EP1006205B1 - Process for the manufacture of homogenous alloys by melting and remelting - Google Patents

Process for the manufacture of homogenous alloys by melting and remelting Download PDF

Info

Publication number
EP1006205B1
EP1006205B1 EP99122461A EP99122461A EP1006205B1 EP 1006205 B1 EP1006205 B1 EP 1006205B1 EP 99122461 A EP99122461 A EP 99122461A EP 99122461 A EP99122461 A EP 99122461A EP 1006205 B1 EP1006205 B1 EP 1006205B1
Authority
EP
European Patent Office
Prior art keywords
crucible
melt
coldwall
alloy
alloy components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99122461A
Other languages
German (de)
French (fr)
Other versions
EP1006205A3 (en
EP1006205A2 (en
Inventor
Alok Dr. Choudhury
Matthias Dr. Blum
Stefan Pleier
Georg Jarczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALD Vacuum Technologies GmbH
Original Assignee
ALD Vacuum Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALD Vacuum Technologies GmbH filed Critical ALD Vacuum Technologies GmbH
Publication of EP1006205A2 publication Critical patent/EP1006205A2/en
Publication of EP1006205A3 publication Critical patent/EP1006205A3/en
Application granted granted Critical
Publication of EP1006205B1 publication Critical patent/EP1006205B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/20Arc remelting

Definitions

  • the invention relates to a method for manufacturing of alloys according to the preamble of the claims 1 and 2.
  • the invention is particularly concerned with the melting and remelting of reactive, refractory metals and alloys in a cold wall crucible furnace under a vacuum atmosphere and / or protective gas atmosphere, preferably at vacuum pressures ⁇ 10 -1 mbar. These melting processes are used to produce homogeneous metal blocks or metal bars from chargeable starting material.
  • a manufacturing process is known at which is the starting material that is both lumpy as well as in powder form, in a defined Mass composition first to individual Ingot is pressed. According to the desired one Mass composition of the individual bars the respective amount of each Alloy proportions selected. This pressed and compacted bars become one with the other Electrode put together, which as a melting electrode used in a VAR (Vacuum Arc Melting) process becomes. The self-consuming electrode is remelted here. Here the alloy proportions continue in the liquid melt mixed. The melt then becomes Subsequent processing deducted as a block. Depending on required homogeneity it has become necessary exposed this block as a consumable electrode to remelt in a further process.
  • VAR Vauum Arc Melting
  • a disadvantage of this method is that the material preparation, especially the editing of the Consumable electrode, each time and cost intensive Labor required.
  • the melted alloy is the one to be produced Block several times to melt what is under Taking into account the above required Process times a significant loss of productivity means simply because every electrode inevitable to a block of larger diameter must be remelted.
  • the invention is therefore based on the object a method of the type described above to indicate by the alloys with extraordinary homogeneous distribution of the alloy components can be produced over the total volume.
  • the method according to the invention is a melting technique that ensures will that starting from the individual alloy components with different densities, Conditions (history of origin, lumpiness) and melting points with a desired alloy exact chemical composition becomes. Contrary to previous experience with pure VAR method has been shown that by Adherence to the melting sequence according to the invention exact chemical composition of an alloy reproducible in high quality, d. H. with a over the entire volume of the final melt Homogeneity can be produced. The problem the chemical inhomogeneity in the remelting in a pure VAR process as described above Art is solved in a simple way. The essence of the invention is that in contrast the stirring movement to the previous remelting practice and thus the mixing process in the melt pool the cold wall induction crucible for thorough mixing the melt and even distribution the alloying elements in the melt advantageous is used.
  • the alloy components in the first stage of the process as a chargeable material, which becomes a preselected alloy composition leads over a lock chamber directly into a loading area of a cold wall induction crucible. After the material has melted this in the melt pool through the through the Induction field mixed stirring field mixed. This creates a homogenized melt, which from the cold wall induction crucible via a Block removal device continuously as solidified Block is removable.
  • the method according to the invention is particularly suitable for the production of alloys which consist of refractory and / or reactive metals, such as in particular titanium or titanium compounds showing alloys.
  • the cold wall crucible is the starting material either as general cargo and / or as powder and / or as granules in front.
  • This source material becomes the first Remelt either pressed into solid blocks, which is both an insert for an optional VAR process used for block production can be used or it will via a material lock directly into a cold wall induction crucible introduced as above described.
  • FIG. 1 shows a cold wall crucible arrangement 2 shown out of a slotted crucible wall 3 in the form of a water-cooled hollow body.
  • the cooling water flow is simplicity not shown for the sake of it. However, it is also possible the cooling water through another cooling medium. to replace.
  • the crucible wall 3 is of an induction coil arrangement 7 surround the necessary Provides heating, melting and stirring energy.
  • the Power supply unit for the induction coil arrangement 7 is also not shown. There the design principle of a cold wall crucible Induction coil - taken by itself - state of the Technology is a further consideration of this superfluous.
  • the induction coil arrangement 7 with a larger number of turns equipped and in individual sub-coils 20a, 20b, 20c, 20d, 20e can be divided into the independent power supply units can be connected. These can then be separated regulated or controlled by each other, to the heating power and the stirring power over the To be able to adjust the height of the crucible wall 3 in a targeted manner.
  • the entire cold wall crucible arrangement 2 is also stored the lower crucible flange 16 on stationary lower Supports 24a, 24b.
  • On the lower crucible flange 16 is that surrounded by the induction coil arrangement 7 Crucible wall 3 with all-round lower sealing elements 23 supported vacuum-tight.
  • On the Crucible wall 3 supports the upper crucible flange 14.
  • Upper sealing element 15 is provided, which a vacuum tight connection between the Crucible wall 3 and the upper crucible flange 14 forms.
  • the crucible wall 3 and the upper and lower Crucible flange 14 and 16 are coaxial with each other arranged and enclose a vertically aligned Passage zone for the material to be melted.
  • a material lock 4 which with a Lock opening 10 is vacuum-tight with respect to the outside space can be locked.
  • the alloy Material 9 is in via the lock opening 10 in introduced the lock chamber 11, correspondingly the alloy proportions of the desired alloy in terms of quantity in the lock chamber 11 are merged.
  • the to be melted alloy material 9 is in the Batch material space 34 of the passage zone of the crucible wall 3 accumulated and migrates according to that Degree of liquefaction of the entire alloy material 9 in the actual melting zone, which the Melt pool 32 forms.
  • the axial position of the Melt pools 32 is created by the arrangement of the induction coils 20a-20e through which the necessary melting and stirring energy into the melt be fed inductively.
  • the melt is inside of the melt pool 32 is continuously stirred, whereby the individual alloy components in the total accumulated in the melt pool 32 Melt are homogenized.
  • the solidification zone closes in the lower area in which the solidified block of material 30 is supported on a support base 25, which over a block withdrawal device 6 after is continuously lowered below.
  • the directions of movement are indicated by the double arrow Z.
  • the remelting process described so far takes place in a vacuum atmosphere of ⁇ 10 -1 mbar.
  • the residual atmosphere located in the cold-wall crucible arrangement 2 is evacuated in a known manner via suction ports 12 using vacuum pumps, not shown in the drawings.
  • the cold wall crucible shown in Figure 2 60 consists essentially of the crucible bottom 17, on which the crucible wall 21 is placed is.
  • the crucible wall is known Way from a palisade arrangement 21,21 ', ..., whereby between the individual palisades 21, 21 ', ... distances for penetration of the melting and stirring magnetic field are provided. At these intervals are usually sealing elements made of an insulating material.
  • the stirring or melting magnetic field is over an induction coil 19, which individual coil turns 20a-20d, in a known manner Power supply devices, not shown in Figure 2 generated.
  • the first melt through a VAR process are the Alloy components z. B. as a powder, as granules or as a lumpy material, which to a fixed pressed block with a defined Mass composition is pressable.
  • This individual Blocks 40, 41 (see FIG. 3a) become Forming a consumable electrode 42 and at the connecting seams 50, 52 with one another welded.
  • the blocks 40, 41 is in particular an electron beam welding process intended.
  • the to a consumable electrode 42 merged blocks 40,41 are then in a first, not shown in the figures Vacuum arc remelting process first melted, whereby the starting material in the Melt is homogeneously distributed to a certain extent becomes.
  • melt produced in this way is then transferred to suitable molds, in which the melt material to a block 44 (see Figure 3b) solidified.
  • a block 44 (see Figure 3b) solidified.
  • the volume of the block chosen so that this the crucible volume of the cold wall crucible shown in Figure 2 60 fills out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

In the case of a process for the production of homogeneous mixtures of alloys, in particular of intermetallic phases of at least two alloy components, by the melting of raw materials in an inductively heated cold wall furnace the following processing steps are applied: a) in a first processing step, the alloy components are melted into blocks with predetermined alloy composition according to the amount, and b) in a subsequent processing step, at least one of the blocks from the first processing step is melted down in an inductively heated cold wall furnace arrangement (60) where the melt is stirred by the electromagnetic field energy fed into the melt in such a manner that its alloy components are mixed thoroughly in such a manner that the melt (55) obtains a homogeneous material composition over its entire volume. Optionally, the first processing step can be carried out in an inductively heated cold wall furnace arrangement which is charged with chargeable raw materials, or the first processing step can be carried out by a vacuum arc remelting process in a cold wall furnace arrangement which is charged with preformed consumable electrodes.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Legierungen nach dem Oberbegriff der Patentansprüche 1 und 2.The invention relates to a method for manufacturing of alloys according to the preamble of the claims 1 and 2.

Die Erfindung befaßt sich insbesondere mit dem Schmelzen und Umschmelzen von reaktiven, refraktären Metallen und Legierungen in einem Kaltwandtiegel-Ofen unter Vakuumatmosphäre und/oder Schutzgasatmosphäre, vorzugsweise bei Vakuumdrücken < 10-1 mbar. Diese Schmelzverfahren dienen dazu, aus chargierbarem Ausgangsmaterial homogene Metallblöcke oder Metallbarren herzustellen.The invention is particularly concerned with the melting and remelting of reactive, refractory metals and alloys in a cold wall crucible furnace under a vacuum atmosphere and / or protective gas atmosphere, preferably at vacuum pressures <10 -1 mbar. These melting processes are used to produce homogeneous metal blocks or metal bars from chargeable starting material.

Hierfür ist ein Herstellverfahren bekannt, bei welchem das Ausgangsmaterial, das sowohl stückig als auch in Pulverform vorliegen kann, in definierter Massenzusammensetzung zunächst zu einzelnen Barren gepreßt wird. Entsprechend der gewünschten Massenzusammensetzung der einzelnen Barren wird hierzu die jeweilige Menge der einzelnen Legierungsanteile gewählt. Diese gepreßten und verdichteten Barren werden miteinander zu einer Elektrode zusammengefügt, welche als Schmelzelektrode in einem VAR(Vacuum-Arc-Melting)-Prozeß eingesetzt wird. Die selbstverzehrende Elektrode wird hierbei umgeschmolzen. Hierbei werden die Legierungsanteile in der flüssigen Schmelze weiter durchmischt. Die Schmelze wird anschließend zur Weiterverarbeitung als Block abgezogen. Je nach geforderter Homogenität hat es sich als notwendig herausgestellt, diesen Block als Abschmelzelektrode in einem weiteren Prozeß umzuschmelzen. Da während eines einzelnen Umschmelzvorganges keine vollständige Legierungshomogenität über die Blocklänge erzielbar ist, ist der Umschmelzprozeß je nach geforderter Homogenität der gewünschten Legierung mehrfach zu wiederholen. Die gesamte Prozeßzeit des einzelnen VAR-Schmelzprozesses besteht aus den Beschickungs- und Schmelzzeiten und beträgt ca. 12-18 Stunden.For this, a manufacturing process is known at which is the starting material that is both lumpy as well as in powder form, in a defined Mass composition first to individual Ingot is pressed. According to the desired one Mass composition of the individual bars the respective amount of each Alloy proportions selected. This pressed and compacted bars become one with the other Electrode put together, which as a melting electrode used in a VAR (Vacuum Arc Melting) process becomes. The self-consuming electrode is remelted here. Here the alloy proportions continue in the liquid melt mixed. The melt then becomes Subsequent processing deducted as a block. Depending on required homogeneity it has become necessary exposed this block as a consumable electrode to remelt in a further process. There during of a single remelting process none complete alloy homogeneity over the block length is achievable, the remelting process is ever according to the required homogeneity of the desired alloy to be repeated several times. The entire process time of the individual VAR melting process from the loading and melting times and is about 12-18 hours.

Ein Nachteil dieses Verfahrens ist, daß die Materialvorbereitung, insbesondere die Bearbeitung der Abschmelzelektrode, jeweils einen zeit- und kostenintensiven Arbeitsaufwand erfordert. Insbesondere unter der Forderung einer vorgegebenen Homogenität der erschmolzenen Legierung ist der herzustellende Block mehrfach umzuschmelzen, was unter Berücksichtigung der oben genannten erforderlichen Prozeßzeiten einen deutlichen Produktivitätsverlust bedeutet, schon deswegen, weil jede Elektrode unvermeidbar zu einem Block größeren Durchmessers umgeschmolzen werden muß. MÜLLER, F.G. (ALD VACUUM TECHNOLOGIES) ET AL., "Electroslag refining as a liquid metal source for ceramic free powder atomization", PLANSEE AG., REUTTE, AT, MAI, 1997, p.p. 641-652, CONFERENCE: 14th INT. PLANSEE SEMINAR 197, VOL. I : METALLIC HIGH TEMPERATURE MATERIALS, OFFENBART DAS ESR/CIG VERFAHREN FÜR DIE HERSTELLUNG VON HOCH REINEN LEGIERUNGEN IN DEM DIE LEGIERUNG ZUERST DURCH DIE ESR VERFAHREN GESCHMOLZEN WIRD UND ANSCHLIEßEND DURCH DIE CIG-VERFAHREN WEITER ERHITZT IN EINER BEHEIZTEN KALTWANDTIEGELANORONUNG.A disadvantage of this method is that the material preparation, especially the editing of the Consumable electrode, each time and cost intensive Labor required. In particular under the requirement of a given homogeneity the melted alloy is the one to be produced Block several times to melt what is under Taking into account the above required Process times a significant loss of productivity means simply because every electrode inevitable to a block of larger diameter must be remelted. MÜLLER, F.G. (ALD VACUUM TECHNOLOGIES) ET AL., "Electroslag refining as a liquid metal source for ceramic free powder atomization", PLANSEE AG., REUTTE, AT, MAY, 1997, p.p. 641-652, CONFERENCE: 14th INT. PLANSEE SEMINAR 197, VOL. I: METALLIC HIGH TEMPERATURE MATERIALS, DISCLOSES THE ESR / CIG PROCESS FOR THE PRODUCTION OF HIGH PURE ALLOYS IN WHICH THE ALLOY IS MELTED BY THE ESR PROCESS AND THEN HEATED BY THE CIG PROCESSES.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs beschriebenen Gattung anzugeben, durch das Legierungen mit außerordentlich homogener Verteilung der Legierungskomponenten über das Gesamtvolumen hergestellt werden können.The invention is therefore based on the object a method of the type described above to indicate by the alloys with extraordinary homogeneous distribution of the alloy components can be produced over the total volume.

Die Lösung der gestellten Aufgabe erfolgt bei dem eingangs beschriebenen Verfahren erfindungsgemäß durch die Merkmale im Kennzeichen der Patentansprüche 1 und 2.The task is solved at The method described above according to the invention by the features in the characterizing part of the claims 1 and 2.

Bei dem erfindungsgemäßen Verfahren handelt es sich um eine Schmelztechnik, durch die sichergestellt wird, daß ausgehend von den einzelnen Legierungskomponenten mit unterschiedlichen Dichten, Konditionen (Historie der Herkunft, Stückigkeit) und Schmelzpunkten eine gewünschte Legierung mit exakter chemischer Zusammensetzung hergestellt wird. Entgegen den bisherigen Erfahrungen mit reinen VAR-Verfahren hat sich gezeigt, daß durch die Einhaltung der erfindungsgemäßen Schmelzfolge eine exakte chemische Zusammensetzung einer -Legierung reproduzierbar in hoher Qualität, d. h. mit einer über das gesamte Volumen der Endschmelze vorliegenden Homogenität herstellbar ist. Das Problem der chemischen Inhomogenität bei der Umschmelzung in einem reinen VAR-Verfahren der oben beschriebenen Art wird dadurch auf einfache Weise gelöst. Der Kern der Erfindung besteht darin, daß im Gegensatz zur bisherigen Umschmelzpraxis die Rührbewegung und damit der Mischvorgang in dem Schmelzpool des Kaltwandinduktionstiegels zur Durchmischung der Schmelze und gleichmäßigen Verteilung der Legierungselemente in der Schmelze vorteilhaft eingesetzt wird.It is the method according to the invention is a melting technique that ensures will that starting from the individual alloy components with different densities, Conditions (history of origin, lumpiness) and melting points with a desired alloy exact chemical composition becomes. Contrary to previous experience with pure VAR method has been shown that by Adherence to the melting sequence according to the invention exact chemical composition of an alloy reproducible in high quality, d. H. with a over the entire volume of the final melt Homogeneity can be produced. The problem the chemical inhomogeneity in the remelting in a pure VAR process as described above Art is solved in a simple way. The essence of the invention is that in contrast the stirring movement to the previous remelting practice and thus the mixing process in the melt pool the cold wall induction crucible for thorough mixing the melt and even distribution the alloying elements in the melt advantageous is used.

In der Praxis hat sich erwiesen, daß die Schmelzendurchmischung innerhalb des Schmelzenpools des Kaltwandinduktionstiegels ausreichend effektiv ist.In practice it has been found that the melt mixing within the melt pool of the Cold wall induction bars sufficiently effective is.

Bei einer vorteilhaften Verfahrensführung werden die Legierungskomponenten in erster Verfahrensstufe als chargierbares Materialgut, welches zu einer vorgewählten Legierungszusammensetzung führt, über eine Schleusenkammer direkt in einen Beschickungsbereich eines Kaltwandinduktionstiegels eingebracht. Nach Aufschmelzen des Materialgutes wird dieses in dem Schmelzenpool durch die durch das Induktionsfeld induzierte Rührfeld durchmischt. Hierdurch entsteht eine homogenisierte Schmelze, welche aus dem Kaltwandinduktionstiegel über eine Blockabzugsvorrichtung kontinuierlich als erstarrter Block abziehbar ist.In an advantageous procedure the alloy components in the first stage of the process as a chargeable material, which becomes a preselected alloy composition leads over a lock chamber directly into a loading area of a cold wall induction crucible. After the material has melted this in the melt pool through the through the Induction field mixed stirring field mixed. This creates a homogenized melt, which from the cold wall induction crucible via a Block removal device continuously as solidified Block is removable.

Das erfindungsgemäße Verfahren eignet sich insbesondere zur Herstellung von Legierungen, welche aus refraktären und/oder reaktiven Metallen bestehen, wie insbesondere Titan oder Titanverbindungen aufweisende Legierungen. Zum Chargieren des Kaltwandtiegels liegt das Ausgangsmaterial entweder als Stückgut und/oder als Pulver und/oder als Granulat vor. Dieses Ausgangsmaterial wird zum ersten Umschmelzen entweder zu festen Blöcken gepreßt, welche sowohl als Einsatzmaterial für ein wahlweise für die Blockherstellung eingesetztes VAR-Verfahren verwendet werden können, oder es wird über eine Materialschleuse direkt in einen Kaltwandinduktionstiegel eingebracht, wie vorstehend beschrieben.The method according to the invention is particularly suitable for the production of alloys which consist of refractory and / or reactive metals, such as in particular titanium or titanium compounds showing alloys. For charging the cold wall crucible is the starting material either as general cargo and / or as powder and / or as granules in front. This source material becomes the first Remelt either pressed into solid blocks, which is both an insert for an optional VAR process used for block production can be used or it will via a material lock directly into a cold wall induction crucible introduced as above described.

Insgesamt ergibt sich sowohl durch die erfindungsgemäße Verfahrensführung, wie aber auch durch den Einsatz des Kaltwandinduktionstiegels zur Herstellung homogener Legierungen eine deutliche Reduzierung hinsichtlich des Aufwandes für die Vor- und Nachbehandlung des Schmelzmaterials.Overall, both the result of the invention Procedure management, but also by the Use of the cold wall induction crucible for manufacturing homogeneous alloys a significant reduction with regard to the effort for the preliminary and After-treatment of the melting material.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen.Further advantageous embodiments of the invention Procedures result from the subclaims.

Der Erfindungsgegenstand wird nachfolgend anhand eines besonders bevorzugten und in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
den Axialschnitt durch eine Kaltwandtiegelanordnung mit einer geschichteten Charge im Betriebszustand für die Erstschmelze zur Herstellung des Einsatzmaterials für die Zweitschmelze
Figur 2
eine Kaltwandtiegelanordnung für die Erzeugung der Zweitschmelze,
Figur 3a
eine zusammengesetzte Schmelzelektrode und
Figur 3b
einen umgeschmolzenen, teilweise homogenisierten Materialblock.
The subject matter of the invention is explained in more detail below on the basis of a particularly preferred exemplary embodiment shown in the figures. Show it:
Figure 1
the axial section through a cold wall crucible arrangement with a layered batch in the operating state for the first melt for the production of the feed material for the second melt
Figure 2
a cold wall crucible arrangement for the production of the second melt,
Figure 3a
a composite fusible electrode and
Figure 3b
a remelted, partially homogenized block of material.

In der Figur 1 ist eine Kaltwandtiegelanordnung 2 dargestellt, die aus einer geschlitzten Tiegelwand 3 in Form eines wassergekühlten Hohlkörpers besteht. Die Kühlwasserführung ist der Einfachheit halber nicht dargestellt. Es ist jedoch auch möglich, das Kühlwasser durch ein anderes Kühlmedium. zu ersetzen. Die Tiegelwand 3 ist von einer Induktionsspulenanordnung 7 umgeben, die die notwendige Heiz- und Schmelz- sowie Rührenergie liefert. Die Stromversorgungseinheit für die Induktionsspulenanordnung 7 ist gleichfalls nicht dargestellt. Da das Konstruktionsprinzip eines Kaltwandtiegels mit Induktionsspule - für sich genommen - Stand der Technik ist, ist ein weiteres Eingehen hierauf überflüssig.1 shows a cold wall crucible arrangement 2 shown out of a slotted crucible wall 3 in the form of a water-cooled hollow body. The cooling water flow is simplicity not shown for the sake of it. However, it is also possible the cooling water through another cooling medium. to replace. The crucible wall 3 is of an induction coil arrangement 7 surround the necessary Provides heating, melting and stirring energy. The Power supply unit for the induction coil arrangement 7 is also not shown. There the design principle of a cold wall crucible Induction coil - taken by itself - state of the Technology is a further consideration of this superfluous.

Es sei lediglich festgehalten, daß die Induktionsspulenanordnung 7 mit einer größeren Windungsanzahl ausgestattet und in einzelne Teilspulen 20a,20b,20c,20d,20e unterteilt werden kann, die an voneinander unabhängigen Stromversorgungseinheiten angeschlossen werden können. Diese können dann getrennt voneinander geregelt oder gesteuert werden, um die Heizleistung und die Rührleistung über die Höhe der Tiegelwand 3 gezielt einstellen zu können.It should only be noted that the induction coil arrangement 7 with a larger number of turns equipped and in individual sub-coils 20a, 20b, 20c, 20d, 20e can be divided into the independent power supply units can be connected. These can then be separated regulated or controlled by each other, to the heating power and the stirring power over the To be able to adjust the height of the crucible wall 3 in a targeted manner.

Die gesamte Kaltwandtiegelanordnung 2 lagert mit dem unteren Tiegelflansch 16 auf ortsfesten unteren Stützen 24a,24b. Auf dem unteren Tiegelflansch 16 ist die von der Induktionsspulenanordnung 7 umgebene Tiegelwand 3 mit umlaufenden unteren Dichtelementen 23 vakuumdichtend abgestützt. Auf der Tiegelwand 3 lagert oben der obere Tiegelflansch 14. Zwischen dem oberen Tiegelflansch 14 und der Tiegelwand 3 ist ein in einer umlaufenden Nut gelagertes oberes Dichtelement 15 vorgesehen, welches eine vakuumdichte Verbindung zwischen der Tiegelwand 3 und dem oberen Tiegelflansch 14 bildet. Die Tiegelwand 3 und der obere und untere Tiegelflansch 14 und 16 sind koaxial zueinander angeordnet und umschließen eine vertikal ausgerichtete Durchgangszone für das zu schmelzende Material. Zum Beschicken der Kaltwandtiegelanordnung 2 weist diese oberhalb des oberen Tiegelflansches 14 eine Materialschleuse 4 auf, welche mit einer Schleusenöffnung 10 gegenüber dem Außenraum vakuumdicht verschlossen werden kann. Das zu legierende Material 9 wird über die Schleusenöffnung 10 in die Schleusenkammer 11 eingebracht, wobei entsprechend der gewünschten Legierung die Legierungsanteile mengenmäßig im entsprechenden Verhältnis in der Schleusenkammer 11 zusammengeführt werden. Das zu schmelzende Legierungsmaterial 9 wird in dem Chargenmaterialraum 34 der Durchgangszone der Tiegelwand 3 angesammelt und wandert entsprechend dem Verflüssigungsgrad des gesamten Legierungsmaterials 9 in die eigentliche Schmelzzone, welche den Schmelzenpool 32 bildet. Die axiale Lage des Schmelzenpools 32 wird durch die Anordnung der Induktionsspulen 20a-20e festgelegt, über welche die notwendige Schmelz- und Rührenergie in die Schmelze induktiv eingespeist werden. Die sich innerhalb der Schmelzzone 32 ausbildende Rührbewegung der Schmelze ist durch die in sich zurückkehrenden Richtungspfeile U der Schmelzenwirbelströmung dargestellt. Prinzipiell ist die Erfindung nicht auf die in Figur 1 dargestellte Wirbelströmungsanordnung U beschränkt, sondern diese kann durch geeignete Wahl der einzelnen Spulenwindungen 20a-20e in Größe und Richtung innerhalb der Schmelzzone 32 unterschiedlich ausgeprägt sein.The entire cold wall crucible arrangement 2 is also stored the lower crucible flange 16 on stationary lower Supports 24a, 24b. On the lower crucible flange 16 is that surrounded by the induction coil arrangement 7 Crucible wall 3 with all-round lower sealing elements 23 supported vacuum-tight. On the Crucible wall 3 supports the upper crucible flange 14. Between the upper crucible flange 14 and the Crucible wall 3 is mounted in a circumferential groove Upper sealing element 15 is provided, which a vacuum tight connection between the Crucible wall 3 and the upper crucible flange 14 forms. The crucible wall 3 and the upper and lower Crucible flange 14 and 16 are coaxial with each other arranged and enclose a vertically aligned Passage zone for the material to be melted. For loading the cold wall crucible arrangement 2 has this above the upper crucible flange 14 a material lock 4, which with a Lock opening 10 is vacuum-tight with respect to the outside space can be locked. The alloy Material 9 is in via the lock opening 10 in introduced the lock chamber 11, correspondingly the alloy proportions of the desired alloy in terms of quantity in the lock chamber 11 are merged. The to be melted alloy material 9 is in the Batch material space 34 of the passage zone of the crucible wall 3 accumulated and migrates according to that Degree of liquefaction of the entire alloy material 9 in the actual melting zone, which the Melt pool 32 forms. The axial position of the Melt pools 32 is created by the arrangement of the induction coils 20a-20e through which the necessary melting and stirring energy into the melt be fed inductively. Which are within the melting zone 32 forming stirring movement of the Melt is due to the returning Directional arrows U of the melt vortex flow are shown. In principle, the invention is not based on the vortex flow arrangement shown in Figure 1 U limited, but this can be done by appropriate Selection of the individual coil turns 20a-20e in Size and direction within the melting zone 32 be different.

Durch die Rührbewegung wird die Schmelze innerhalb des Schmelzenpools 32 kontinuierlich umgerührt, wodurch die einzelnen Legierungsbestandteile in der gesamten im Schmelzpool 32 angesammelten Schmelze homogenisiert werden. An den Schmelzenpool 32 schließt sich im unteren Bereich die Erstarrungszone an, in der der erstarrte Materialblock 30 auf einer Stützunterlage 25 lagert, welche über einer Blockabzugseinrichtung 6 nach unten kontinuierlich abgesenkt wird. Die Bewegungsrichtungen sind durch den Doppelpfeil Z angegeben.Through the stirring movement, the melt is inside of the melt pool 32 is continuously stirred, whereby the individual alloy components in the total accumulated in the melt pool 32 Melt are homogenized. To the melt pool 32 the solidification zone closes in the lower area in which the solidified block of material 30 is supported on a support base 25, which over a block withdrawal device 6 after is continuously lowered below. The directions of movement are indicated by the double arrow Z.

Der bisher beschriebene Umschmelzprozeß findet bei Unterdruckatmosphäre von < 10-1 mbar statt. Hierzu wird die in der Kaltwandtiegelanordnung 2 befindliche Restatmosphäre über Saugstutzen 12 in bekannter Weise mit in den Zeichnungen nicht dargestellten Vakuumpumpen evakuiert.The remelting process described so far takes place in a vacuum atmosphere of <10 -1 mbar. For this purpose, the residual atmosphere located in the cold-wall crucible arrangement 2 is evacuated in a known manner via suction ports 12 using vacuum pumps, not shown in the drawings.

Um die auf den oberen Tiegelflansch 14 und unteren Tiegelflansch ausgeübten, axial gerichteten Kräfte aufzunehmen, sind der obere Tiegelflansch 14 und der untere Tiegelflansch 16 mit Verbingungsstreben 22 miteinander fest verbunden.To the on the upper crucible flange 14 and lower Crucible flange exerted axially directed forces the upper crucible flange 14 and the lower crucible flange 16 with connecting struts 22 firmly connected.

Anschließend an das in Figur 1 dargestellte Blockabzugsverfahren wird eine homogene Schmelze mittels eines als solchen bekannten Kaltwandtiegels 60 hergestellt. Der in Figur 2 dargestellte Kaltwandtiegel 60 besteht im wesentlichen aus dem Tiegelboden 17, auf welchem die Tiegelwand 21 aufgesetzt ist. Die Tiegelwand besteht in bekannter Weise aus einer Palisadenanordnung 21,21',..., wobei zwischen den einzelnen Palisaden 21,21',... Abstände zum Durchgriff des Schmelz- und Rührmagnetfeldes vorgesehen sind. In diesen Abständen befinden sich üblicherweise Dichtelemente aus einem Isolierstoff. Das Rühr- bzw. Schmelzmagnetfeld wird über eine Induktionsspule 19, welche einzelne Spulenwindungen 20a-20d aufweist, in bekannter Weise mit in Figur 2 nicht dargestellten Stromversorgungseinrichtungen erzeugt. Für die Erzeugung einer Erstschmelze durch ein VAR-Verfahren liegen die Legierungsbestandteile z. B. als Pulver, als Granalien oder auch als stückiges Material vor, welches zu einem festen gepreßten Block mit definierter Massenzusammensetzung preßbar ist. Diese einzelnen Blöcke 40,41 (siehe Figur 3a) werden zur Bildung einer Abschmelzelektrode 42 aneinandergefügt und an den Verbindungsnähten 50,52 miteinander verschweißt. Zum Verschweißen der Blöcke 40,41 ist insbesondere ein Elektronenstrahlschweißverfahren vorgesehen. Die zu einer Abschmelzelektrode 42 zusammengefügten Blöcke 40,41 werden anschließend in einem ersten, in den Figuren nicht dargestellten Vacuum-Arc-Remelting-Prozeß zunächst aufgeschmolzen, wodurch das Ausgangsmaterial in der Schmelze bis zu einem gewissen Grad homogen verteilt wird. Die derartig erzeugte Schmelze wird anschließend in geeignete Gießformen überführt, in welchen das Schmelzmaterial zu einem Block 44 (siehe Figur 3b) erstarrt. Hierbei ist das Volumen des Blockes so gewählt, daß dieser das Tiegelvolumen des in Figur 2 dargestellten Kaltwandtiegels 60 ausfüllt.Subsequent to the block deduction process shown in Figure 1 becomes a homogeneous melt a cold wall crucible known as such 60 manufactured. The cold wall crucible shown in Figure 2 60 consists essentially of the crucible bottom 17, on which the crucible wall 21 is placed is. The crucible wall is known Way from a palisade arrangement 21,21 ', ..., whereby between the individual palisades 21, 21 ', ... distances for penetration of the melting and stirring magnetic field are provided. At these intervals are usually sealing elements made of an insulating material. The stirring or melting magnetic field is over an induction coil 19, which individual coil turns 20a-20d, in a known manner Power supply devices, not shown in Figure 2 generated. For generating one The first melt through a VAR process are the Alloy components z. B. as a powder, as granules or as a lumpy material, which to a fixed pressed block with a defined Mass composition is pressable. This individual Blocks 40, 41 (see FIG. 3a) become Forming a consumable electrode 42 and at the connecting seams 50, 52 with one another welded. For welding the blocks 40, 41 is in particular an electron beam welding process intended. The to a consumable electrode 42 merged blocks 40,41 are then in a first, not shown in the figures Vacuum arc remelting process first melted, whereby the starting material in the Melt is homogeneously distributed to a certain extent becomes. The melt produced in this way is then transferred to suitable molds, in which the melt material to a block 44 (see Figure 3b) solidified. Here is the volume of the block chosen so that this the crucible volume of the cold wall crucible shown in Figure 2 60 fills out.

Zur weiteren Homogenisierung des Blocks 30 aus Figur 1 oder des Blocks 44 nach Figur 3b wird dieser in den Kaltwandtiegel 60 nach Figur 2 überführt und anschließend die den Kaltwandtiegel 60 umgebende und nicht dargestellte Ofenkammer geschlossen und auf einen typischen Betriebsdruck von 10- 1 mbar evakuiert und die elektrische Leistung der Induktionsspulenanordnung 19 eingeschaltet. Nach Verflüssigen des Blocks 30 wird die Schmelze 55 durch das induktive Rührfeld durchhomogenisiert. Sie kann in eine gewünschte Halbzeugform zum Erkalten abgegossen werden.For further homogenization of the block 30 of Figure 1 or of the block 44 of Figure 3b, this is transferred to the cold wall furnace 60 of Figure 2 and then closed, the cold wall crucible 60 surrounding and not shown furnace chamber and at a typical operating pressure of 10 - evacuated mbar 1 and the electrical power of the induction coil arrangement 19 is switched on. After the block 30 has been liquefied, the melt 55 is homogenized through the inductive stirring field. It can be poured into a desired semi-finished form for cooling.

Claims (7)

  1. Process for manufacturing homogeneous alloy mixtures, in particular intermetallic phases, from at least two alloy components by melting starting materials in an inductively heated coldwall crucible, characterized by the following process steps:
    a) in a first process step, the alloy components are smelted in a first inductively heated coldwall crucible system (2) while stirring inductively to form ingots (30, 44) having a preselected alloy composition in terms of amount, wherein the ingots are withdrawn from the coldwall crucible, and
    b) in a subsequent process step, at least one of the ingots (30, 44) from the first process step is melted in a second inductively heated coldwall crucible (60), wherein the electromagnetic field energy injected into the melt agitates the melt in such a way that its alloy components are mixed in such a way that the melt (55) is given a material composition that is homogeneous over its entire volume.
  2. Process for manufacturing homogeneous alloy mixtures, in particular intermetallic phases, from at least two alloy components by melting starting materials in an inductively heated coldwall crucible, characterized by the following process steps:
    a) in a first process step, the alloy components are smelted as preformed consumable electrodes (42, 4) by means of a VAR process to form ingots (30, 44) having a preselected alloy composition in terms of amount, wherein the ingots are withdrawn from the molten region, and
    b) in a subsequent process step, at least one of the ingots (30, 44) from the first process step is melted in an inductively heated coldwall crucible (60), wherein the electromagnetic field energy injected into the melt agitates the melt in such a way that its alloy components are mixed in such a way that the melt (55) is given a material composition that is homogeneous over its entire volume.
  3. Process according to Claim 1, characterized in that the first coldwall crucible system (2) is charged with materials capable of being charged.
  4. Process according to one of Claims 1 and 2, characterized in that the total volume of the ingots (30, 44) to be used for the second remelting process provided in the inductively heated coldwall crucible (60) is chosen in such a way that their total volume corresponds to the filling volume of the inductively heated coldwall crucible (60).
  5. Process according to Claim 1, characterized by the following process steps:
    a) at least some of the alloy components are pressed into a chargeable material stock (9) having a predetermined alloy composition,
    b) the material stock (9) is introduced via a lock chamber (11) into a molten pool (32) that is surrounded by coil windings (20a-20e) of an induction coil system (7),
    c) the material stock (9) is heated by supplying electromagnetic field energy via an alternating field applied to the coil windings (20a-20e) in such a way that the material stock (9) is melted by means of the magnetic alternating field extending in the molten pool (32), wherein the melt is, in addition, mixed by the magnetic alternating field induced in the molten pool (32), and
    d) the melted stock solidified underneath the molten pool (32) is withdrawn as an ingot (30) from the coldwall crucible system (2) by means of an ingot withdrawal system (6) situated at the lower end of the induction coil system (7).
  6. Process according to at least one of Claims 1 to 5, characterized in that the alloy components are selected from highly reactive materials, in particular from titanium or titanium compounds.
  7. Process according to at least one of Claims 1 to 6, characterized in that the starting material is selected as lumpy stock and/or as powder and/or as granular material.
EP99122461A 1998-11-16 1999-11-11 Process for the manufacture of homogenous alloys by melting and remelting Expired - Lifetime EP1006205B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19852747 1998-11-16
DE19852747A DE19852747A1 (en) 1998-11-16 1998-11-16 Production of homogeneous alloy mixtures used in the production of melt electrode in vacuum-arc melting processes comprises pressing a part of the alloying components into individual ingots to form a fusible electrode

Publications (3)

Publication Number Publication Date
EP1006205A2 EP1006205A2 (en) 2000-06-07
EP1006205A3 EP1006205A3 (en) 2000-06-14
EP1006205B1 true EP1006205B1 (en) 2002-09-04

Family

ID=7887930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99122461A Expired - Lifetime EP1006205B1 (en) 1998-11-16 1999-11-11 Process for the manufacture of homogenous alloys by melting and remelting

Country Status (6)

Country Link
US (1) US20030010472A1 (en)
EP (1) EP1006205B1 (en)
JP (1) JP2000144279A (en)
AT (1) ATE223509T1 (en)
DE (2) DE19852747A1 (en)
ES (1) ES2182447T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247872A1 (en) * 2001-03-13 2002-10-09 Solar Applied Material Technology Corp. Method for producing metal sputtering target
DE10156336A1 (en) * 2001-11-16 2003-06-05 Ald Vacuum Techn Gmbh Process for the production of alloy ingots
DE102009056504B4 (en) * 2009-12-02 2015-05-28 Heraeus Precious Metals Gmbh & Co. Kg A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
DE102010049033A1 (en) 2010-10-21 2012-04-26 Rst Gmbh Process for the production of titanium blanks
CN102032783B (en) * 2011-01-14 2012-10-10 李碚 Cold crucible induction melting and ingot pulling method for melting titanium or titanium alloy
DE102014117424A1 (en) * 2014-11-27 2016-06-02 Ald Vacuum Technologies Gmbh Melting process for alloys
CN105108339B (en) * 2015-08-31 2017-04-19 沈阳海纳鑫科技有限公司 Additive manufacturing method based on titanium and titanium alloy wires
KR101932729B1 (en) * 2017-08-22 2019-03-20 주식회사 세일메탈 Induction heating apparatus and method for ingot homogenization using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4418741A (en) * 1979-11-26 1983-12-06 Bondarenko Oleg P Method of controlling relative movement between an ingot and a mold
SE8000756L (en) * 1980-01-31 1981-08-01 Asea Ab CONTINUOUS FOR CONTINUOUS CASTING
HUT37365A (en) * 1983-10-28 1985-12-28 Werner Schatz Method for producing metal billet, shaped body or shaped profile products with embedding of hard material grains and apparatus for carrying out the method
JPS60251235A (en) * 1984-05-29 1985-12-11 Toho Titanium Co Ltd Consumable electrode for refining nb-ti alloy
US4738713A (en) * 1986-12-04 1988-04-19 The Duriron Company, Inc. Method for induction melting reactive metals and alloys
GB2200979B (en) * 1987-02-14 1990-08-29 Inductotherm Europ Induction melting
CH680086A5 (en) * 1990-05-09 1992-06-15 Asea Brown Boveri
JP3287031B2 (en) * 1991-10-16 2002-05-27 神鋼電機株式会社 Cold wall induction melting crucible furnace
IL100136A (en) * 1991-11-24 1994-12-29 Ontec Ltd Method and device for producing homogeneous alloys
DE4207694A1 (en) * 1992-03-11 1993-09-16 Leybold Durferrit Gmbh DEVICE FOR THE PRODUCTION OF METALS AND METAL ALLOYS OF HIGH PURITY
DE4228402C2 (en) * 1992-08-26 2000-08-03 Ald Vacuum Techn Ag Induction melting device sealed off from the atmosphere
FR2720971B1 (en) * 1994-06-08 1996-08-30 Centre Nat Rech Scient Device for processing materials by microwave.
JP3316108B2 (en) * 1994-07-14 2002-08-19 川崎製鉄株式会社 Steel continuous casting method
DE19504359C1 (en) * 1995-02-10 1996-04-25 Ald Vacuum Techn Gmbh Prodn. of alloys from components of different melting points
DE19622884A1 (en) * 1996-06-07 1997-12-11 Ald Vacuum Techn Gmbh Crucibles for inductive melting or overheating of metals, alloys or other electrically conductive materials
US5972282A (en) * 1997-08-04 1999-10-26 Oregon Metallurgical Corporation Straight hearth furnace for titanium refining

Also Published As

Publication number Publication date
ATE223509T1 (en) 2002-09-15
EP1006205A3 (en) 2000-06-14
JP2000144279A (en) 2000-05-26
US20030010472A1 (en) 2003-01-16
DE59902539D1 (en) 2002-10-10
EP1006205A2 (en) 2000-06-07
DE19852747A1 (en) 2000-05-18
ES2182447T3 (en) 2003-03-01

Similar Documents

Publication Publication Date Title
EP2342365B1 (en) Process for manufacturing a beta-gamma tial-based alloy
EP1849892B1 (en) Furnace for non ferrous metal smelting
DE1291760B (en) Process and device for discontinuous and continuous vacuum melting and casting of steel and steel-like alloys (super alloys)
DE4207694A1 (en) DEVICE FOR THE PRODUCTION OF METALS AND METAL ALLOYS OF HIGH PURITY
EP1444065B1 (en) Method for producing alloy ingots
EP1006205B1 (en) Process for the manufacture of homogenous alloys by melting and remelting
EP1152854A1 (en) Method and device for producing cast parts consisting of aluminium and magnesium alloys
DE3421488A1 (en) METHOD FOR PRODUCING ALLOY POWDER AND DEVICE FOR CARRYING OUT THE METHOD
DE112015004141T5 (en) METHOD FOR PRODUCING A PLATING GROUP ALLOY
DE1508893B1 (en) Melting process for the production of cast blocks using consumable electrodes
DE3618531C2 (en)
DE102009056504B4 (en) A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
DE2123368B2 (en) POWER SUPPLY DEVICE FOR AN ELECTRIC SLAG FURNACE
DE19504359C1 (en) Prodn. of alloys from components of different melting points
EP3572539A1 (en) Method for generating a nbti alloy
DE2355168A1 (en) MELTING PROCESS FOR ARC FURNACE USING DC CURRENT AND ARC FURNACE FOR PERFORMING THE PROCESS
DE1929720A1 (en) Process for direct reduction and continuous casting of metallic materials
DE2501603C3 (en)
EP0102479A2 (en) Continuous-flow heater for molten metals
EP0273975B1 (en) Induction plasma furnace
DE2360883C3 (en) Method and device for the production of metal alloys
DE19960362C1 (en) Apparatus for continuously casting ingots made of a titanium alloy comprises an intermediate crucible arranged between the heat source and the continuous casting mold
AT205760B (en) Device and method for melting or heating electrically conductive materials in a vacuum
DE102020005392A1 (en) Method for alloying metals in a process chamber and alloying device for carrying out such a method
DE2321466C3 (en) Process for melting refractory metals and alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001219

AKX Designation fees paid

Free format text: AT DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010430

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT DE ES FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 223509

Country of ref document: AT

Date of ref document: 20020915

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020904

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59902539

Country of ref document: DE

Date of ref document: 20021010

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2182447

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030605

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1006205E

Country of ref document: IE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141119

Year of fee payment: 16

Ref country code: GB

Payment date: 20141119

Year of fee payment: 16

Ref country code: ES

Payment date: 20141119

Year of fee payment: 16

Ref country code: DE

Payment date: 20141119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20141120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141126

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59902539

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 223509

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151112