EP0985892B1 - Surveillance et contrôle de la sécurité d'une installation de chauffage de liquide, utilisant comme capteur les éléments électriques chauffants - Google Patents

Surveillance et contrôle de la sécurité d'une installation de chauffage de liquide, utilisant comme capteur les éléments électriques chauffants Download PDF

Info

Publication number
EP0985892B1
EP0985892B1 EP99202932A EP99202932A EP0985892B1 EP 0985892 B1 EP0985892 B1 EP 0985892B1 EP 99202932 A EP99202932 A EP 99202932A EP 99202932 A EP99202932 A EP 99202932A EP 0985892 B1 EP0985892 B1 EP 0985892B1
Authority
EP
European Patent Office
Prior art keywords
heating
heating element
temperature
resistance
relays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99202932A
Other languages
German (de)
English (en)
Other versions
EP0985892A1 (fr
Inventor
Bernardus Johannes Maria Leerkotte
Herbert Ludwig Schulze Geiping
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nederlandsche Apparatenfabriek NEDAP NV
Original Assignee
Nederlandsche Apparatenfabriek NEDAP NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19767796&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0985892(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nederlandsche Apparatenfabriek NEDAP NV filed Critical Nederlandsche Apparatenfabriek NEDAP NV
Publication of EP0985892A1 publication Critical patent/EP0985892A1/fr
Application granted granted Critical
Publication of EP0985892B1 publication Critical patent/EP0985892B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/124Preventing or detecting electric faults, e.g. electric leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/25Temperature of the heat-generating means in the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/395Information to users, e.g. alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/128Preventing overheating

Definitions

  • This invention relates to an electronic microcontroller-controlled system by means of which the temperature of liquids (mostly water) and solids, the heat content of a particular volume of liquid, the lime deposition on electric heating elements, defects of heating elements, and the erroneous setting into operation of heating elements can be determined, with the heating elements used in the appliance or system being utilized as temperature sensors.
  • the control is integrally safe.
  • the appliances referred to include, by way of example, domestic appliances such as, for instance, electric boilers, water heaters, coffee-makers, washing machines, dishwashers, and the like.
  • thermostatic switch or thermostatic control, the operation of which is based on the coefficient of cubic expansion of liquids.
  • a small reservoir is mounted in a tube, which is disposed in the environment to be heated. Via a capillary tube, the reservoir is connected with a second reservoir having on one side a readily movable membrane.
  • the membrane has undergone a particular predetermined displacement, a mechanically coupled electrical switch goes from the conducting state (closed contacts) into the non-conducting state. This switching occurs at a temperature which is adjustable by a rotary knob which is mechanically coupled with the switch mentioned.
  • the thermostatic switch mentioned reaches the point where it switches back to the conducting state again. In this way, the temperature can be maintained within particular limits.
  • an excess temperature protection is incorporated, often in combination with the above-mentioned thermostatic control, which functions in substantially the same manner.
  • This excess temperature protection has its own independent liquid reservoir, capillary and switching system.
  • the desired switching temperature has been set and fixed at a high, though still just acceptable value.
  • the excess temperature protection will interrupt the voltage supply. The current supply can be restored only by depressing a reset button on the excess temperature protection after the temperature has fallen sufficiently.
  • a boiler can be set at a temperature between 35°C and 85°C, which can be reached overnight.
  • hot water will then be present (in well-insulated boilers, a temperature fall of maximally 1 Kelvin per 24 hours will occur), while at the bottom of the vessel relatively cold water will be present. Due to the manner in which cold water flows in, a sharp transition (1-2 cm) from cold to hot water will be maintained.
  • the present-day boilers of more deluxe design are fitted, on the outside of the vessel, with a heat content sensor, mostly consisting of a number of temperature-dependent resistors, by means of which it can be determined approximately at what height the transition from hot to cold water is located. Since the temperature of the water above the transition layer mentioned is also known, the heat content of the boiler can be determined by the electronics. Often, the number of LED's or another indication on a display indicate how many showers or baths can still be taken when using a mixing tap set at 38°C.
  • US-A-3,789,190 provided a solution for a number of the above mentioned drawbacks by using the heating elements themselves as temperature sensor. Not only does the new temperature measuring system enable temperature determination and heat content determinations to be carried out, but the utilization of heating elements as sensor also enables very early determination of the extent of scaling, the defective status of a heating element, and the non-presence of water.
  • US-A-3,789,190 discloses a heating apparatus for heating liquids or solids, suitable in particular for use in domestic appliances, comprising at least one electrical resistance heating element excitable by an electrical supply source, means for switching on and off the at least one heating element and a measuring circuit for measuring the electrical resistance of the heating element, which resistance, on the basis of the temperature coefficient of the resistance wire of the heating element, forms a measure for the temperature, to which measuring circuit a measuring voltage is applied, and a controllable switching contact device which in a first position connects the heating element with the supply source and in a second position connects the heating element with the measuring circuit.
  • a problem of this and any other heating apparatus of a similar type is, that during use of the heating apparatus a line scale will develop which will affect proper operation in the term. It is an object of the present invention to provide means for detecting the presence of line deposition on a heating element of a heating apparatus.
  • a heating apparatus of the above type is characterized in that the heating apparatus further comprises a micro controller under the control of which the thickness of lime scale on a heating element is determined by periodically comparing the time constant of the cooling of the resistance wire in the heating element at different temperatures as determined and stored during the first working hours of the heating element, with the value measured last, so that when certain values set by the manufacturer are found, a service request signal is given or, when an absolute maximum is exceeded, the appliance or system is cut out entirely.
  • the basic circuit for one heating element E1 is based on two independent relays RY1 and RY2 each having one make-and-break contact ry1 and ry2. In the rest position of each one of these relays, the heating element, through the rest position of the contacts ry1 and ry2, is placed electrically in a measuring bridge 1 having, in this example, resistors R 1 , R 2 , R 3 . In the active position, i.e. the normal operating position, the heating element is connected via the relay contacts with the mains voltage V1.
  • a voltage is formed which is a function of the temperatures prevailing in the heating element.
  • the heating element is then used as a temperature-dependent resistor. This is possible because each electric heating element, like any electrical resistance element, has a temperature-dependent resistance value.
  • the output signal P of the differential amplifier 2 is applied to an analog/digital converter 6 of the microcontroller.
  • the electronic circuit 3 which drives the two above-mentioned relays in Fig. 2 contains a microcontroller or microprocessor 4 by means of which it is constantly monitored, per transistor T1, T2 each controlling a relay, via for instance two inputs on the microcontroller, whether the relays RY1 and RY2, as to control, are in the desired state.
  • the electronic circuit contains a transistor T4, which interrupts the supply V2 to the relays if a control signal (a square wave) on an output of the microcontroller 4 enters a static condition. This can occur, for instance, if the microcontroller 4 enters a condition of malfunction. This can be detected via capacitor C2, resistor R7 and transistor T3. Also, in the circuit 3, it is checked at short intervals via one of the connections 10, 11, 12 of the microcontroller, whether the supply voltage for the relays corresponds with the desired condition. The proper operation of the safety cut-out function is checked at least once a day by interrupting the square-wave signal which is applied to capacitor C2 by the microcontroller 4.
  • a control signal a square wave
  • the pull-in and release of the two relays are not effected simultaneously, but in succession, such that the order of pull-in and release is constantly changed. As a result, in each case a different relay switches the full power. The second relay then switches practically unloaded.
  • the above-mentioned control of the two relays occurs with the same number as the number of heating elements used.
  • the safety cut-out function via transistor T4 can be made of single design if the number of heating elements to be controlled is not unduly large.
  • the invention further enables the following new measuring methods:
  • the determination of the heat content in inter alia boilers can be performed without the heat content sensor referred to.
  • the two principles of determining the heat content can be used if at least two heating elements (Fig. 3) are available, which are to be mounted at the bottom of the boiler (Fig. 4). Starting from Fig. 3, a number of embodiments are possible, the operation of which will be explained hereinbelow.
  • the water will heat all elements A, B, C and D to 60°C.
  • all elements as sensor, it can be determined during the tapping of hot water of 60°C to what level cold supply water has flowed in. If, for instance, the cold water has passed element D, the resistance of this element will have fallen to a value corresponding to the temperature of this cold water. Accordingly, by measuring the resistance of element D, the temperature of the cold water can be determined as well. The resistance of the elements A and B will also decrease because they stand in this cold water for approximately 20%.
  • the resistance of element C When upon further tapping of hot water the cold water rises to halfway element C, the resistance of element C will approximately have a resistance corresponding to the average temperature of the cold and the hot water.
  • the elements A and B then stand in the cold water for approximately 50%. With the value which element C provides, as well as the resistance of the elements A and B, the heat content can be determined. If the cold water rises above the element C, but lower than the top of the elements A and B, the height of the transition between cold and hot water (and hence the heat content) can be determined only by measuring the resistance of A or B.
  • the heat content can be determined by controlling the elements A, B and optionally C for some time (a few tens of seconds). By dissipating electrical energy, the water in contact with the elements is heated and consequently rises.
  • Element D now functions as a temperature sensor by means of which it is determined how long it takes for an increase of the temperature to be signaled.
  • the measured time between the start of the heating phase and the signaling of the temperature increase of element D is a variable for calculating the heat content of the boiler.
  • the heat content can also be determined by heating with element A and measuring with element B.
  • versions with element A as heat source and element D as sensor for each type of boiler it can be determined by calculations and/or measurements at what height the transition layer is located, on the basis of which the heat content can subsequently be calculated.
  • each heat demand can be signaled by each of the heating elements connected as temperature sensors through natural temperature fluctuations of the cold water flowing in. Since the system described must always be controlled by a microprocessor or microcontroller, it is possible to register the pattern of use over time, which makes it possible, when there is no signaling of water use or there is no water use, still to carry out a heat content determination. Through this method, the employment of a flow sensor can be omitted.
  • This invention utilizes the possibility mentioned of using a heating element as temperature sensor.
  • a heating element Prior to the prolonged supply of electrical energy to a heating element (Fig. 4), first the resistance of the element is measured to determine the current (water or air) temperature. Thereupon, energy is sent to the element briefly (about 1-5 seconds).
  • a resistance measurement of the element is carried out.
  • the measured resistance will rapidly fall back from a particular maximum to the temperature of the water.
  • the heating element will not be able to get rid of the heat so fast.
  • the measured temperature will therefore decrease much more slowly.
  • the microcontroller will ensure that an alarm is given (e.g. an 'Error' LED 7 lighting up).
  • the appliance can be re-started only after a particular time and after sufficient cooling of the heating element.
  • the microcontroller is preferably programmed to detect, for instance during the first day at a number of temperatures during the heating phase, how fast the resistance of each element falls off after the interruption of the current. The measurement proceeds in a manner similar to that described hereinabove under 'the manner of protecting the heating elements in case the heating elements are erroneously switched on when an appliance or system is not filled with water.' This measurement at certain resistance intervals occurs after a period of a few minutes in which no heating has taken place, so that the temperature of the water is substantially the same throughout the vessel.
  • a condition for a proper determination is that the transition layer K from cold to hot water is located above the elements, or that all the water in the appliance has the same temperature and hence there is no transition layer in the appliance.
  • the measuring results at predetermined resistance values of the elements are stored in a non-volatile memory such as, for instance, an E 2 Prom.
  • the microcontroller can determine for each resistance value the rate of fall of the temperature, and hence the time constant. Periodically, for instance once a month, the measurement is automatically repeated and compared with the measured values stored in the first hours. When the temperature fall time determined by the manufacturer is exceeded, the microcontroller can give an alarm. This can be done, for instance, by having the LED 7 or another LED light up, thereby indicating that service is required. When the periodic measurement indicates that a maximum value (to be set by the manufacturer) is exceeded, the appliance can be switched off definitively. This prevents an element burning out. In this event, too, the microcontroller can provide an alarm and/or indication.
  • the present control is highly reliable by the use of two independently controllable relays RY1 and RY2 per heating element and the ability to cut out both relays via transistor T4, and by the fact that these functions are continuously tested by the microcontroller 4, and further in that in case of a malfunction of the microcontroller the square-wave signal to transistor T4 drops out. Through this design, a separate excess temperature protection is no longer needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Control Of Resistance Heating (AREA)

Claims (10)

  1. Dispositif de chauffage destiné à chauffer des liquides ou des solides, adéquat en particulier pour utilisation dans des appareils domestiques comprenant au moins un élément de chauffage à résistance électrique excitable par une source d'alimentation électrique, des moyens pour mettre sous tension ou hors tension l'élément de chauffage au nombre d'au moins un et un circuit de mesure pour mesurer la résistance électrique de l'élément de chauffage, laquelle résistance, sur la base du coefficient de température du fil de résistance de l'élément de chauffage, forme une mesure de la température, auquel circuit de mesure est appliquée une tension de mesure, et un dispositif de contact de commutation pilotable qui, dans une première position, connecte l'élément de chauffage à la source d'alimentation et, dans une seconde position, connecte l'élément de chauffage au circuit de mesure, caractérisé en ce que le dispositif de chauffage comprend en outre un micro-contrôleur (4) sous la commande duquel l'épaisseur de dépôt calcaire sur un élément de chauffage (A, B, C, D) est déterminée en comparant périodiquement la constante de temps du refroidissement du fil de résistance dans l'élément de chauffage à différentes températures déterminées et stockées pendant les premières haures de fonctionnement de l'élément de chauffage, avec la valeur mesurée en dernier lieu, de sorte que, quand certaines valeurs fixées par le fabricant sont trouvées, un signal de demande de service est donné ou, quand un maximum absolu est dépassé, l'appareil ou le système est complètement arrêté.
  2. Dispositif de chauffage selon la revendication 1, caractérisé par un circuit électrique (3) sous la commande duquel l'élément de chauffage, via les contacts de rupture de deux relais commandés indépendamment (RY1, RY2), peut être connecté si on le souhaite à une source d'alimentation ou à un circuit en pont de mesure de résistance (1).
  3. Dispositif de chauffage selon l'une au moins des revendications précédentes, caractérisé en ce que, pendant le chauffage du solide ou du liquide, seules des mesures de température sont effectuées pour obtenir des données, de sorte qu'il est possible de calculer combien de temps, étant donné la puissance fixée, est nécessaire pour atteindre la température finale souhaitée, de sorte que ce n'est qu'à la fin du cycle de chauffage qu'il est nécessaire d'effectuer quelques mesures pour régler la température finale dans la tolérance souhaitée, ceci dans le but de prolonger la durée de vie des contacts des deux relais (RY1, RY2).
  4. Dispositif de chauffage selon l'une au moins des revendications 2 et 3, caractérisé en ce que des moyens sont prévus pour provoquer la fermeture et l'ouverture des deux relais (RY1, RY2) dans chaque cas dans un ordre différent dans le but de prolonger nettement la durée de vie électrique des relais (RY1, RY2) en ce que chaque relais (RY1, RY2) effectue une moitié du nombre total d'actions de commutation sous pleine charge pendant la vie du système électronique.
  5. Dispositif de chauffage selon l'une au moins des revendications 2 à 4, caractérisé en ce que le micro-contrôleur (4) est aménagé pour contrôler les actions de commutation des relais et le fonctionnement du circuit électrique (3) et en ce que, en cas de défaillance du micro-contrôleur (4) par l'intermédiaire d'autres circuits électroniques tous les relais (RY1, RY2) retombent en position de repos, de sorte que tous les éléments de chauffage (A, B, C, D) sont déconnectés de la tension d'alimentation (V1) au moyen de deux contacts indépendants, de sorte qu'une fonction de coupure de sécurité sûre est garantie.
  6. Dispositif de chauffage selon l'une quelconque des revendications précédentes, caractérisé en ce que le micro-contrôleur (4) est aménagé pour déterminer l'enthalpie d'une chaudière en mesurant, dans le cas où la couche de transition froid/chaud est encore située dans la région des éléments de chauffage (A, B, C, D), ce qui peut être déterminé par la diminution constante de la résistance des éléments de chauffage (A, B, C, D) qui se produit pendant les activités de soutirage, la résistance qui résulte de l'addition des deux parties distinctes de l'élément de chauffage (A, B, C, D) qui se trouvent dans la partie froide et dans la partie chaude de l'eau et en les utilisant en même temps que la température connue de l'eau au sommet de la chaudière pour calculer l'enthalpie.
  7. Dispositif de chauffage selon l'une quelconque des revendications précédentes, caractérisé en ce que le micro-contrôleur (4) est aménagé pour déterminer l'enthalpie d'une chaudière en ce que, dans le cas où la couche de transition froid/chaud est située au-dessus des éléments de chauffage (A, B, C, D), ce qui peut être déterminé après des activités de soutirage, qui sont établies par la fluctuation de la résistance des éléments de chauffage par suite des fluctuations naturelles de la température de l'eau qui pénètre pendant le soutirage, de l'énergie électrique est dissipée dans un élément spiral situé haut ou dans un élément vertical situé adjacent au milieu (par exemple, A sur la figure 3), en mesurant combien de temps il faut pour que la température sur l'autre élément de chauffage connecté comme capteur de température commence à s'élever, ce temps, selon le type de chaudière, indique à quelle hauteur est située la couche de transition.
  8. Dispositif de chauffage selon les revendications 6 et 7, caractérisé en ce que la précision de la détermination de l'enthalpie peut être améliorée en utilisant des données statistiques qui ont été collectées pendant l'utilisation de l'appareil.
  9. Dispositif de chauffage comprenant un micro-contrôleur (4) ou un microprocesseur qui est aménagé pour contrôler la commutation de relais de relais commandés indépendamment (RY1, RY2) via des contacts de rupture à retard d'au moins un élément de chauffage (A, B, C, D), commandé par un circuit électrique (3), peut être connecté comme cela est décrit à une alimentation en tension (V1) ou à un circuit de mesure de résistance (1) d'un dispositif de chauffage selon la revendication 1, dans lequel le micro-contrôleur ou microprocesseur (4) est de plus aménagé pour contrôler le fonctionnement du circuit électrique (3) et que, en cas de défaillance du micro-contrôleur (4) par l'intermédiaire des autres circuits électroniques tous les relais (RY1, RY2) retombent dans la position de repos, de sorte que tous les éléments de chauffage (A, B, C, D) sont déconnectés de la tension d'alimentation au moyen de deux contacts indépendants, de sorte qu'une fonction de coupure de sécurité sûre est garantie.
  10. Appareil domestique comprenant un dispositif de chauffage selon l'une quelconque des revendications 1 à 8.
EP99202932A 1998-09-10 1999-09-09 Surveillance et contrôle de la sécurité d'une installation de chauffage de liquide, utilisant comme capteur les éléments électriques chauffants Expired - Lifetime EP0985892B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1010064 1998-09-10
NL1010064A NL1010064C2 (nl) 1998-09-10 1998-09-10 Regelen en op veiligheidsaspecten controleren van verwarmingssystemen voor vloeistoffen waarbij gebruik wordt gemaakt van elektrische verwarmingselementen als sensor.

Publications (2)

Publication Number Publication Date
EP0985892A1 EP0985892A1 (fr) 2000-03-15
EP0985892B1 true EP0985892B1 (fr) 2004-08-25

Family

ID=19767796

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99202932A Expired - Lifetime EP0985892B1 (fr) 1998-09-10 1999-09-09 Surveillance et contrôle de la sécurité d'une installation de chauffage de liquide, utilisant comme capteur les éléments électriques chauffants

Country Status (3)

Country Link
EP (1) EP0985892B1 (fr)
DE (1) DE69919646T2 (fr)
NL (1) NL1010064C2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936798B2 (en) 2000-07-27 2005-08-30 Joseph Tiran Programmable domestic water heating system
KR101308122B1 (ko) 2010-09-30 2013-09-12 코웨이 주식회사 과열방지가 가능한 온수탱크
DE102014219347B4 (de) 2014-09-24 2017-09-14 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Überwachen einer Heizvorrichtung und Heizvorrichtung
DE102014019779B4 (de) 2014-09-24 2022-10-06 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Erkennen von Verkalken oder sonstiger Beeinträchtigungen der Funktion einer Heizvorrichtung und Heizvorrichtung
CN114165923A (zh) * 2021-12-12 2022-03-11 江阴市辉龙电热电器有限公司 安全型防干烧式电热器系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037080A (en) * 1976-01-07 1977-07-19 Owen Donald R Protection and control of electric immersion-type heater
DE3437304A1 (de) * 1984-10-11 1986-04-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur bestimmung der temperatur, vorzugsweise der eisgrenzschichttemperatur, eines elektrischen widerstandsheizelementes einer enteisungsanlage fuer flugzeuge, hubschrauber oder dergleichen
EP0453435A3 (en) * 1990-04-11 1992-07-01 Austria Email Eht Ag System to assess measured values
DE4401539C2 (de) * 1994-01-20 1999-04-29 Stiebel Eltron Gmbh & Co Kg Erfassungseinrichtung für den nutzbaren Ladezustand eines Warmwasserspeichers

Also Published As

Publication number Publication date
NL1010064C2 (nl) 2000-03-13
DE69919646D1 (de) 2004-09-30
DE69919646T2 (de) 2005-08-11
EP0985892A1 (fr) 2000-03-15

Similar Documents

Publication Publication Date Title
US6649881B2 (en) Electric water heater with pulsed electronic control and detection
EP0138171A2 (fr) Chauffe-eau
KR890006098A (ko) 히터 에너지 계수기를 사용한 온도 감지 고장 검출 장치
EP0082669A2 (fr) Commande d'une installation de chauffage de bâtiment
US8258442B2 (en) Apparatus and method for detecting condition of heating element
KR20010042436A (ko) 멀티포인트 디지털 온도 제어기
RU2399000C2 (ru) Электрическое устройство для приготовления пищи с определением наличия емкости
GB2185161A (en) Controls for electrical heating elements of water heaters
US5951897A (en) Temperature measuring device for a regulating circuit of an electrical radiant heating appliance
EP0985892B1 (fr) Surveillance et contrôle de la sécurité d'une installation de chauffage de liquide, utilisant comme capteur les éléments électriques chauffants
EP0526668B1 (fr) Chaudière à fluide
EP1010937B1 (fr) Générateur de vapeur électrique commandé par un micro-processeur sans capteurs séparés
WO2007028175A1 (fr) Dispositif de chauffage
JPH0833236B2 (ja) 電気温水器
JPH0833235B2 (ja) 電気温水器
KR930005533Y1 (ko) 온수 제어 회로
JPH0259383B2 (fr)
GB2230621A (en) Controlling water heating
JP3018792B2 (ja) 電気湯沸かし器
CN207689941U (zh) 一种电熨斗温度控制电路
JPH0222591Y2 (fr)
CA2409010C (fr) Chauffe-eau electrique a regulateur-detecteur electronique pulse
JPS61125542A (ja) 電気温水器の制御装置
KR100298086B1 (ko) 냉장및가열시스템용멀티포인트온도제어기의전자서머스탯제어장치및그사용방법
JPS63113253A (ja) 電気温水器の制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20020213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69919646

Country of ref document: DE

Date of ref document: 20040930

Kind code of ref document: P

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: KREIKENBOHM, ROBERT

Effective date: 20050518

R26 Opposition filed (corrected)

Opponent name: KREIKENBOHM, ROBERT

Effective date: 20050518

ET Fr: translation filed
R26 Opposition filed (corrected)

Opponent name: KREIKENBOHM, ROBERT

Effective date: 20050518

NLR1 Nl: opposition has been filed with the epo

Opponent name: KREIKENBOHM, ROBERT

NLR1 Nl: opposition has been filed with the epo

Opponent name: KREIKENBOHM, ROBERT

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20081115

NLR2 Nl: decision of opposition

Effective date: 20081115

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100415 AND 20100421

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20100512

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120920

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 69919646

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 69919646

Country of ref document: DE

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150626

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150924

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180930

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69919646

Country of ref document: DE