EP1010937B1 - Générateur de vapeur électrique commandé par un micro-processeur sans capteurs séparés - Google Patents
Générateur de vapeur électrique commandé par un micro-processeur sans capteurs séparés Download PDFInfo
- Publication number
- EP1010937B1 EP1010937B1 EP19990204312 EP99204312A EP1010937B1 EP 1010937 B1 EP1010937 B1 EP 1010937B1 EP 19990204312 EP19990204312 EP 19990204312 EP 99204312 A EP99204312 A EP 99204312A EP 1010937 B1 EP1010937 B1 EP 1010937B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- heating element
- temperature
- microcontroller
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 81
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- 238000009835 boiling Methods 0.000 claims description 17
- 238000005516 engineering process Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 238000005485 electric heating Methods 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000004434 Calcinosis Diseases 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/28—Methods of steam generation characterised by form of heating method in boilers heated electrically
- F22B1/288—Instantaneous electrical steam generators built-up from heat-exchange elements arranged within a confined chamber having heat-retaining walls
Definitions
- the invention relates to an electronic, microcontroller-controlled apparatus whereby, per unit of time, a specific amount of steam is procuced. Depending on the type of the apparatus, this invention enables controlling the pressure and the humidity of the egressing steam.
- a method for controlling the temperature by measuring the resistance of the heating element is disclosed in EP-A-0333 916.
- the non-evaporated water is entrained in the water vapor to the outlet of the steam generator.
- the water/steam ratio determines the humidity.
- steam generators consisting of a boiler having a content of from half a liter to a few liters. At the bottom of the boiler, an electric heating element is located. With these steam generators, the energy supply to the heating element is switched off by means of a pressure sensor when the pressure of the boiler exceeds a particular value or when the temperature becomes too high. Most types involve an open communication with the outside air.
- the invention provides a solution to the above-mentioned drawbacks by using a through-flow beater having a small volume and a great electric power density for transferring the required energy to the water in the form of heat.
- the mass of the through-flow heater is small, so that little energy is required for heating up the through-flow heater itself to the required temperature.
- the resistance in which the electric energy supplied is converted into heat is so arranged that the available heat can be transferred to the water very directly.
- Fig. 1 shows the principle of an electric through-flow heater based on a heating element utilizing a dissipating resistance designed in thick-film technology, enabling the heat generated to be transferred to the rest of the element very directly.
- Fig. 2 shows the block diagram of an electronic circuit with which the principle of temperature measurement and the operation of the control of the steam generator will be explained.
- Fig. 3 shows the setup of a steam generator which draws the water to be evaporated from a pressureless reservoir.
- Fig. 4 shows a circuit wherein the feed to the heating element is switched off in the event of a failure of the microcontroller or the electric control of the heating element is interrupted if an error occurs in said circuit.
- Fig. 5 shows the side of a heating element on which a resistance track is provided between thin insulating and protective layers.
- Fig. 6 shows a spiral-shaped labyrinth in which the water flows while it is being heated up by the underlying heating element.
- Fig. 7 shows the side of a heating element on which a resistance track is provided between thin insulating and protective layers as in Fig. 5, but here, the resistance track is spiral-shaped.
- Fig. 8 shows a spiral-shaped labyrinth in which the water flows while it is being heated up by the underlying heating element which, in contrast with Fig. 6, is spiral-shaped.
- Fig. 9 shows graphs of the temperature distribution of the water in the through-flow heater at four different pumping rates as a function of the position in the spiral-shaped labyrinth.
- Fig. 10 shows a graph of the increase in resistance relative to the resistance of a specific heating element at 0°C as a function of the optimal flow (F) at which all the water pumped in is precisely entirely evaporated at the outlet of the through-flow heater.
- a heating element (2) on the basis of thick-film technology is used. With this type of heating elements, it is presently possible to dissipate powers up to about 60 watt per cm 2 .
- the thick-film resistance (23) (Fig. 5) is thermally and mechanically coupled to a slightly spherical support (2) (Fig. 1), which may be of stainless steel (SS) design.
- the thickness of the SS is about 1 mm.
- the electric connection to the heating element is effected by means of an adapter (6) (Fig. 1), which establishes the connection to the ends of the heating track (24) (Fig. 5) by means of spring contacts.
- the supply voltage is connected to the terminals (7) (Fig. 1).
- the through-flow heater (Fig.
- a spiral-shaped object of a high melting point and a high thermal resistance and a low specific heat can be fitted in this space, which object provides that the water supplied at (1) (see also 26 (Fig. 6) or 28 (Fig. 8)) flows along the outer side of this spiral in a spiral-shaped labyrinth towards the center and can leave the outlet (5) (see also 27 (Fig. 6) or 29 (Fig. 8)) in the form of steam and together with any unevaporated water.
- An advantage of the use of a spiral is that the through-flow heater can also be used at an angle of inclination of more than 45° without there being formed unduly hot spots on the heating element.
- the spiral-shaped labyrinth (25) (Fig. 6) mentioned may form an integral part of a plastic cover for forming the through-flow heater (Fig. 1) together with the heating element (2).
- the current through the heating element (15) is measured by converting the current through the low-ohmic measuring resistance (14) into a voltage.
- This measured AC voltage is fed to the electronic circuit (12) which amplifies the measured voltage slightly and subsequently converts it into a DC voltage which is proportional to the AC current through the measuring resistance (14).
- the current through measuring resistance (14) is influenced by the temperature variation over the heating track (11) of the heating element (15), which is the result of the positive temperature coefficient of the resistance material of the heating track.
- the desired temperature can be set and, by the control, be maintained.
- V ref reference voltage
- a user interface consisting of a few keys and a display, which are connected to the microcontroller (not shown), specific settings (such as pressure, steam humidity and flow) can be effected and it can be checked, via the display, what is the status of the apparatus.
- the microcontroller (8) can maintain the temperature by controlling the pump capacity to a lower value. Due to the above-mentioned control properties of the invention, the system recognizes within a few tenths of a second that the water supply stagnates due to a defective pump or pump control, or simply because the water has run out. Upon the consequently detected rise of the temperature, the microcontroller will stop the current supply to the heating element (15) by means of triac Tr1. Hence, this provides a very fast boiling-dry protection. In the control system described so far, the temperature cannot be measured after switching off of the heating element (15).
- the microcontroller can switch the water pump (16) on and off in fast alternation to control the water flow at the inlet (1) (Fig. 1).
- triac Tr1 (and also triac Tr2) is controlled by the microcontroller (8) in such a manner that after a control interruption, a positive half period of the sine voltage (0-180°) is succeeded by a negative half period (180-360°) and vice versa, so that line interference is prevented.
- the measured voltage on the measuring resistance (14) will not be an uninterrupted sine shape.
- circuit (12) uses the amplitude of the voltage, the temperature measurement can be continued normally, with the understanding that due to the time constant for smoothing the signal from the rectifier of circuit (12), this output voltage will decrease, which will have to be corrected in the software.
- Fig. 3 schematically represents a possible application of the invention, which could be used in a steam cleaner, sauna or any other apparatus requiring a stable supply of steam for a proper operation.
- the apparatus provides a pump (18) controlled by the electronics (21) and capable of building up sufficient pressure for supplying water also if the steam pressure rises, the through-flow heater (19) and, when this is desired in the apparatus, an electronically settable excess pressure valve (20), whereby it is achieved that through a further rise of temperature, the pressure in the through-flow heater (19) will increase to a value equal to the set pressure value of the excess pressure valve, as a result of which the excess pressure valve will open and steam will egress at an increased pressure. Because of the distribution in the resistance values of the different heating elements produced, this invention provides a system for automatically performing a calibration of the temperature during the operative mode of the apparatus, for instance each time at the startup. For this, use is made of the boiling point of water under atmospheric conditions. To this end, the excess pressure valve (20), if present in the apparatus, is fully opened electronically.
- the pump (18) is set in operation by the electronics (21) for so long that the through-flow heater of Fig. 1 is filled with water for more than 50%, so that the hollow heating element is entirely filled. After that, electric energy is transmitted at maximal power to the through-flow heater (19). By the manner of temperature measuring described, it will be detected that the temperature of the heating element (2) (Fig. 1) will rise.
- the derived measuring value is stored in a nonvolatile memory and can thereafter be used as reference point to enable measuring other temperatures as well through calculation, since the properties of the heating element are known after that. Because said calibration is also performed during the testing of the apparatus in the factory, a temperature determination can already be performed within one second after the heating element has been switched on. The result of this measurement is a good approximation for the water temperature in the reservoir (17) (Fig. 3). Because the energy required for heating 1 gram of water from 20°C to 100°C is only 334 Joule ( ⁇ 12.9%), while said heating and evaporating (at 100°C) of this quantity requires 2590 Joule of energy, an error of 10°C in the determination of water temperature in the reservoir (17) (Fig.
- said temperature measurement/pressure determination is also possible with conventional heating elements in a boiler (see present state of the art), in respect of which allowance should be made for the longer response times and, accordingly, the possible occurrence of dangerous situations.
- said through-flow heater and electronics it is possible to generate steam of a predetermined mass per unit of time, a predetermined humidity and a predetermined pressure.
- the pump (16 (Fig. 2) and 18 (Fig. 3)) will pump a specific amount of water per minute into the through-flow heater. This water will be passed via the spiral-shaped labyrinth (Figs. 6 and 8) to the center of the heating element.
- Figs. 5 and 7 show two embodiments of the thick-film resistances on the heating element.
- the track of the heating element of Fig. 7 has a longer lifetime. If the pump (16 (Fig. 2) and 18 (Fig. 3)) at a given power pumps too little water into the through-flow heater, all the water will already be converted into steam before reaching the outlet (see 5 (Fig. 1), 27 (Fig. 6) and 29 (Fig. 8)). Because the heat transfer to steam is much poorer than to water, the temperature of the heating element will rise substantially at those locations. The resistance of the heating track is in fact determined by three temperature areas (Fig. 9):
- Graph B is the graph where the amount of water pumped into the through-flow heater (Fig. 1) has precisely evaporated when reaching the outlet (5).
- the heating up to this boiling point takes 12.9% of the available power. This power is used in the first 13% of the passage through the spiral labyrinth.
- the flow is lower by a factor of 2, so that the path in the labyrinth in which the water boils is reduced to half the path in graph B.
- the resistance of the heating element is the result of the sum of the resistances of the three temperature areas mentioned.
- Fig. 10 shows how the resistance, relative to the resistance at 0°C, represented by the vertical axis, depends on the flow and the prevailing pressure (at atmospheric pressure or during the use of an electronically controlled excess pressure valve (20) (Fig. 3)), at a constant power.
- the heating track at a given position is at approximately the same temperature as the water flowing past on the other side of the heating element.
- a graph as shown in Fig. 10 can be derived.
- 'optimal flow (F)' is understood to mean the through-flow at which all the supplied water, during its complete course through the spiral labyrinth, has precisely evaporated completely.
- the resistance calculated by the microcontroller can be related to the steam humidity of 0% at a boiling point associated with the prevailing atmospheric pressure.
- the microcontroller can increase the steam humidity by increasing the pump power, or by reducing the power to the heating element.
- the power is reduced, less water can be converted into steam, as a result of which the control is no longer at a point of optimal flow of a graph.
- a halving of the supplied power to the heating element will shift the working point of the control to the point 2x the optimal flow (F).
- Deviations relative to the theory here described in a specific embodiment of an apparatus caused by the differences in resistance occurring in the hoses and accessories connected to the outlet (5) (Fig. 1), are corrected by software per type of apparatus by means of measurements of the properties of the relevant type of apparatus.
- Relay RY1 (Fig. 4) has a make-contact whereby, in cases of failure, the heating element (15) (Fig. 2) can be switched off.
- the relay will de-energize if the program in the microcontroller is not or no longer properly performed. In that case, the lower terminal pin of capacitor C1 will no longer be provided with a block-shaped signal. Accordingly, transistor T3 will start to block, so that C2 will start to charge itself to such an extent that the base current from transistor T1 becomes so low that this transistor starts to block as well. As a result, the relay RY1 will de-energize and contact ryl is opened.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Humidification (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Claims (20)
- Générateur de vapeur commandé par un microcontrôleur et muni d'un élément chauffant électrique (15), dans lequel, pour commander les propriétés de la vapeur, des moyens sont fournis pour mesurer le courant traversant l'élément chauffant (15) et pour mesurer la tension aux bornes de l'élément chauffant, en conséquence de quoi l'utilisation de capteurs séparés n'est pas nécessaire.
- Générateur selon la revendication 1, caractérisé en ce que le générateur est conçu de telle manière que l'influence sur le résultat de mesure, causé par des fluctuations de la tension, est compensée par le programme exécuté dans un microcontrôleur (8), en utilisant la tension mesurée aux bornes de l'élément chauffant (15).
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le générateur est conçu de manière à ce que des erreurs de mesure causées par des différences mutuelles produites dans la résistance des éléments de chauffage peuvent être évitées en provoquant l'exécution périodique d'un étalonnage court et automatique, dans lequel de l'eau sous pression atmosphérique est portée à ébullition dans le chauffage à écoulement et le courant traversant l'élément chauffant (15) est mesuré.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que la température de l'eau en entrée est déterminée dans la meilleure approximation possible en remplissant le chauffage à écoulement avec une quantité d'eau suffisante et en accomplissant immédiatement une mesure lorsque l'élément chauffant (15) est mis sous tension.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé par un chauffage à écoulement ayant une petite masse et une chaleur spécifique faible et une grande énergie par unité d'aire et un contenu relativement petit, pour réaliser un système de commande qui peut répondre rapidement aux fluctuations, de manière à ce que des valeurs désirées prédéterminées puissent être maintenues efficacement.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que via un labyrinthe en forme de spirale ou bien formé différemment, on fait passer l'eau de l'entrée d'eau (1) à la sortie de vapeur (5), afin que l'eau et le flux de vapeur traversant le chauffage à écoulement via un chemin défini, afin que à un flux et une énergie spécifiques, la température en tout point peut théoriquement être trouvée, ladite variation de température déterminant la résistance totale de la piste de chauffage du chauffage à écoulement.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le générateur est conçu pour que lors de l'accomplissement des mesures par le microcontrôleur la température de l'eau passant devant n'importe quelle position peut être déterminée.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le microcontrôleur (8) est conçu pour déterminer à une énergie fournie donnée, en changeant le flux, un point auquel toute l'eau, après le passage à travers le chauffage à écoulement, a été convertie précisément en vapeur, en référence au flux optimal (F), qui est détecté par une diminution du courant plus forte que d'habitude, due à l'augmentation de la température dans la zone de la sortie de vapeur du chauffage à écoulement, quand on provoque une réduction supplémentaire du flux.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le microcontrôleur (18) est conçu pour influencer l'énergie fournie au chauffage à écoulement, à un écoulement d'eau spécifique inchangé, permettant à l'humidité de la vapeur d'être fixée à une valeur souhaitée.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le microcontrôleur (18) est conçu pour influencer le débit de pompe, à une énergie électrique inchangée spécifique, permettant à l'humidité de la vapeur d'être fixée à une valeur souhaitée.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que, grâce à l'utilisation d'un labyrinthe dans le chauffage à écoulement, le générateur de vapeur peut être utilisé à des angles d'inclinaison allant jusqu'à environ 45°.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé par des moyens qui, en cas de vaporisation sèche ou d'inclinaison excessive au dessus du chauffage à écoulement, détectent la résistance qui croít rapidement à cause de l'accroissement rapide de la température, après quoi l'électronique assure directement la mise hors tension de l'élément chauffant (15).
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que, après fermeture de la sortie de vapeur, le microcontrôleur signale l'augmentation résultante de la pression et la montée consécutive de la résistance de l'élément chauffant (15), après quoi l'alimentation en courant de l'élément chauffant est coupée.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que la piste de chauffage (11) est de forme sensiblement identique au labyrinthe, afin qu'aucune grande différence de température ni contrainte mécanique résultante ne soit causée dans la piste de chauffage (11).
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que des éléments chauffants à base de technologie couche épaisse sont utilisés, si bien que l'application d'un filtre d'alimentation n'est pas nécessaire, puisque en raison du chauffage rapide de l'acier inoxydable, et de la dilatation locale rapide de l'acier inoxydable, les couches de calcium qui peuvent être présentes du côté eau se cassent en petits morceaux, lesdits petits morceaux étant entraínés vers l'extérieur par la vapeur.
- Générateur selon l'une quelconque des revendications précédentes, caractérisé en ce que, durant un fonctionnement normal, l'électronique surveille la pression et/ou la température, de sorte que pour garantir la sécurité, aucun capteur de pression séparé ou capteur de dépassement de température n'est nécessaire, tandis que dans l'éventualité d'une panne dans l'électronique elle-même, une erreur du programme exécuté dans le microcontrôleur (8) est détectée par le reste de l'électronique, tandis qu'une erreur dans la dernière partie mentionnée de l'électronique est détectée, le microcontrôleur (8) étant programmé pour effectuer des tests périodiques qui conduisent à la coupure de l'alimentation en courant du chauffage à écoulement.
- Circuit électrique conçu pour une utilisation dans un générateur selon l'une quelconque des revendications précédentes.
- Microcontrôleur programmé pour une utilisation dans un générateur selon l'une quelconque des revendications précédentes.
- Chauffage à écoulement destiné à être utilisé dans un générateur selon l'une quelconque des revendications 1 à 16, caractérisé par deux segments sphériques (2,3), montés l'un sur l'autre, ayant une arrivée d'eau et une sortie de vapeur et un élément chauffant conçu comme une résistance élaborée en technologie couche épaisse.
- Chauffage à écoulement destiné à être utilisé dans un générateur selon l'une quelconque des revendications 1 à 16, caractérisé par un labyrinthe approximativement en forme de spirale, enfermé entre les segments sphériques.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1010813A NL1010813C2 (nl) | 1998-12-15 | 1998-12-15 | Een microcontroller gestuurd apparaat dat door middel van elektriciteit op een beheerste wijze stoom genereert zonder gebruikmaking van afzonderlijke sensoren. |
NL1010813 | 1998-12-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1010937A1 EP1010937A1 (fr) | 2000-06-21 |
EP1010937B1 true EP1010937B1 (fr) | 2003-09-03 |
Family
ID=19768315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990204312 Expired - Lifetime EP1010937B1 (fr) | 1998-12-15 | 1999-12-15 | Générateur de vapeur électrique commandé par un micro-processeur sans capteurs séparés |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1010937B1 (fr) |
DE (1) | DE69910960D1 (fr) |
NL (1) | NL1010813C2 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0202988D0 (sv) † | 2002-03-15 | 2002-10-10 | Delaval Holding Ab | A method and an arrangement at a dairy farm |
US7476369B2 (en) * | 2003-09-16 | 2009-01-13 | Scican Ltd. | Apparatus for steam sterilization of articles |
GB0603314D0 (en) | 2006-02-20 | 2006-03-29 | Sun Brian | Steam Generator |
CN114263953B (zh) * | 2021-12-29 | 2023-10-20 | 华帝股份有限公司 | 一种蒸汽清洗的恒蒸气量控制方法及应用其的吸油烟机 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3232169A1 (de) * | 1982-08-30 | 1984-03-01 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Verfahren zum regeln einer widerstandslast mit temperaturkoeffizent und schaltung fuer die durchfuehrung des verfahrens |
DE3809540A1 (de) * | 1988-03-22 | 1989-10-05 | Heraeus Wittmann Gmbh | Verfahren zur temperaturregelung von widerstandsheizleitern |
DE9214577U1 (de) * | 1992-10-28 | 1993-12-16 | Mayer, Herbert, 87700 Memmingen | Dampferzeuger |
DE19509772C1 (de) * | 1995-03-17 | 1996-07-11 | Draegerwerk Ag | Elektrisch beheizter Wärmetauscher |
JPH109506A (ja) * | 1996-06-20 | 1998-01-16 | Juki Corp | 蒸気発生装置 |
-
1998
- 1998-12-15 NL NL1010813A patent/NL1010813C2/nl not_active IP Right Cessation
-
1999
- 1999-12-15 DE DE69910960T patent/DE69910960D1/de not_active Expired - Lifetime
- 1999-12-15 EP EP19990204312 patent/EP1010937B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
NL1010813C2 (nl) | 2000-06-19 |
DE69910960D1 (de) | 2003-10-09 |
EP1010937A1 (fr) | 2000-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4214148A (en) | Indicator for the extent of clarification of waterheaters in electric household appliances | |
EP0138171A2 (fr) | Chauffe-eau | |
US20040042772A1 (en) | Thermostat system to provide adaptive control of water temperature | |
MXPA00003813A (es) | Calentador electrico de agua. | |
ITRE20110109A1 (it) | Macchina da caffe' a risparmio energetico | |
EP1010937B1 (fr) | Générateur de vapeur électrique commandé par un micro-processeur sans capteurs séparés | |
US4558205A (en) | Electric continuous flow water heater having dual temperature safety limiting devices | |
US5263116A (en) | Heater for liquid | |
EP0985892B1 (fr) | Surveillance et contrôle de la sécurité d'une installation de chauffage de liquide, utilisant comme capteur les éléments électriques chauffants | |
US6465764B1 (en) | Water heater and control system therefor | |
WO1996025869A1 (fr) | Perfectionnements d'un appareil utilise pour faire bouillir du liquide | |
US20050232616A1 (en) | Thermostat for water boiler | |
GB2184526A (en) | Water heaters | |
AU661557B2 (en) | Waterheater | |
JP5593142B2 (ja) | 給湯システム | |
GB2368896A (en) | Heat exchange system, temperature sensor arrangement and operation | |
JP2001518600A (ja) | 熱効率向上のために比例帯温度制御を備える温水器 | |
JPH0259383B2 (fr) | ||
US12044439B2 (en) | Water heater and method of controlling same | |
GB2589112A (en) | Water heater for use in a plumbing system | |
RU2168874C1 (ru) | Электродный нагреватель жидкости | |
CN103119681A (zh) | 由电阻安全启动的电子温控器 | |
GB2230621A (en) | Controlling water heating | |
JPS61125542A (ja) | 電気温水器の制御装置 | |
WO2010116306A1 (fr) | Système de contrôle pour appareil électroménager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001221 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT NL |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030903 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20030903 Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030903 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69910960 Country of ref document: DE Date of ref document: 20031009 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031215 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031215 |
|
26N | No opposition filed |
Effective date: 20040604 |
|
EN | Fr: translation not filed |