EP1001949A1 - Derive de triazoline-thione et son utilisation comme microbicide - Google Patents

Derive de triazoline-thione et son utilisation comme microbicide

Info

Publication number
EP1001949A1
EP1001949A1 EP98942628A EP98942628A EP1001949A1 EP 1001949 A1 EP1001949 A1 EP 1001949A1 EP 98942628 A EP98942628 A EP 98942628A EP 98942628 A EP98942628 A EP 98942628A EP 1001949 A1 EP1001949 A1 EP 1001949A1
Authority
EP
European Patent Office
Prior art keywords
methyl
formula
species
derivative
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98942628A
Other languages
German (de)
English (en)
Inventor
Manfred Jautelat
Ralf Tiemann
Stefan Dutzmann
Klaus Stenzel
Gerd Hänssler
Astrid Mauler-Machnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP1001949A1 publication Critical patent/EP1001949A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to a new triazolinethione derivative, a process for its preparation and its use as a microbicide.
  • the new triazolinethione derivative of the formula (I) has very good microbicidal properties and can be used both in crop protection and in material protection to combat unwanted microorganisms, such as fungi.
  • the triazolinethione derivative according to the invention shows a better fungicidal activity than the 1,2-dichloro-4,4-dimethyl-5-fluoro-3-hydroxy-3 - [(4,5-dihydro-5-thiono-1,2 , 4-triazol -l-yl) -methyl] -pent-l-en, which is a constitutionally similar, previously known active ingredient with the same direction of action.
  • the active ingredient according to the invention can be wholly or partly in the "thiono" form of the formula
  • the active ingredient according to the invention contains an asymmetrically substituted carbon atom and can therefore be obtained in optical isomer forms.
  • the present invention relates both to the individual isomers and to their mixtures.
  • Sulfur is preferably used in the form of powder. Hydrolysis is carried out using variant () when carrying out the process according to the invention.
  • reaction temperatures can be varied within a certain range. In general, temperatures between -70 ° C and + 20 ° C, preferably between -70 ° C and 0 ° C
  • the process according to the invention is generally carried out under atmospheric pressure. However, it is also possible to work under increased or reduced pressure.
  • Sulfur is also generally used in the form of powder when carrying out the process according to the variant ( ⁇ ). After the reaction, treatment with water and, if appropriate, with acid can optionally be carried out. This is carried out in the same way as the hydrolysis when carrying out the process according to the invention according to variant ( ⁇ ).
  • the reaction temperatures can be varied within a substantial range when carrying out the process according to variant ( ⁇ ). In general, temperatures between 150 ° C and 300 ° C, preferably between 180 ° C and 250 ° C.
  • 1 mol of 4- (l-chlorocyclopropyl) -1, 1,2-trichloro-4-hydroxy-5- (1,2,4-triazole- 1-yl) -pent-1-ene of the formula (II) generally 1 to 5 mol, preferably 1.5 to 3 mol, of sulfur.
  • the processing takes place according to usual methods.
  • the procedure is that the reaction mixture is extracted with an organic solvent which is only sparingly soluble in water, the combined organic phases are dried and concentrated, and the remaining residue is freed of any impurities which may be present using customary methods, such as recrystallization or chromatography .
  • the active ingredient according to the invention has a strong microbicidal action and can be used to combat unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used in crop protection to combat Plasmodiophoromyces, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in plant protection to combat Pseudomonadaceae,
  • Xanthomonas species such as, for example, Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as, for example, Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as, for example, Erwinia amylovora
  • Pythium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca Sportsiginea;
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea (conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorum
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as, for example, Pellicularia sasakii;
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Septoria nodorum
  • Leptosphaeria species such as, for example, Leptosphaeria nodorum;
  • Cercospora species such as, for example, Cercospora canescens
  • Alt ernaria species such as, for example, Alternaria brassicae
  • Pseudocercosporella species such as, for example, Pseudocercosporella herpotrichoides.
  • the active compound according to the invention is well tolerated by plants in the concentrations required for combating plant diseases permits treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.
  • the active ingredient according to the invention can be used with particularly good results in combating diseases in wine, fruit and vegetable growing, for example against real powdery mildew, such as Sphaerotheca, Uncinula, against Erysiphe species and leaf spots, such as Venturia and Alternaria species.
  • Cereal diseases such as Erysiphe, Leptosphaeria or Pyrenophora species
  • rice diseases such as Pyricularia species
  • the active ingredient according to the invention is also suitable for increasing the crop yield. It is also less toxic and has good plant tolerance.
  • the substance according to the invention can be used to protect technical ones
  • technical materials are to be understood as non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected from microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which are attacked or decomposed by microorganisms can be.
  • adhesives glues, paper and cardboard, textiles, leather, wood, paints and plastic articles, cooling lubricants and other materials which are attacked or decomposed by microorganisms can be.
  • Materials are also parts of production systems, such as cooling water circuits, that can be affected by the proliferation of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can break down or change the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • microorganisms of the following genera may be mentioned:
  • Alternaria such as Alternaria tenuis
  • Aspergillus such as Aspergillus niger
  • Chaetomium such as Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma like Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredient can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV cold and warm mist formulations.
  • customary formulations such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV cold and warm mist formulations.
  • formulations are made in a known manner, e.g. by mixing the active ingredient with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • water water
  • Extenders can, for example, also use organic solvents as auxiliary solvents.
  • organic solvents such as auxiliary solvents.
  • the following are essentially suitable as liquid solvents: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chlorethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example petroleum fractions, alcohols, such as Butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • saturated gaseous extenders or carriers are those liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • aerosol propellants such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • solid carriers for example, natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Possible solid carriers for granules are: eg broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite as well as synthetic granules from inorganic and organic flours as well as granules from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks.
  • Possible emulsifiers and / or foaming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersing agents are, for example, lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes, such as alizarin, azo and metal phthalocyanine dyes and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt,
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes, such as alizarin, azo and metal phthalocyanine dyes and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt,
  • Molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active ingredient according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to broaden the spectrum of action or prevent development of resistance.
  • fungicides bactericides
  • acaricides nematicides or insecticides
  • synergistic effects are obtained, ie the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • Debacarb dichlorophene, diclobutrazole, diclofluanid, diclomezin, dicloran, diethofencarb, difenoconazole, dimethirimol, dimethomorph, diniconazole, diniconazol-M, dinocap, diphenylamine, dipyrithione, ditalimfos, dorphianolodin, dithianonodonone,
  • Imazalil Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobefos (IBP), Iprodione, Irumamycin, Isoprothiolan, Isovaledione,
  • Mancopper Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Meth tartroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin,
  • Oxadixyl Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,
  • Tebuconazole Tebuconazole, tecloftalam, tecnazen, tetcyclacis, tetraconazole, thiabendazole,
  • Thicyofen Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazole, Uniconazole,
  • OK-8705, OK-8801 ⁇ - (1, 1-dimethylethyl) -ß- (2-phenoxyethyl) - 1 H-1, 2,4-triazole-1-ethanol, ⁇ - (2,4-dichlorophenyl) -ß-fluoro-b-propyl- 1 H- 1, 2,4-triazole-1-ethanol, - (2,4-dichlorophenyl) -ß-methoxy-a-methyl- 1 H- 1, 2,4- triazol-1-ethanol, ⁇ - (5-methyl-l, 3-dioxan-5-yl) -ß - [[4- (trifluoromethyl) -phenyl] -methylene] -lH-l, 2,4-triazole- 1-ethanol,
  • Bacillus thuringiensis 4-bromo-2- (4-chlorophenyl) -1 - (ethoxymethyl) -5- (trifluoromethyl) -1H-pyrrole-3-carbonitrile, bendiocarb, benufracarb, bensultap, betacyfluthrin, bifenthrin, BPMC , Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxim, Butylpyridaben,
  • Fenamiphos fenazaquin, fenbutatin oxide, fenitrothion, fenobucarb, fenothiocarb,
  • Fenoxycarb Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronii, Fluazinam, Fluazuron, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenarbx, Furathi
  • Mecarbam Mevinphos, Mesulfenphos, Metaldehyde, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Monocrotophos, Moxidectin,
  • Parathion A Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenophos, Prome- carb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetophosin, Pyridlentin Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,
  • Tebufenozide Tebufenpyrad
  • Tebupirimiphos Teflubenzuron
  • Tefluthrin Teflumephos
  • the active ingredient can be used as such, in the form of its formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by pouring, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredient by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient into the soil itself. The seeds of the plants can also be treated.
  • the application rates can be varied within a substantial range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 10 and 1,000 g / ha. In the case of seed treatment, the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed. When treating the soil, they are
  • Application rates of active ingredient generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • the agents used to protect industrial materials generally contain the active ingredient in an amount of 1 to 95% by weight, preferably 10 to 75% by weight.
  • the application concentrations of the active ingredient according to the invention depend on the type and the occurrence of the microorganisms to be controlled and on the composition of the material to be protected.
  • the optimal amount can be determined by test series.
  • the application concentrations are in the range from 0.001 to 5% by weight, preferably from 0.05 to 1.0% by weight, based on the material to be protected.
  • the effectiveness and the spectrum of activity of the active ingredient to be used according to the invention in the protection of materials, or of the agents, concentrates or very generally formulations which can be prepared therefrom, can be increased if further antimicrobial compounds, fungicides, bactericides, herbicides, insecticides or other active ingredients are used to increase the spectrum of activity or Achieving special effects such as added protection against insects. These mixtures can have a broader spectrum of activity than the active ingredient according to the invention.
  • reaction mixture is then diluted with ethyl acetate and shaken out several times with saturated, aqueous ammonium chloride solution.
  • Emulsifier 3 parts by weight of alkylaryl polyglycol ether
  • Active ingredient with the specified amounts of solvent and emulsifier and dilute the concentrate with water to the desired concentration.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Emulsifier 3 parts by weight of alkylaryl polyglycol ether
  • the plants are then placed in the greenhouse at approx. 21 ° C. and a relative humidity of approx. 90%.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80%.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 10 parts by weight of N-methyl-pyrrolidone emulsifier: 0.6 part by weight of alkylaryl polyglycol ether
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80% in order to promote the development of mildew pustules.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne un dérivé de triazoline-thione de la formule (I), un procédé permettant de le préparer et son utilisation comme microbicide dans le domaine phytosanitaire et dans la protection de matières.
EP98942628A 1997-08-07 1998-07-25 Derive de triazoline-thione et son utilisation comme microbicide Withdrawn EP1001949A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1997134185 DE19734185A1 (de) 1997-08-07 1997-08-07 Triazolinthion-Derivat
DE19734185 1997-08-07
PCT/EP1998/004674 WO1999007686A1 (fr) 1997-08-07 1998-07-25 Derive de triazoline-thione et son utilisation comme microbicide

Publications (1)

Publication Number Publication Date
EP1001949A1 true EP1001949A1 (fr) 2000-05-24

Family

ID=7838254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98942628A Withdrawn EP1001949A1 (fr) 1997-08-07 1998-07-25 Derive de triazoline-thione et son utilisation comme microbicide

Country Status (5)

Country Link
EP (1) EP1001949A1 (fr)
JP (1) JP2001512719A (fr)
AU (1) AU9069598A (fr)
DE (1) DE19734185A1 (fr)
WO (1) WO1999007686A1 (fr)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19528046A1 (de) * 1994-11-21 1996-05-23 Bayer Ag Triazolyl-Derivate
DE19617282A1 (de) * 1996-04-30 1997-11-06 Bayer Ag Triazolyl-mercaptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9907686A1 *

Also Published As

Publication number Publication date
DE19734185A1 (de) 1999-02-11
JP2001512719A (ja) 2001-08-28
WO1999007686A1 (fr) 1999-02-18
AU9069598A (en) 1999-03-01

Similar Documents

Publication Publication Date Title
EP0998479B1 (fr) Derives de triazoline-thione-acide phosphorique
EP0915863B1 (fr) Carboxamides de dihydrofurane
EP1060176B1 (fr) Oxyranyle-triazoline thiones et leur utilisation comme microbicides
EP0915852A1 (fr) Derives de 1,3-dimethyle-5-fluor-pyrazol-4-carboxamide, leur preparation et leur utilisation comme microbicides
EP0975220A1 (fr) Utilisation de sulfonyloxadiazolones comme microbicides
EP0944615A1 (fr) Microbicides a base de derives d'acide thiophene-2-carboxylique
DE19838708A1 (de) Verwendung von 5-Amino-pyrazol-Derivaten zur Bekämpfung von Mikroorganismen
EP0975630B1 (fr) Sulfonyloxadiazolones et leur utilisation comme microbicides
DE19818313A1 (de) Azine
DE19716260A1 (de) Sulfonyloxadiazolone
EP1001949A1 (fr) Derive de triazoline-thione et son utilisation comme microbicide
EP1115723A2 (fr) Methoximinomethyloxathiazines
EP1071682A2 (fr) Benzoheterocyclyloximes fongicides
DE19745376A1 (de) Thiomide
DE19823861A1 (de) Oxiranyl-triazolinthione
DE19830695A1 (de) Imide
WO1999005122A1 (fr) Derives d'acide pyrimidyloxyphenylacetique
DE19917784A1 (de) Verwendung von 2,4-Diamino-pyrimidin-Derivaten zur Bekämpfung von Mikroorganismen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010201