which the fuel flow flows, and that this second volume upstream via a second constriction with the one located further upstream Fuel supply system is connected.
  • This arrangement allows the effective prevention of coupling under special, essentially unchangeable Design specifications of the burner and the fuel supply system.
  • the fuel supply system can be viewed acoustically as shown in FIG. 1 as a throttle, ie as an opening 10 with a negligible length and cross-sectional area A F , through which fuel the density ⁇ F from a large volume at pressure p F to another large one Volume, the combustion chamber 11, flows at pressure p I. It is assumed that the following applies: p F > p I. In addition, it is assumed that the fuel supply volume has a constant pressure p F , while the pressure in the injection space p I can be subject to fluctuations.
  • the pressure fluctuations in the injection space therefore have a directly linear effect to fluctuations in fuel injection speed 12 and vice versa, i.e. there is a direct coupling of the two sizes.
  • instabilities arise in the system consisting of the fuel supply system, Burner and combustion chamber on once the fuel injection speed 12 falls below a value of approximately 125 m / s.
  • One way to achieve arbitrarily small values for ⁇ at any oscillation frequency is, for example, the use of check valves with a second, upstream opening of variable cross-sectional area. In this case, even for very small ones Fuel injection speeds of pressure drop across the fuel supply system are kept to a minimum.
  • a fuel nozzle of cross-sectional area AF with an upstream fuel supply line of length L and cross-sectional area AT forms an acoustic coupling of the shape leads, where c F represents the speed of sound in the fuel gas.
  • each volume between the fuel line 15 and the fuel nozzle 10 must be small compared to a critical volume V CRIT , which is given by:
  • FIG. 3 schematically shows a burner of the applicant's type EV17i, such as is installed in a gas turbine of the applicant's type GT26.
  • the fuel is supplied to the burner 14 via a fuel supply line 15.
  • the line 15 initially opens into an annular distribution space 16, from which fuel distribution channels run along the conical outer surface of the double-cone burner.
  • these distribution channels On the side facing the burner, these distribution channels have a plurality of fuel nozzles 10, through which the fuel can flow into the burner and thus into the combustion chamber 11.
  • the diameter of the fuel feed 15 is approximately 38 mm, although it should not be more than 21 mm according to the above criterion.
  • a simple way of acoustically hardening the specified structure is the introduction of a Helmholtz volume with a suitable cross-sectional area e A and length L between the fuel supply line 15 and the fuel nozzles 10, as is shown schematically in FIG. 2b). It is of great advantage to set the dimensioning of the volume and the constriction in such a way that at least one resonance of the fuel supply system coincides with the most important fundamental acoustic natural frequency of the combustion chamber.
  • the response function ⁇ ( ⁇ ) can be calculated.
  • the damping factor ⁇ ( ⁇ ) (attenuation factor) as a function of the frequency of the pressure fluctuations under consideration for the conditions listed in Table 1 is shown in FIG.
  • FIG. 4 shows that the damping only occurs in narrow areas around the resonance frequencies of the fuel supply system. It can also be clearly seen from FIG.
  • the fuel supply system behaves like a simple and almost completely undamped throttle, and thus the resonance behavior of the fuel supply system does not at all match that of the combustion chamber is coordinated.
  • a line constriction 17 as also shown in FIG. 3, is introduced into the fuel supply line 15, the resonance frequency of the fuel supply system shifts and widens in the range from 90 to 100 Hz and the minimum value of ⁇ at this frequency is approximately 0.35-0.4.
  • This is done with a simple use of a slide-in device 17 (or a constriction caused in another way) of 300 mm in length and an inner diameter of 21 mm.
  • a further improvement can be achieved with the values given in table 2 by increasing the length of the insert 17 from 300 mm to 500 mm and additionally reducing the first volume from 650 cm 3 to 400 cm 3 .
  • the absorption profile for the values from Table 2 is shown in FIG. 5. Essentially The minimum value changes as a result of these further measures from ⁇ at the frequency of 90 to 100Hz to a value of 0.2, which is a doubling corresponds to the absorption efficiency in comparison to the first example.
  • the resulting absorption profile is shown in FIG. 6, it shows in the resonance range from 90 to 100Hz an absorption of remarkable 90% in Compared to the simple throttle.
  • the acoustic hardening of a burner of the type EV18 from the applicant, as is installed in a gas turbine of the type GT26, is to be used.
  • the fuel is supplied to the burner 14 via annular fuel distribution lines 18, which jointly supply the burners arranged in a ring in the annular combustion chamber of the turbine.
  • the fuel branches off from the annular fuel distribution line 18 via a second constriction 19 and enters a volume which is normally formed by the volumes 20 and 22 without the partition 23 shown in FIG. 8 and the first constriction 21.
  • the fuel is guided through the fuel distribution channels 22 along the cone of the burner 14 and passes through the fuel nozzles 10 into the combustion chamber 11, where it is mixed with combustion air.
  • a solution to acoustic hardening must now be found here, in which the fuel distribution system has to be changed as little as possible.
  • the easiest way to do this is to arrange two volumes upstream of the fuel nozzle 10 and connected to the fuel supply line via two constrictions, as is shown schematically in FIG.
  • a possible technical implementation is shown in Figure 8.
  • a partition 23 separates the large volume into the fuel distribution channels 22 and a second volume 20, and a constriction 21, which is wound around the burner and is designed as a line, connects the two volumes.
  • the absorption characteristic in FIG. 9 is obtained.
  • Size unit value print bar 18th Cross-sectional area of the nozzle m 2 9.08e-5 Temperature of methane K 323 Mass flow of methane kg / s 0.133 Length of the second narrowing m 0.04 Cross-sectional area of the second constriction m 2 0.000314 Second volume m 3 0.0015 Length of the first narrowing m 1.2 Cross-sectional area of the first constriction m 2 0.000314 First volume m 3 0.00015
  • this arrangement and dimensioning are used of two volumes connected in series a perfect damping of the acoustic coupling with the natural frequency of the combustion chamber of approx. 90 Hz a considerable width of the resonance condition, with a deviation of approx. ⁇ 30Hz namely 2/3 are still absorbed by the resonance condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Bei einem Brenner (14) mit wenigstens einem Brennstoffversorgungssystem (15,16), durch welches dem Brenner (14) ein Brennstoffstrom (12) zugeführt wird, der zugeführte Brennstoff über Brennstoffdüsen eingedüst, und anschliessend in einer Brennkammer (11) verbrannt wird, wird in konstruktionstechnisch einfacher Weise die Ausbildung und Verstärkung von Druckschwankungen in der Brennkammer dadurch verhindert, dass Mittel (17) vorgesehen sind, welche verhindern, dass in der Brennkammer auftretende periodische Druckschwankungen zu Schwankungen des Brennstoffstroms (12) im Brennstoffversorgungssystem (15,16) führen. <IMAGE>

Description

TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf das Gebiet der Brenner, insbesondere der Brenner zur Verwendung in Gasturbinen. Sie betrifft einen Brenner mit Brennstoffversorgungssystem, bei welchem das Brennstoffversorgungssystem Brennstoff zum Brenner transportiert, der Brennstoff im Brenner in eine Brennkammer eingedüst wird, wo der Brennstoff verbrannt wird.
STAND DER TECHNIK
Brenner von Gasturbinen dienen dazu, den Brennstoff und die Verbrennungsluft in kontrollierter Weise und regelbar in eine Brennkammer einzudüsen und dort den Brennstoff zu verbrennen. Die Brenner können dazu in unterschiedlichster Anordnung in der Wandung der Brennkammer eingelassen sein, und werden mittels eines Brennstoffversorgungssystems mit Brennstoff beschickt. Die Eindüsung des Brennstoffs im Brenner muss, um eine optimale Kontrolle des Verbrennungsvorganges in den verschiedenen Betriebszuständen der Turbine zu gewährleisten, regelbar und in möglichst optimaler Weise geschehen. Gerade die in neuerer Zeit immer strenger zu beachtenden Vorschriften bezüglich des Ausstosses von Verbrennungsprozessen machen dabei eine hochspezialisierte und komplizierte Eindüsung und Vermischung von Verbrennungsluft und Brennstoff im Brenner unabdingbar.
Aus der EP-B1-0 321 809 ist beispielsweise ein sogenannter Doppelkegelbrenner für flüssige und gasförmige Brennstoffe ohne Vormischstrecke bekannt geworden, bei welchem von aussen zugeführte Verbrennungsluft durch wenigstens zwei Eintrittsschlitze tangential zwischen verschoben angeordnete, hohle Halbkonusse eintritt und dort in Richtung der Brennkammer strömt, und bei welchem auf der der Brennkammer abgewandten, verjüngten Seite der Halbkonusse Brennstoff zentral oder aus Verteilkanälen, die den Lufteintrittsschlitzen entlang verlaufen, durch Bohrungsreihen quer in die eintretende Luft eingedüst.
Problematisch bei der Eindüsung des Brennstoffes und dessen anschliessender Verbrennung sind u.a. akustische Oszillationen, welche auch unter dem Begriff "singende Flamme" bekannt sind. Es handelt sich dabei meist um Oszillationen, welche aus dem Zusammenspiel von Einströmen des Verbrennungsgemisches und dem eigentlichen Verbrennungsprozess in der Brennkammer zustande kommen. Diese weitgehend kohärent periodischen Druckschwankungen können beispielsweise bei einem Brenner der obengenannten Art bei typischen Betriebsbedingungen zu akustischen Schwingungen mit Frequenzen von etwa 80 bis 100 Hz führen. Da diese Frequenzen mit typischen fundamentalen Eigenmoden von Brennkammern von Gasturbinen zusammenfallen können, stellen diese thermoakkustischen Oszillationen ein Problem dar.
DARSTELLUNG DER ERFINDUNG
Der Erfindung liegt demnach die Aufgabe zugrunde, einen Brenner mit wenigstens einem Brennstoffversorgungssystem, durch welches dem Brenner ein Brennstoffstrom zugeführt wird, der zugeführte Brennstoff über Brennstoffdüsen eingedüst, und anschliessend in einer Brennkammer verbrannt wird, zur Verfügung zu stellen, welcher in der Lage ist, die Ausbildung und Verstärkung von periodischen Druckschwankungen in der Brennkammer wenigstens teilweise zu verhindern.
Diese Aufgabe wird bei einem Brenner der eingangs genannten Art gelöst, indem Mittel vorgesehen sind, welche verhindern, dass in der Brennkammer auftretende periodische Druckschwankungen zu Schwankungen des Brennstoffstroms im Brennstoffversorgungssystem führen. Die weitgehende Verhinderung der Ankopplung der periodischen Druckschwankungen an Schwankungen des Brennstoffstroms kann die unerwünschte, aufschaukelnden Verstärkung der Druckschwankungen durch den Brennstoffstrom in der Brennkammer verhindern. Insbesondere, wenn die in der Brennkammer auftretenden periodischen Druckschwankungen akustische Schwingungen sind, und ganz besonders, wenn diese im Bereich der akustischen Eigenschwingungen der Brennkammer liegen, sind solche Mittel von grossem Vorteil. Sind die Schwankungen des Brennstoffstroms im Brennstoffversorgungssystem periodisch, und liegt insbesondere die Frequenz dieser periodischen Schwankungen des Brennstoffstroms im Bereich der akustischen Eigenschwingungen der Brennkammer, dann kann diese aufschaukelnde Wirkung äusserst ausgeprägt und eine Verhinderung derselben besonders angezeigt sein.
Eine erste bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Mittel wenigstens ein erstes, unmittelbar stromaufwärts der Brennstoffdüsen angeordnetes Volumen umfassen, durch welches Volumen der Brennstoffstrom fliesst, und dass dieses erste Volumen stromaufwärts über eine erste Verengung mit dem weiter stromaufwärts angeordneten Brennstoffzufuhrsystem in Verbindung steht. Bevorzugt wird dabei dieses erste Volumen im wesentlichen kleiner als ein bestimmtes kritisches Volumen gewählt, und insbesondere weiterhin die Querschnittsfläche der ersten Verengung kleiner als eine bestimmte kritische Querschnittfläche ausgebildet. Jede dieser Massnahmen reduziert das Mass der Ankopplung der Druckschwankungen an die Schwankungen des Brennstoffstroms und die Massnahmen sind ausserdem ohne grossen konstruktionstechnischen Aufwand in gängigen Brennern einbau- oder sogar nachrüstbar.
Eine andere Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass stromaufwärts der ersten Verengung ein zweites Volumen angeordnet ist, durch welches der Brennstoffstrom fliesst, und dass dieses zweite Volumen stromaufwärts über eine zweite Verengung mit dem weiter stromaufwärts angeordneten Brennstoffversorgungssystem in Verbindung steht. Diese Anordnung erlaubt die effektive Verhinderung der Ankopplung unter speziellen, im wesentlichen unveränderlichen Konstruktionsvorgaben des Brenners und des Brennstoffversorgungssystems.
Weitere Ausführungsformen des Brenners mit Brennstoffversorgungssystem ergeben sich aus den abhängigen Ansprüchen.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden.
Fig. 1
zeigt eine schematische Darstellung einer Drossel zwecks Einführung der im weiteren verwendeten Terminologie;
Fig. 2
zeigt schematisch in a) eine Drossel mit vorgeschalteter Verengung und in b) eine Drossel vorgeschaltetem Volumen;
Fig. 3
zeigt eine schematische Darstellung eines Brenners des Typs EV17i der Anmelderin mit akustischen Dämpfungsmitteln im Brennstoffversorgungssystem;
Fig. 4
zeigt das Ankopplungsverhalten zwischen Druckschwankungen und Brennstoffstromschwankungen für einen Brenner des Typs EV17i der Anmelderin ohne akustische Dämpfungsmittel im Brennstoffversorgungssystem;
Fig. 5 und 6
zeigen das Ankopplungsverhalten zwischen Druckschwankungen und Brennstoffstromschwankungen für einen Brenner des Typs EV17i der Anmelderin mit verschiedenen akustischen Dämpfungsmitteln im Brennstoffversorgungssystem;
Fig. 7
zeigt schematisch eine Drossel mit zwei vorgeschalteten Volumina;
Fig. 8
zeigt schematisch einen Brenner des Typs EV18 der Anmelderin, wie er in einer Turbine des Typs GT26 der Anmelderin eingebaut ist, mit akustischen Dämpfungsmitteln im Brennstoffversorgungssystem; und
Fig. 9
zeigt das Ankopplungsverhalten zwischen Druckschwankungen und Brennstoffstromschwankungen für einen Brenner des Typs EV18 der Anmelderin, wie er in einer Turbine des Typs GT26 der Anmelderin eingebaut ist, mit akustischen Dämpfungsmitteln im Brennstoffversorgungssystem.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
Es zeigt sich, dass insbesondere beim Umschalten zwischen verschiedenen Betriebsmodi einer Gasturbine, wie zum Beispiel beim Umschalten zwischen Vormisch- und Pilotmodus, das Brennstoffversorgungssystem akustisch "weich" werden kann, d.h. dass sich Druckschwankungen in der Brennkammer auf den Fluss des Brennstoffs auswirken und damit eine wechselseitig aufschaukelnde Ankopplung stattfinden kann. Beim Umschalten kann das zu Druckschwankungen grosser Amplitude und damit zu lauten akustischen Schwingungen führen. Dies geschieht ganz besonders dann, wenn lnjektoren beinahe geschlossen sind oder ein Leck aufweisen. Ohne Massnahmen zur akustischen Härtung des Brennstoffversorgungssystems kann es aber auch durchaus vorkommen, dass die lnstabilitäten beinahe im ganzen Umschaltbereich kritisch sind. Fallen die Instabilitäten in ihrer Frequenz auch noch mit Eigenmoden von Brennkammern zusammen, so können diese akustischen Schwingungen zu einem ernsthaften Problem werden.
Die Möglichkeiten zur akustischen Härtung eines Brennstoffversorgungssystems sollen zunächst aufgrund einiger theoretischer Überlegungen rationalisiert und erläutert werden, anschliessend werden die technischen Ausführungsbeispiele anhand der Brenner EV17i und EV18 der Anmelderin geschildert.
Im einfachsten Fall kann das Brennstoffversorgungssystem in akustischer Hinsicht wie in Figur 1 dargestellt als Drossel, d.h. als Öffnung 10 mit vernachlässigbarer Länge und Querschnittsfläche AF angesehen werden, durch welche Brennstoff der Dichte ρF aus einem grossen Volumen beim Druck pF in ein anderes grosses Volumen, die Brennkammer 11, beim Druck pI strömt. Dabei wird angenommen, dass gilt: pF > pI . Ausserdem wird angenommen, dass das Brennstoffversorgungsvolumen einen konstanten Druck pF aufweist, während der Druck im lnjektionsraum pI Schwankungen unterworfen sein kann. Aus den Gesetzen der Strömungslehre resultiert unter diesen Bedingungen folgende Beziehung zwischen Schwankungen des Druckes im lnjektionsraum, ΔpI , und Schwankungen der Brennstoffinjektionsgeschwindigkeit ΔuF : ΔpI = -ρ FuF ΔuF.
Die Druckschwankungen im Injektionsraum wirken sich also in direkt linearer Weise auf Schwankungen der Brennstoffinjektionsgeschwindigkeit 12 aus und umgekehrt, d.h. es gibt eine direkte Ankopplung der beiden Grössen. Tatsächlich verhalten sich die Brennstoffversorgungssysteme der Gasturbinen der Typen GT24 und GT26 der Anmelderin im Bereich der Eigenmoden der Brennkammern, d.h. um Oszillationsfrequenzen von 100Hz herum entsprechend der obigen Gleichung. Als Folge stellen sich Instabilitäten im System bestehend aus Brennstoffversorgungssystem, Brenner und Brennkammer ein, sobald die Brennstoffinjektionsgeschwindigkeit 12 unter einen Wert von ungefähr 125 m/s fällt.
Kompliziertere Brennstoffversorgungssysteme lassen sich durch folgende Formel beschreiben: α(ω)ΔpI = ρ FuF ΔuF , wobei ω die Kreisfrequenz der periodischen Druckoszillationen und α = α(ω) eine komplexwertige Funktion der Kreisfrequenz ist, für deren Betrag gilt: |α(ω|≤1. Folglich kann hier im Vergleich zu einfachen Injektionssystemen die kritische Brennstoffinjektionsgeschwindigkeit uFC wenigstens auf den Wert |α(ω)|uFC reduziert werden. Eine Möglichkeit, beliebig kleine Werte für α bei jeder Oszillationsfrequenz zu erreichen, ist beispielsweise die Verwendung von Rückschlagventilen mit einer zweiten, stromaufwärts angeordneten Öffnung variabler Querschnittsfläche. In diesem Fall kann auch für sehr kleine Brennstoffinjektionsgeschwindigkeiten der Druckabfall über dem Brennstoffversorgungssystem minimal gehalten werden.
Es lässt sich nun zeigen, dass sich eine Brennstoffdüse der Querschnittsfläche AF mit einer stromaufwärts angeordneten Brennstoffversorgungsleitung der Länge L und der Querschnittsfläche AT , wie sie schematisch in Figur 2 a) dargestellt ist, zu einer akustischen Kopplung der Form
Figure 00070001
führt, wobei cF die Schallgeschwindigkeit im Brennstoffgas darstellt. Die komplewertige Responsefunktion α(ω) ist somit gegeben durch
Figure 00070002
und es ist leicht ersichtlich, dass eine solche Leitung zu einer perfekten akustischen Härtung des Brennstoffversorgungssystems führt, dies aber nur bei im Bereich der diskreten Frequenzwerte ω = (2N + 1) πcF 2L , für ganzzahlige Werte von N
Eine akustische Härtung in einem ganzen Frequenzbereich kann indes nur erreicht werden, wenn der Quotient AFcF ATuF grössenordnungsmässig kleiner oder gleich 1 ist. Folglich sollte in Anbetracht der Tatsache, dass die Machzahl M = uF/cF für kritische Brennstoffeinspritzung typischerweise im Bereich von 0.25 bis 0.3 ist, die Querschnittsfläche AT der Brennstoffleitung nicht mehr als 3 bis 4 Mal so gross wie die Querschnittsfläche AF der Brennstoffdüse sein. Mit anderen Worten sollte die Brennstoffflussgeschwindigkeit in der Leitung wenigstens einen viertel bis einen drittel der Brennstoffinjektionsgeschwindigkeit uFC in der Brennstoffdüse 10 ausmachen. Diese Forderung lässt sich aber leider in der Praxis meist nicht ohne gravierende Nachteile realisieren.
Ausserdem muss beachtet werden, dass jedes Volumen zwischen der Brennstoffleitung 15 und der Brennstoffdüse 10 klein sein muss im Vergleich zu einem kritischen Volumen VCRIT , welches gegeben ist durch:
Figure 00080001
Normalerweise ist keine dieser Bedingungen erfüllt, wie folgendes Beispiel belegen soll: In Figur 3 ist ein Brenner des Typs EV17i der Anmelderin schematisch dargestellt, wie er z.B. in einer Gasturbine des Typs GT26 der Anmelderin eingebaut ist. Der Brennstoff wird über eine Brennstoffzufuhrleitung 15 dem Brenner 14 zugeführt. Die Leitung 15 mündet dabei zunächst in einen ringförmigen Verteilraum 16, von welchem aus Brennstoffverteilkanäle der kegelförmigen Aussenfläche des Doppelkegelbrenners entlang verlaufen. Diese Verteilkanäle weisen auf der dem Brenner zugewandten Seite eine Mehrzahl von Brennstoffdüsen 10 auf, durch welche der Brennstoff in den Brenner und damit in die Brennkammer 11 einströmen kann. Nimmt man für einen solchen Brenner typische Umschaltbedingungen an, so sieht man, dass das Volumen zwischen Brennstoffzufuhrleitung 15 und den Brennstoffdüsen 10, welches durch den ringförmigen Verteilraum 16 und die Verteilkanäle gebildet wird und ca. 650 cm3 beträgt, das bei diesen Bedingungen kritische Volumen VCRIT von 271cm3 um mehr als einen Faktor 2 übertrifft. Ebenso ist der Durchmesser der Brennstoffzufuhreitung 15 ca. 38mm, obwohl er nach obigem Kriterium nicht mehr als 21mm sein dürfte.
Eine einfache und mit kleinem konstruktionstechnischem Aufwand verbundene Möglichkeit der akustischen Härtung des vorgegebenen Aufbaus ist die Einführung eines Helmholtz-Volumens mit passender Querschnittsfläche A und Länge L zwischen die Brennstoffzufuhrleitung 15 und die Brennstoffdüsen 10, wie es in Figur 2b) schematisch dargestellt ist. Es ist dabei von grossem Vorteil, die Dimensionierung des Volumens und der Verengung derart einzustellen, dass wenigstens eine Resonanz des Brennstoffversorgungssystems mit der wichtigsten fundamentalen akustischen Eigenfrequenz der Brennkammer zusammenfällt.
Nimmt man für einen EV17i Brenner typische Umschaltbedingungen, wie sie in Tabelle 1 aufgelistet sind, und wie sie in einer Gasturbine des Typs GT26B auftreten, so lässt sich die Antwortfunktion α(ω) berechnen.
Grösse Einheit Wert
Druck bar 18
Düsenquerschnittsfläche m2 0.000111
Temperatur von Methan K 323
Massenfluss von Methan kg/s 0.167
Länge der Leitung m 2
Durchmesser der Leitung m 0.038
Länge des ersten Volumens m 0.1
Querschnittsfläche des ersten Volumens m2 6.5e-3
Der Dämpfungsfaktor α(ω) (attenuation factor) als Funktion der Frequenz (frequency) der betrachteten Druckschwankungen für die in Tabelle 1 aufgelisteten Bedingungen ist in Figur 4 dargestellt. Ein Wert von α(ω)=1 als obere Grenze entspricht dabei einer normalen Drossel nach der schematischen Darstellung in Figur 1, und damit eine maximale Ankopplung der Druckschwankungen in der Brennkammer 11 an den Brennstofffluss, ein Wert von α(ω)=0 bedeutet, dass eine Druckschwankung ΔpI in der Brennkammer 11 nicht in der Lage ist, eine Änderung in der Brennstoffinjektionsgeschwindigkeit, ΔuF , zu bewirken. Man sieht in Figur 4, dass die Dämpfung nur in schmalen Bereichen um die Resonanzfrequenzen des Brennstoffzufuhrsystems auftritt. Aus Figur 4 wird ausserdem klar ersichtlich, dass insbesondere im Bereich der Eigenmoden der betrachteten Brennkammer, d.h. bei ca. 90 Hz, sich das Brennstoffzufuhrsystem wie eine einfache und beinahe völlig ungedämpfte Drossel verhält, und damit das Resonanzverhalten des Brennstoffversorgungssystems überhaupt nicht auf dasjenige der Brennkammer abgestimmt ist.
Führt man nun in die Brennstoffzufuhrleitung 15 eine Leitungsverengung 17, wie sie in Figur 3 ebenfalls dargestellt ist, ein, so verschiebt und verbreitert sich die Resonanzfrequenz des Brennstoffversorgungssystems in den Bereich von 90 bis 100Hz und der minimale Wert von α bei dieser Frequenz auf ca. 0.35-0.4. Dies bei einfacher Verwendung eines Einschubs 17 (oder einer andersartig bewirkten Verengung in der Leitung) von 300mm Länge und einem Innendurchmesser von 21mm. Eine weitere Verbesserung lässt sich mit den in Tabelle 2 gegebenen Werten erzielen, indem man die Länge des Einschubs 17 von 300mm auf 500mm erhöht und zusätzlich das erste Volumen von 650cm3 auf 400cm3 reduziert.
Grösse Einheit Wert
Druck bar 18
Düsenquerschnittsfläche m2 0.000111
Temperatur von Methan K 323
Massenfluss von Methan kg/s 0.167
Länge der Leitung m 0.5
Durchmesser der Leitung m 0.021
Länge des ersten Volumens m 0.1
Querschnittsfläche des ersten Volumens m2 4.0e-3
Das Absorptionsprofil für die Werte aus Tabelle 2 ist Figur 5 dargestellt. Im wesentlichen verändert sich durch diese weiteren Massnahmen der minimale Wert von α bei der Frequenz von 90 bis 100Hz auf einen Wert von 0.2, was einer Verdoppelung der Absorptionseffizienz im Vergleich zum ersten Beispiel entspricht.
Eine weitere Verbesserung lässt sich mit den Werten aus Tabelle 3 erzielen, indem nämlich die Länge der Verengung 17 nochmals verdoppelt und das Volumen nochmals halbiert wird.
Grösse Einheit Wert
Druck bar 18
Düsenquerschnittsfläche m2 0.000111
Temperatur von Methan K 323
Massenfluss von Methan kg/s 0.167
Länge der Leitung m 1
Durchmesser der Leitung m 0.021
Länge des ersten Volumens m 0.05
Querschnittsfläche des ersten Volumens m2 2.0e-3
Das resultierende Absorptionsprofil ist in Figur 6 dargestellt, es weist im Resonanzbereich von 90 bis 100Hz eine Absorption von bemerkenswerten 90% im Vergleich zur einfachen Drossel auf.
Als weiteres Ausführungsbeispiel soll die akustische Härtung eines Brenners des Typs EV18 der Anmelderin, wie er in einer Gasturbine des Typs GT26 eingebaut ist, dienen. In einer solchen Gasturbine wird, wie in Figur 8 bereits mit akustischer Härtung dargestellt, der Brennstoff über ringförmige Brennstoffverteilleitungen 18, welche die ringförmig in der Ringbrennkammer der Turbine angeordneten Brenner gemeinsam versorgen, dem Brenner 14 zugeführt. Von der ringförmigen Brennstoffverteilleitung 18 zweigt über eine zweite Verengung 19 der Brennstoff ab und tritt in ein Volumen, welches normalerweise von den Volumina 20 und 22 ohne die in der Figur 8 angegebene Trennwand 23 und die erste Verengung 21 gebildet wird. Der Brennstoff wird durch die Brennstoffverteilkanäle 22 entlang des Kegels des Brenners 14 geführt und tritt durch die Brennstoffdüsen 10 in die Brennkammer 11, wo er mit Verbrennungsluft vermischt wird. Hier muss nun aus praktischen Gründen eine Lösung zur akustischen Härtung gefunden werden, bei welcher das Brennstoffverteilsystem so wenig wie möglich verändert werden muss. Dies geschieht am einfachsten durch die Anordnung von zwei, der Brennstoffdüse 10 vorgeschaltete und über zwei Verengungen mit der Brennstoffzufuhrleitung in Verbindung stehende Volumina, wie es schematisch in Figur 7 dargestellt ist. Eine mögliche technische Realisierung ist in Figur 8 dargestellt. Eine Trennwand 23 trennt das grosse Volumen in die Brennstoffverteilkanäle 22 und ein zweites Volumen 20 auf, und eine um den Brenner herumgewickelte, als Leitung ausgebildete Verengung 21 verbindet die beiden Volumina. Wählt man als erste Verengung 21 eine Leitung von 1.2m Länge und 20mm Innendurchmesser und typische Umschaltbedingungen in einer solchen Gasturbine, wie sie in Tabelle 4 dargestellt sind, so erhält man die Absorptionscharakteristik in Figur 9.
Grösse Einheit Wert
Druck bar 18
Düsenquerschnittsfläche m2 9.08e-5
Temperatur von Methan K 323
Massenfluss von Methan kg/s 0.133
Länge der zweiten Verengung m 0.04
Querschnittsfläche der zweiten Verengung m2 0.000314
Zweites Volumen m3 0.0015
Länge der ersten Verengung m 1.2
Querschnittsfläche der ersten Verengung m2 0.000314
Erstes Volumen m3 0.00015
Wie aus Figur 9 ersichtlich, erreicht man mit dieser Anordnung und Dimensionierung von zwei hintereinandergeschalteten Volumina eine perfekte Dämpfung der akustischen Kopplung bei der Eigenfrequenz der Brennkammer von ca. 90Hz mit einer beachtlichen Breite der Resonanzbedingung, bei ca. ± 30Hz Abweichung von der Resonanzbedingung werden nämlich immer noch 2/3 absorbiert.
BEZEICHNUNGSLISTE
10
Brennstoffdüse
11
Brennkammer
12
Brennstoffinjektionsgeschwindigkeit, Brennstoffstrom
13
erstes Volumen
14
Brenner
15
Brennstoffzufuhrleitung
16
ringförmiger Verteilraum
17
Leitungsverengung
18
ringförmige Brennstoffverteilleitung
19
zweite Verengung
20
zweites Volumen
21
erste Verengung
22
Brennstoffverteilkanal, erstes Volumen
23
Trennwand

Claims (12)

  1. Brenner (14) mit wenigstens einem Brennstoffversorgungssystem (15,16,18,20,22), durch welches dem Brenner (14) ein Brennstoffstrom (12) zugeführt wird, der zugeführte Brennstoff über Brennstoffdüsen (10) eingedüst, und anschliessend in einer Brennkammer (11) verbrannt wird,
    dadurch gekennzeichnet, dass
    Mittel (17,21,23) vorgesehen sind, welche verhindern, dass in der Brennkammer auftretende periodische Druckschwankungen zu Schwankungen des Brennstoffstroms (12) im Brennstoffversorgungssystem (15,16,18,20,22) führen.
  2. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 1, dadurch gekennzeichnet, dass die in der Brennkammer (11) auftretenden periodischen Druckschwankungen akustische Schwingungen sind, und dass diese im Bereich der akustischen Eigenschwingungen der Brennkammer (11) liegen.
  3. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 2, dadurch gekennzeichnet, dass die Schwankungen des Brennstoffstroms (12) im Brennstoffversorgungssystem (15,16,18,20,22) periodisch sind, und dass insbesondere die Frequenz dieser periodischen Schwankungen des Brennstoffstroms (12) im Bereich der akustischen Eigenschwingungen der Brennkammer (11) liegt.
  4. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Mittel wenigstens ein erstes, unmittelbar stromaufwärts der Brennstoffdüsen (10) angeordnetes Volumen (16,22) umfassen, durch welches Volumen (16,22) der Brennstoffstrom (12) fliesst, und dass dieses erste Volumen (16,22) stromaufwärts über eine erste Verengung (17,21) mit dem weiter stromaufwärts angeordneten Brennstoffzufuhrsystem (15,18,20) in Verbindung steht.
  5. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 4, dadurch gekennzeichnet, dass das erste Volumen (16,22) kleiner ist als ein kritisches Volumen (Vcrit), und dass das kritische Volumen (Vcrit) näherungsweise gegeben ist als der Quotient aus dem Produkt der Querschnittfläche (AF) der Öffnung der Brennstoffdüse (10) und dem Quadrat der Schallgeschwindigkeit (cF) im ersten Volumen (16,22), und dem Produkt der Kreisfrequenz (ω) der akustischen Schwingung und der Strömungsgeschwindigkeit (uF) des Brennstoffstroms (12).
  6. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass die erste Verengung (17,21) eine Querschnittfläche (AT) aufweist, welche im wesentlichen kleiner oder gleich dem Produkt aus der Querschnittsfläche (AF) der Brennstoffdüse (10) und inverser Machzahl (1/M=cF/uF ) ist.
  7. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Dimensionierungen von erstem Volumen (16,22) und erster Verengung (17,21) derart gewählt sind, dass eine Resonanz der Absorption des Brennstoffversorgungssystems im wesentlichen im Bereich der Eigenmoden der Brennkammer (11) liegt.
  8. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das erste Volumen (16) durch einen ringförmigen Verteilraum und durch stromabwärts davon angeordnete, wenigstens teilweise ausserhalb des Brenners (14) verlaufende Verteilkanäle gebildet wird, und dass der Brennstoff aus den Verteilkanälen durch die Brennstoffdüsen (10) in die Brennkammer (11) strömt.
  9. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 8, dadurch gekennzeichnet, dass die erste Verengung (17) durch einen röhrenförmigen Einschub in eine stromaufwärts des ersten Volumens (16) angeordnete Brennstoffzufuhrleitung (15) oder durch einen verjüngten Leitungsabschnitt zwischen der Brennstoffzufuhrleitung (15) und dem ersten Volumen (16) gebildet wird.
  10. Brenner (14) mit Brennstoffversorgungssystem (18,20,22) nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass stromaufwärts der ersten Verengung (21) ein zweites Volumen (20) angeordnet ist, durch welches der Brennstoffstrom (12) fliesst, und dass dieses zweite Volumen (20) stromaufwärts über eine zweite Verengung (19) mit dem weiter stromaufwärts angeordneten Brennstoffzufuhrsystem (18) in Verbindung steht.
  11. Brenner (14) mit Brennstoffversorgungssystem (15,16,18,20,22) nach Anspruch 10, dadurch gekennzeichnet, dass die Dimensionierungen von erstem Volumen (22) und zweitem Volumen (20) und erster Verengung (21) und zweiter Verengung (19) derart gewählt sind, dass eine Resonanz der Absorption des Brennstoffversorgungssystems im wesentlichen im Bereich der Eigenmoden der Brennkammer (11) liegt.
  12. Brenner (14) mit Brennstoffversorgungssystem (18,20,22) nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die erste Verengung (21) als Leitung geringen Querschnitts ausgebildet ist, welche das erste Volumen (22) mit dem vom ersten Volumen (22) mit einer Trennwand (23) abgetrennten zweiten Volumen (20) verbindet.
EP98811230A 1998-12-15 1998-12-15 Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem Expired - Lifetime EP1010939B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98811230A EP1010939B1 (de) 1998-12-15 1998-12-15 Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem
DE59810760T DE59810760D1 (de) 1998-12-15 1998-12-15 Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem
US09/458,095 US6305927B1 (en) 1998-12-15 1999-12-10 Burner with acoustically damped fuel supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98811230A EP1010939B1 (de) 1998-12-15 1998-12-15 Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem

Publications (2)

Publication Number Publication Date
EP1010939A1 true EP1010939A1 (de) 2000-06-21
EP1010939B1 EP1010939B1 (de) 2004-02-11

Family

ID=8236485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811230A Expired - Lifetime EP1010939B1 (de) 1998-12-15 1998-12-15 Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem

Country Status (3)

Country Link
US (1) US6305927B1 (de)
EP (1) EP1010939B1 (de)
DE (1) DE59810760D1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397760A1 (de) * 2010-06-16 2011-12-21 Alstom Technology Ltd Dämpfungsanordnung und Verfahren zu deren Entwurf
US8474265B2 (en) 2009-07-29 2013-07-02 General Electric Company Fuel nozzle for a turbine combustor, and methods of forming same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342952A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Brenner, Verfahren zum Betrieb eines Brenners und Gasturbine
EP1342953A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gasturbine
US6820431B2 (en) * 2002-10-31 2004-11-23 General Electric Company Acoustic impedance-matched fuel nozzle device and tunable fuel injection resonator assembly
WO2004051063A1 (ja) * 2002-12-02 2004-06-17 Mitsubishi Heavy Industries, Ltd. ガスタービン燃焼器、及びこれを備えたガスタービン
US8028512B2 (en) 2007-11-28 2011-10-04 Solar Turbines Inc. Active combustion control for a turbine engine
JP5357631B2 (ja) * 2009-06-09 2013-12-04 三菱重工業株式会社 燃料ノズル、これを備えた燃焼器及びガスタービン
US8322140B2 (en) * 2010-01-04 2012-12-04 General Electric Company Fuel system acoustic feature to mitigate combustion dynamics for multi-nozzle dry low NOx combustion system and method
US9127837B2 (en) * 2010-06-22 2015-09-08 Carrier Corporation Low pressure drop, low NOx, induced draft gas heaters
US9188340B2 (en) * 2011-11-18 2015-11-17 General Electric Company Gas turbine combustor endcover with adjustable flow restrictor and related method
US9400108B2 (en) 2013-05-14 2016-07-26 Siemens Aktiengesellschaft Acoustic damping system for a combustor of a gas turbine engine
DE102019110258A1 (de) 2019-04-15 2020-10-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Injektorvorrichtung für eine Triebwerksvorrichtung, Triebwerksvorrichtung und Luft- und/oder Raumfahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809B1 (de) 1987-12-21 1991-05-15 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
WO1993010401A1 (de) * 1991-11-15 1993-05-27 Siemens Aktiengesellschaft Einrichtung zur unterdrückung von verbrennungsschwingungen in einer brennkammer einer gasturbinenanlage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1702731A (en) * 1929-02-19 Method of and apparatus for combustion otf
US804002A (en) * 1903-10-10 1905-11-07 Eugene Alfred Javal Gas-blowpipe.
US2765004A (en) * 1953-07-21 1956-10-02 Harold W Williams Dropper assembly
US2943641A (en) * 1956-01-30 1960-07-05 Richfield Oil Corp Device for attenuating pulsative flow in gases
US3807527A (en) * 1973-03-14 1974-04-30 Tenneco Inc Pulse converter for exhaust system
US4464314A (en) * 1980-01-02 1984-08-07 Surovikin Vitaly F Aerodynamic apparatus for mixing components of a fuel mixture
JPS57108512A (en) * 1980-12-26 1982-07-06 Babcock Hitachi Kk Gas burner
US4760695A (en) * 1986-08-28 1988-08-02 United Technologies Corporation Acoustic oscillatory pressure control for ramjet
US5349813A (en) * 1992-11-09 1994-09-27 Foster Wheeler Energy Corporation Vibration of systems comprised of hot and cold components
US5494438A (en) * 1994-02-08 1996-02-27 National Science Council Sudden expansion combustion chamber with slotted inlet port
IT1278601B1 (it) * 1994-07-05 1997-11-24 Necchi Compressori Silenziatore per motocompressore, per apparati frigoriferi
DE19504610C2 (de) * 1995-02-13 2003-06-18 Alstom Vorrichtung zur Dämpfung thermoakustischer Druckschwingungen
DE19542918A1 (de) * 1995-11-17 1997-05-22 Asea Brown Boveri Vorrichtung zur Dämpfung thermoakustischer Druckschwingungen
US6058709A (en) * 1996-11-06 2000-05-09 The United States Of America Represented By The United States Department Of Energy Dynamically balanced fuel nozzle and method of operation
DE19649486A1 (de) * 1996-11-29 1998-06-04 Abb Research Ltd Brennkammer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809B1 (de) 1987-12-21 1991-05-15 BBC Brown Boveri AG Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
WO1993010401A1 (de) * 1991-11-15 1993-05-27 Siemens Aktiengesellschaft Einrichtung zur unterdrückung von verbrennungsschwingungen in einer brennkammer einer gasturbinenanlage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474265B2 (en) 2009-07-29 2013-07-02 General Electric Company Fuel nozzle for a turbine combustor, and methods of forming same
EP2397760A1 (de) * 2010-06-16 2011-12-21 Alstom Technology Ltd Dämpfungsanordnung und Verfahren zu deren Entwurf
US8931589B2 (en) 2010-06-16 2015-01-13 Alstom Technology Ltd. Damper arrangement and method for designing same

Also Published As

Publication number Publication date
DE59810760D1 (de) 2004-03-18
EP1010939B1 (de) 2004-02-11
US6305927B1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
DE60007946T2 (de) Eine Brennkammer
EP1336800B1 (de) Verfahren zur Verminderung verbrennungsgetriebener Schwingungen in Verbrennungssystemen sowie Vormischbrenner zur Durchführung des Verfahrens
EP0985882B1 (de) Schwingungsdämpfung in Brennkammern
DE69308383T2 (de) Verfahren und Vorrichtung zum Verhindern der Konzentrierungschwingungen von Luft-Kraftstoff in einer Brennkammer
EP1010939B1 (de) Brennkammer mit akustisch gedämpftem Brennstoffversorgungssystem
EP1738112B1 (de) Raketentriebwerk mit dämpfung von schwingungen der brennkammer durch resonatoren
EP1730447A1 (de) Brenner
EP1828684A1 (de) Vormischbrenner mit mischstrecke
EP0276696A2 (de) Hybridbrenner für Vormischbetrieb mit Gas und/oder Öl, insbesondere für Gasturbinenanlagen
WO2010018069A1 (de) Verfahren zum einstellen eines helmholtz-resonators sowie helmholtz-resonator zur durchführung des verfahrens
EP0592717A1 (de) Gasbetriebener Vormischbrenner
DE19948674B4 (de) Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
EP0687860A2 (de) Brennkammer mit Selbstzündung
DE10254825A1 (de) Wassersprühvorrichtung für Gasturbinen
DE1751648C2 (de) Brenner
EP1463911B1 (de) Brenner mit gestufter brennstoffeinspritzung
EP0924460A1 (de) Zweistufige Druckzerstäuberdüse
EP0974788A1 (de) Vorrichtung zur gezielten Schalldämpfung innerhalb einer Strömungsmaschine
DE19939235B4 (de) Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
WO2002052201A1 (de) Brenner mit gestufter brennstoffeindüsung
EP1001214A1 (de) Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner
EP0882932A2 (de) Brennkammer
DE19948673B4 (de) Verfahren zum Erzeugen von heissen Gasen in einer Verbrennungseinrichtung sowie Verbrennungseinrichtung zur Durchführung des Verfahrens
DE2554483C2 (de) Brennerdüse für Öl und/oder Brenngas mit einem Hartmann&#39;schen Schallschwingungserzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM POWER (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020325

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59810760

Country of ref document: DE

Date of ref document: 20040318

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040520

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810760

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810760

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810760

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810760

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810760

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810760

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810760

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810760

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 19

Ref country code: DE

Payment date: 20161213

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161222

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810760

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810760

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59810760

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215