EP0990781B1 - Méthode de frein moteur pour un moteur suralimenté - Google Patents

Méthode de frein moteur pour un moteur suralimenté Download PDF

Info

Publication number
EP0990781B1
EP0990781B1 EP99116963A EP99116963A EP0990781B1 EP 0990781 B1 EP0990781 B1 EP 0990781B1 EP 99116963 A EP99116963 A EP 99116963A EP 99116963 A EP99116963 A EP 99116963A EP 0990781 B1 EP0990781 B1 EP 0990781B1
Authority
EP
European Patent Office
Prior art keywords
engine braking
procedure according
engine
turbine geometry
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99116963A
Other languages
German (de)
English (en)
Other versions
EP0990781A2 (fr
EP0990781A3 (fr
Inventor
Erwin Schmidt
Siegfried Sumser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP0990781A2 publication Critical patent/EP0990781A2/fr
Publication of EP0990781A3 publication Critical patent/EP0990781A3/fr
Application granted granted Critical
Publication of EP0990781B1 publication Critical patent/EP0990781B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes

Definitions

  • the invention relates to an engine braking method for a supercharged internal combustion engine according to the preamble of claim 1.
  • an internal combustion engine with an exhaust-gas turbocharger which has an exhaust-gas turbine with a turbine geometry which can be variably adjusted via an adjustable guide-rail.
  • the baffle comprises vanes which can be adjusted by means of an actuator to vary the effective turbine cross section of the turbine.
  • different high exhaust back pressures can be realized in the section between the cylinders and the turbine, whereby the performance of the exhaust gas turbocharger can be adjusted as needed.
  • the guide grid is transferred to a stowed position, in which the turbine cross section is reduced, whereby a high exhaust back pressure is built up.
  • the exhaust gas flows at high speed through the channels between the vanes and urges the turbine wheel with a high pulse.
  • the turbine power is transferred to the compressor, whereupon the combustion air supplied to the engine from the compressor is placed under increased boost pressure.
  • the cylinder is acted upon on the input side with increased pressure, on the output side is between the cylinder outlet and the exhaust gas turbocharger on an increased exhaust back pressure, the counteracts the blowing of the compressed air in the cylinder into the exhaust system.
  • the piston In engine braking operation, the piston must perform compression work in the compression and Ausschiebehub against the high pressure in the exhaust system, whereby a strong braking effect is achieved.
  • the invention is based on the problem to influence the behavior of the engine brake with simple measures in such a way that adapted to different situations braking is possible.
  • a bandwidth for the movement of the component influencing the effective turbine cross-section is defined, within which the variable turbine geometry can assume different positions depending on the current situation.
  • the hard and soft brake settings mark limits within the maximum possible positions, which are characterized by the stowed position with minimum turbine cross section and the opening position with maximum turbine cross section; the bandwidth marked by the hard and soft brake settings represents a cutout within the maximum possible stop-limited positions of the turbine geometry.
  • the effective turbine cross section is more reduced than in the soft brake setting
  • a higher exhaust back pressure in the exhaust line upstream of the turbine is created and also a higher engine braking power can be generated than in the softer brake setting.
  • any settings of the variable turbine geometry are possible.
  • the hard brake setting and the soft brake setting are in a certain ratio to a starting position of the turbine geometry associated with the fired drive mode.
  • the turbine geometry assumes its smallest cross section in the starting position in this operating mode, which is opened further from the initial position with increasing load or rotational speed, the turbine cross section in the starting position usually being further open than in the stowed position.
  • a sufficiently broad moving band for the variable turbine geometry is set, which allows the generation of sufficiently high braking power in the hard brake setting range and, moreover, permits smaller engine brake powers in the range of the soft brake setting.
  • variable turbine geometry adjusting travel is greatly reduced. It is sufficient to vary the setting of the variable turbine geometry in a smaller range, but this covers the main engine braking power sections. This has the advantage that a small travel for the variable turbine geometry allows large changes in engine braking performance.
  • the turbine geometry can be done with little effort and in a short time be adjusted between the different braking positions. This makes it possible to react quickly to new driving situations and to influence the dynamic behavior of the vehicle. If, for example, the turbine geometry is in the hard brake setting with correspondingly high engine braking power, the loader shows a fast response. If the turbine geometry in the soft brake setting with correspondingly lower engine braking power, there is a smooth, soft insertion of the engine brake, resulting in lower forces on the braked wheels and smaller changes in speed result. A softer engine brake setting avoids destabilizing wheel slip, whereas a harder setting can achieve maximum engine braking performance. The change from hard setting to soft setting and vice versa can be realized with short travel ranges with the least possible loss of time.
  • the starting position is in the range of the largest gradient of the engine braking power-displacement curve. Minor changes in the travel of the variable turbine geometry cause a maximum change in the engine braking power.
  • the hard brake setting and the soft brake setting are on both sides of this point in the high gradient region, so that with a short travel, a large engine brake power spectrum is covered.
  • the hard brake setting is at the engine braking power maximum, which is close to the stowage position with small opening of the turbine geometry.
  • a high exhaust back pressure is generated by the reduction of the effective turbine cross section, on the other hand, exhaust gas can flow through the open channels of the turbine geometry at high flow velocities and transmit a large flow impulse to the turbine wheel.
  • the softer brake setting is characterized by a lower engine braking performance.
  • the softer brake setting is selected so that the achievable in this setting engine braking power is lower than in the stowed position of the variable turbine geometry, in which a lying well below the maximum engine braking power is achieved.
  • the engine braking power in the softer setting is not more than 50% of the braking power in the hard setting. The braking power spectrum obtained with these settings is sufficient to provide the required engine braking power for all commonly occurring driving situations.
  • the travel that is required for adjusting the variable turbine geometry from the hard brake setting to the starting position in the fired operation the same size as the travel, which is required for adjusting the starting position for soft brake adjustment.
  • This version is characterized by a symmetrical position of the drive output position between the two brake settings, so that from the drive output position in the direction of both brake settings each have the same adjustment paths must be applied.
  • the decision on the applied engine braking power can be influenced by an automatic controller intervention, as a decision criterion different state variables of the vehicle or other operating variables are used, in particular the road inclination, the vehicle deceleration and the temperature of the wheel brakes.
  • the thrust of the trailer on the tractor can be taken into account in trailer vehicles.
  • Fig. 1a shows the course of the effective turbine cross section A T as a function of the travel s of an actuator which acts on the variable turbine geometry in the exhaust gas turbine of an exhaust gas turbocharger.
  • the turbine cross-section A T increases steadily and continuously up to a maximum A T, max , which is achieved at maximum travel s max in the open position of the variable turbine geometry.
  • the function of the turbine cross section A T increases degressively.
  • a first point A T, h Immediately adjacent to the stowage position with a minimum flow cross-section A T, min is a first point A T, h registered, which is referred to as a hard brake setting.
  • the hard brake setting A T, h is at a stroke s h of the reaches the variable turbine geometry acting actuator.
  • a point A T, A is reached, which marks a drive output position of the turbine geometry in the fired drive mode.
  • the drive output position A T, A denotes that point with a minimum flow cross section on the curve from which the variable turbine geometry in the fired drive mode in the direction of arrow 1 is adjusted in the direction of larger turbine cross sections.
  • a soft brake setting A T, w is achieved.
  • the turbine cross-section is opened wider than in the drive output position A T, A , in which the turbine cross-section is in turn opened wider than in the hard brake setting A T, h .
  • the hard brake setting A T, h , the drive output position A T, A and the soft brake setting A T, W mark adjustable, specifiable or in a control and control unit of the internal combustion engine storable or programmable points of the function of the turbine cross-section A T.
  • the variable turbine geometry of the exhaust gas turbine can only be adjusted between the hard brake setting A T, h and the soft brake setting A T, w .
  • the range between hard and soft brake setting marks a brake band 2 within the maximum possible range between the turbine cross-section minimum A T, min and the turbine cross-section maximum A T, max , wherein the brake band 2 includes the drive output position A T, A ,
  • the drive output position A T, A is located approximately in the middle between hard and soft brake setting A T, h and A T, w .
  • the travel between s h and s A is about the same size as the travel between s A and s w .
  • the engine braking power M Br increases very strongly up to a maximum P Br, max , which is reached at the travel s h with associated brake setting A T, h (FIG.
  • the increase in engine braking power is due to the higher air flow through the open flow channels of the turbine geometry and the higher power transferred to the turbine.
  • the engine braking power maximum P Br, max is at the same time the hard brake power P Br, h associated with the hard brake setting.
  • the engine braking power first decreases steeply and laterally decreases more gently down to a minimum value P Br, min , which is reached at the maximum possible travel s max .
  • the output drive power P A is centered between hard and soft braking power P Br, h and P Br, w in the region of the largest gradient of the curve.
  • the soft braking power P Br, w is slightly below the initial engine braking power M Br, 0 .
  • the soft braking power P Br, w is maximum half of the engine braking power maximum P Br, max .
  • Fig. 2 shows a schematic representation of an exhaust gas turbine 3, which is equipped with variable turbine geometry 4 for variable adjustment of the effective turbine cross-section.
  • the variable turbine geometry 4 which is designed, for example, as a guide grid with rotatable guide vanes, is adjusted by an actuator 5 by the travel s.
  • the actuator 5, in particular an actuator to be actuated electrically, receives actuating signals from a controller 6, which receives as input signals information about the operating state of the internal combustion engine or the vehicle and generates the control signals from the input signals.
  • the controller 6 communicates with various units in which signals are generated or input.
  • a manual setting 7 the driver can steplessly choose between a predetermined maximum, hard and a predetermined minimum, soft brake setting.
  • the selected brake setting is supplied to the controller 6 for further processing as an input signal.
  • a manual input is not mandatory, it may be appropriate to let automatically determine an optimal value for the engine braking performance in the controller 6. For conflicts between a manual input and an optimum value calculated by the controller 6, the controller value is preferred.
  • the manual setting 7 can via a Switch 13 is turned on or off.
  • the controller 6 As a further input signals to the controller 6, the current road gradient, measured with a tilt sensor 8, the current thrust, especially in trailer vehicles, measured with a thrust or force sensor 9, the current delay, measured with a deceleration sensor 10, and the current temperature of Wheel brakes, measured with a temperature sensor 11, transmitted.
  • a further unit 12 further engine and vehicle operating variables such as engine speed, load etc. are kept ready and transmitted to the controller 6 as input signals.
  • the controller 6 calculates from the input signals the respectively optimum value of the engine braking power within the predetermined braking band.
  • FIG. 3 shows a variable turbine geometry, embodied as a guide grid 14 with guide vanes 15.
  • the guide grid 14 is located in the turbine inlet cross section of the exhaust gas turbine.
  • the gap cross section 17 between two adjacent vanes 15 can be varied, whereby the effective turbine cross section can be variably adjusted.
  • the gap cross-section 17 is reduced to a minimum.
  • the effective turbine cross section is thus also minimal;
  • the variable turbine geometry assumes its stowed position.
  • the turbobar factor TBF is less than 2 ⁇ . The value may be less than 0.5 ⁇ .
  • the turbobardening factor is on the order of less than 5 ⁇ , preferably in a range between 1 ⁇ and 3 ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Claims (15)

  1. Procédé de freinage par frein moteur destiné à un moteur à combustion interne suralimenté comprenant un turbocompresseur à gaz d'échappement avec une turbine (3) à géométrie de turbine (4) variable, qui peut être réglée entre une position de retenue dynamique avec une section de turbine (AT) la plus petite possible, et une position d'ouverture avec une section de turbine (AT) la plus grande possible,
    caractérisé
    - en ce que dans le mode de fonctionnement en frein moteur, on prescrit une largeur de bande de section de turbine admissible à l'intérieur de la plage entre la position de retenue dynamique et la position d'ouverture pour le réglage de la géométrie de turbine (4) variable, la largeur de bande de section de turbine étant délimitée par un réglage de freinage dur (AT,h) et un réglage de freinage doux (AT,w), qui représentent des valeurs limites pouvant être prescrites,
    - en ce que le réglage de freinage dur (AT,h) se situe entre la position de retenue dynamique et une position initiale d'entraînement (AT,A) associée au mode de fonctionnement à entraînement par allumage, et le réglage de freinage doux (AT,w) se situe entre la position initiale d'entraînement (AT,A) et la position d'ouverture, la géométrie de turbine prenant, dans la position initiale d'entraînement, dans le mode de fonctionnement à entraînement par allumage, sa plus petite section,
    - en ce que l'on atteint le maximum de la puissance de freinage par frein moteur (PBr,max) pour le réglage de freinage dur (AT,h).
  2. Procédé de freinage par frein moteur selon la revendication 1, caractérisé en ce que la position initiale d'entraînement (AT,A) se situe, sur une courbe puissance de freinage par frein moteur - course de réglage, dans la zone du plus grand gradient de la courbe entre le maximum de la puissance de freinage par frein moteur (PBr,max) et le minimum de la puissance de freinage par frein moteur (PBr,min).
  3. Procédé de freinage par frein moteur selon la revendication 1 ou 2, caractérisé en ce que pour le réglage de freinage doux (AT,w), on atteint une puissance de freinage par frein moteur moindre que dans la position de retenue dynamique de la géométrie de turbine variable (4).
  4. Procédé de freinage par frein moteur selon l'une des revendications 1 à 3, caractérisé en ce que pour le réglage de freinage doux (AT,w), la puissance de freinage par frein moteur (PBr,w) vaut au maximum 50% de la puissance de freinage par frein moteur (PBr,h) pouvant être atteinte pour le réglage de freinage dur (AT,h).
  5. Procédé de freinage par frein moteur selon l'une des revendications 1 à 4, caractérisé en ce que la course de réglage (s) pour régler la géométrie de turbine variable (4) entre le réglage de freinage dur (AT,h) et la position initiale d'entraînement (AT,A), est de la même grandeur que la course de réglage (s) pour régler la géométrie de turbine variable (4) entre la position initiale d'entraînement (AT,A) et le réglage de freinage doux (AT,w).
  6. Procédé de freinage par frein moteur selon l'une des revendications 1 à 5, caractérisé en ce que la géométrie de turbine variable (4) peut être réglée manuellement entre le réglage de freinage dur et doux (AT,h, AT,w).
  7. Procédé de freinage par frein moteur selon l'une des revendications 1 à 6, caractérisé en ce que la géométrie de turbine variable (4) peut être réglée automatiquement entre le réglage de freinage dur et doux (AT,h, AT,w), en fonction de grandeurs d'état du moteur et/ou de grandeurs de fonctionnement.
  8. Procédé de freinage par frein moteur selon la revendication 7, caractérisé en ce que pour régler la géométrie de turbine variable (4), on relève la pente ou la déclivité de la route ou chaussée.
  9. Procédé de freinage par frein moteur selon la revendication 7 ou 8, caractérisé en ce que pour régler la géométrie de turbine variable (4), on relève la poussée agissant sur le véhicule.
  10. Procédé de freinage par frein moteur selon l'une des revendications 7 à 9, caractérisé en ce que pour régler la géométrie de turbine variable (4), on relève la décélération du véhicule.
  11. Procédé de freinage par frein moteur selon l'une des revendications 7 à 10, caractérisé en ce que pour régler la géométrie de turbine variable (4), on relève la température des freins de roues.
  12. Procédé de freinage par frein moteur selon l'une des revendications 1 à 11, caractérisé en ce que l'on utilise en tant que géométrie de turbine variable (4), un aubage directeur (14) à aubes directrices (15) pouvant être tournées.
  13. Procédé de freinage par frein moteur selon l'une des revendications 1 à 12, caractérisé en ce que l'on détermine un facteur de turbo-freinage TBF relatif au fonctionnement en frein moteur pour une puissance de freinage maximale (PBr,max) du moteur à combustion interne, selon la relation suivante TBF = A T,h * D T /V H à partir des paramètres
    AT,h réglage de freinage dur (section d'écoulement libre dans le parcours des gaz d'échappement vers la turbine en cas de puissance de freinage maximale)
    DT diamètre d'entrée de la roue de turbine
    VH cylindrée du moteur à combustion interne,
    le facteur de turbo-freinage TBF étant inférieur à 0.005 (5 ‰) pour les véhicules utilitaires, et inférieur à 0.002 (2 ‰) pour les voitures de tourisme et les motos.
  14. Procédé de freinage par frein moteur selon la revendication 13, caractérisé en ce que le facteur de turbo-freinage TBF est inférieur à 0.0005 (0.5 ‰).
  15. Procédé de freinage par frein moteur selon l'une des revendications 1 à 14, caractérisé en ce que pour un frein moteur activé, on fait fonctionner les soupapes d'échappement des cylindres avec la commande de mouvement des gaz des soupapes, prévue pour le fonctionnement d'entraînement avec allumage.
EP99116963A 1998-09-29 1999-08-27 Méthode de frein moteur pour un moteur suralimenté Expired - Lifetime EP0990781B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19844573A DE19844573A1 (de) 1998-09-29 1998-09-29 Motorbremsverfahren für eine aufgeladene Brennkraftmaschine
DE19844573 1998-09-29

Publications (3)

Publication Number Publication Date
EP0990781A2 EP0990781A2 (fr) 2000-04-05
EP0990781A3 EP0990781A3 (fr) 2000-11-08
EP0990781B1 true EP0990781B1 (fr) 2004-03-31

Family

ID=7882606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99116963A Expired - Lifetime EP0990781B1 (fr) 1998-09-29 1999-08-27 Méthode de frein moteur pour un moteur suralimenté

Country Status (3)

Country Link
US (1) US6220032B1 (fr)
EP (1) EP0990781B1 (fr)
DE (2) DE19844573A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6647954B2 (en) * 1997-11-17 2003-11-18 Diesel Engine Retarders, Inc. Method and system of improving engine braking by variable valve actuation
DE19931009B4 (de) * 1999-07-06 2008-12-11 Daimler Ag Motorbremsverfahren für eine aufgeladene Brennkraftmaschine und Vorrichtung hierzu
ITTO20010029A1 (it) * 2001-01-16 2002-07-16 Iveco Fiat Motore endotermico provvisto di un dispositivo di frenatura a decompressione e di un turbocompressore con turbina a geometria variabile.
US6594996B2 (en) 2001-05-22 2003-07-22 Diesel Engine Retarders, Inc Method and system for engine braking in an internal combustion engine with exhaust pressure regulation and turbocharger control
US6866017B2 (en) * 2001-05-22 2005-03-15 Diesel Engine Retarders, Inc. Method and system for engine braking in an internal combustion engine using a stroke limited high pressure engine brake
ATE325264T1 (de) * 2001-05-22 2006-06-15 Jacobs Vehicle Systems Inc Verfahren und system zur motorbremsung in einem verbrennungsmotor
DE10343621A1 (de) * 2003-09-20 2005-04-28 Deere & Co Reifendruckeinstellanlage
DE102004034070A1 (de) * 2004-07-15 2006-02-09 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader
DE102015001081A1 (de) 2015-01-28 2016-07-28 Man Truck & Bus Ag Motorbremsverfahren für eine aufgeladene Brennkraftmaschine und Vorrichtung zur Modulation einer Motorbremsleistung eines Kraftfahrzeugs mit aufgeladener Brennkraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502614C2 (sv) * 1994-03-29 1995-11-20 Volvo Ab Anordning för reglering av motorbromseffekten hos en förbränningsmotor
US5813231A (en) * 1994-07-29 1998-09-29 Caterpillar Inc. Engine compression braking apparatus utilizing a variable geometry turbocharger
US5718199A (en) * 1994-10-07 1998-02-17 Diesel Engine Retarders, Inc. Electronic controls for compression release engine brakes
DE19540060A1 (de) * 1995-10-27 1997-04-30 Daimler Benz Ag Motorbremsvorrichtung
DE19615237C2 (de) * 1996-04-18 1999-10-28 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE19637999A1 (de) * 1996-09-18 1998-03-19 Daimler Benz Ag Verfahren zum Betreiben einer Motorbremse und Vorrichtung zur Durchführung des Verfahrens
DE19750331A1 (de) * 1996-11-13 1998-05-20 Mitsubishi Motors Corp Hilfsbremssystem
DE19727141C1 (de) * 1997-06-26 1998-08-20 Daimler Benz Ag Brennkraftmaschinen - Turbolader - System
DE19752534C1 (de) * 1997-11-27 1998-10-08 Daimler Benz Ag Radialdurchströmte Abgasturboladerturbine
DE19833147C2 (de) * 1998-07-23 2000-05-31 Daimler Chrysler Ag Verfahren zur Einstellung der Motorbremsleistung einer aufgeladenen Brennkraftmaschine

Also Published As

Publication number Publication date
US6220032B1 (en) 2001-04-24
EP0990781A2 (fr) 2000-04-05
DE19844573A1 (de) 2000-03-30
DE59909013D1 (de) 2004-05-06
EP0990781A3 (fr) 2000-11-08

Similar Documents

Publication Publication Date Title
AT408129B (de) Verfahren zum betreiben einer motorbremse und vorrichtung zur durchführung des verfahrens
AT510237B1 (de) Verfahren zur motorbremsung
EP1387058A2 (fr) Procédé de réglage de la pression d'admission d'un moteur à combustion interne
WO2000047873A1 (fr) Turbocompresseur pour moteur a combustion interne
DE19705422C1 (de) Brennkraftmaschine mit Abgasturbolader
DE102005008657A1 (de) Motorbremsverfahren für eine Brennkraftmaschine mit zwei in Reihe geschalteten Abgasturboladern
DE102007035966A1 (de) Radialverdichter für einen Turbolader
WO2001044641A2 (fr) Procede de regulation de la pression de charge sur un moteur alternatif a combustion interne a turbosoufflante
DE112005001946T5 (de) Öffnungs/Schliesssteuerung einer Einlass- und Auslassverbindungsschaltung
EP0990781B1 (fr) Méthode de frein moteur pour un moteur suralimenté
DE10144663B4 (de) Brennkraftmaschine mit zwei Abgasturboladern mit Verdichterumgehung und Verfahren hierzu
EP1805403B1 (fr) Procede d'exploitation d'un moteur a combustion interne en mode de freinage par frein moteur
DE102005001757A1 (de) Brennkraftmaschine mit einem den Zylindern zugeordneten Gasdruckbehälter und Verfahren zum Betrieb der Brennkraftmaschine
DE102008011613A1 (de) Turbolader mit einer Betätigungseinrichtung zum Öffnen und Schließen eines Wastegate-Kanals
EP0974744B1 (fr) Méthode pour ajuster la force de freinage moteur d'un moteur à combustion interne suralimenté
DE19824913B4 (de) Vorrichtung und Verfahren zur Einstellung eines Umgehungsventils im Abgasstrang einer Brennkraftmaschine
EP3009629B1 (fr) Procédé et dispositif de réglage d'une pression de charge dans un moteur à combustion avec un compresseur à ondes de pression
DE19811187A1 (de) Abgasturbolader mit variabler Turbinengeometrie
DE4107693C2 (de) System zur Regelung und Steuerung eines Laders
DE19509869A1 (de) Steuer- und Regelsystem für ein automotives hydrostatisches Getriebe
DE19951592B4 (de) Vorrichtung zur Regelung der Bremsleistung einer Brennkraftmaschine
DE102009051261B4 (de) Verfahren zum Betreiben einer Motorbremse eines Kraftwagens
DE3610131A1 (de) Brennkraftmaschine, insbesondere dieselmotor, als antriebseinrichtung fuer fahrzeuge
DE19931009B4 (de) Motorbremsverfahren für eine aufgeladene Brennkraftmaschine und Vorrichtung hierzu
DE19940264B4 (de) Verfahren zum Bremsen eines Verbrennungsmotors eines Kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001013

AKX Designation fees paid

Free format text: DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59909013

Country of ref document: DE

Date of ref document: 20040506

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040616

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050104

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141031

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150227

Year of fee payment: 16

Ref country code: FR

Payment date: 20150227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150422

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59909013

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150827

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150827

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160827